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PARAMETER ESTIMATION FOR MULTIVARIATE EXPONENTIAL SUMS ∗

DANIEL POTTS† AND MANFRED TASCHE‡

Abstract. The recovery of signal parameters from noisy sampled data is anessential problem in digital signal
processing. In this paper, we discuss the numerical solutionof the following parameter estimation problem. Let
h0 be a multivariate exponential sum, i.e.,h0 is a finite linear combination of complex exponentials with distinct
frequency vectors. Determine all parameters ofh0, i.e., all frequency vectors, all coefficients, and the number of
exponentials, if finitely many sampled data ofh0 are given. Using Ingham-type inequalities, the Riesz stability of
finitely many multivariate exponentials with well-separatedfrequency vectors is discussed in continuous as well as
discrete norms. Furthermore, we show that a rectangular Fourier-type matrix has a bounded condition number, if
the frequency vectors are well-separated and if the number ofsamples is sufficiently large. Then we reconstruct
the parameters of an exponential sumh0 by a novel algorithm, the so-called sparse approximate Prony method
(SAPM), where we use only some data sampled along few straight lines. The first part of SAPM estimates the
frequency vectors using the approximate Prony method in the univariate case. The second part of SAPM computes
all coefficients by solving an overdetermined linear Vandermonde-type system. Numerical experiments show the
performance of our method.

Key words. parameter estimation, multivariate exponential sum, multivariate exponential fitting problem, har-
monic retrieval, sparse approximate Prony method, sparse approximate representation of signals
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1. Introduction. Let the dimensiond ∈ N and a positive integerM ∈ N\{1} be given.
We consider ad-variate exponential sum of orderM that is a linear combination

(1.1) h0(x) :=

M
∑

j=1

cj eifj ·x (x = [xl]
d
l=1 ∈ R

d)

of M complex exponentials with complex coefficientscj 6= 0 and distinct frequency vectors
f j = [fj,l]

d
l=1 ∈ T

d ∼= [−π, π)d. Assume that|cj | > ε0 (j = 1, . . . ,M) for a convenient
bound0 < ε0 ≪ 1. Here the torusT is identified with the interval[−π, π). Further the dots
in the exponents of (1.1) denote the usual scalar product inR

d.
If h0 is real-valued, then (1.1) can be represented as a linear combination of ridge func-

tions

h0(x) =

M
∑

j=1

|cj | cos
(

f j · x + ϕj

)

with cj = |cj | eiϕj . Assume that the frequency vectorsf j ∈ T
d (j = 1, . . . ,M) fulfill the

gap condition onTd

(1.2) dist(f j ,f l) := min{‖(f j + 2πk) − f l‖∞ : k ∈ Z
d} ≥ q > 0

for all j, l = 1, . . . ,M with j 6= l. Let N ∈ N with N ≥ 2M + 1 be given. In the following
G is either the full gridZd

N := [−N,N ]d ∩Z
d or a union of2N +1 grid pointsn ∈ Z

d lying
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on few straight lines. IfG is chosen such that|G| ≪ (2N + 1)d for d ≥ 2, thenG is called a
sparse sampling grid.

Suppose that perturbed sampled data

h(n) := h0(n) + e(n), |e(n)| ≤ ε

of (1.1) for all n ∈ G are given, where the error termse(n) ∈ C are bounded by certain
accuracyε > 0. Then we consider the followingparameter estimation problemfor the d-
variate exponential sum (1.1): Recover the distinct frequency vectorsf j ∈ [−π, π)d and the
complex coefficientscj so that

(1.3) |h(n) −
M
∑

j=1

cj eifj ·n| ≤ ε (n ∈ G)

for very small accuracyε > 0 and for minimal orderM . In other words, we are interested in
sparse approximate representations of the given noisy datah(n) ∈ C (n ∈ G) by sampled
data of the exponential sum (1.1), where the condition (1.3) is fulfilled.

The approximation of data by finite linear combinations of complex exponentials has a
long history; see [19, 20]. There exists a variety of applications, such as fitting nuclear mag-
netic resonance spectroscopic data [18] or the annihilating filter method [31, 6, 30]. Recently,
the reconstruction method of [3] was generalized to bivariate exponential sums in [1]. In
contrast to [1], we introduce a sparse approximate Prony method, where we use only some
data on a sparse sampling gridG. Furthermore, we remark on the relation to a reconstruction
method for sparse multivariate trigonometric polynomials; see Remark6.3and [16, 12, 32].

In this paper, we extend the approximate Prony method (see [23]) to multivariate expo-
nential sums. Our approach can be described as follows:
(i) Solving a few reconstruction problems of univariate exponential sums, we determine a
finite set of feasible frequency vectorsf ′

k (k = 1, . . . ,M ′). For each reconstruction we use
only data sampled along a straight line. As parameter estimation we use the univariate ap-
proximate Prony method which can be replaced by another Prony-like method [24], such as
ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) [26, 27] or
matrix pencil methods [10, 29].
(ii) Then we test if a feasible frequency vectorf ′

k (k = 1, . . . ,M ′) is an actual frequency
vector of the exponential sum (1.1) too. Replacing the condition (1.3) by the overdetermined
linear system

(1.4)
M ′

∑

k=1

c′k eif ′

k·n = h(n) (n ∈ G) ,

we compute the least squares solution(c′k)M ′

k=1. Then we say thatf ′
k is an actual frequency

vector of (1.1), if |c′k| > ε0. Otherwise,f ′
k is interpreted as frequency vector of noise and is

canceled. Let̃f j (j = 1, . . . ,M) be all the actual frequency vectors.
(iii) In a final correction step, we solve the linear system

M
∑

j=1

c̃j eif̃j ·n = h(n) (n ∈ G) .

As explained above, our reconstruction method uses the least squares solution of the linear
system (1.4) with the rectangular coefficient matrix

[

eif̃j ·n
]

n∈G, j=1,...,M
(|G| > M) .
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If this matrix has full rankM and if its condition number is moderately sized, then one can
efficiently compute the least squares solution of (1.4), which is sensitive to permutations of
the coefficient matrix and the sampled data; see [7, pp. 239–244]. In the special caseG = Z

d
N ,

we can show that this matrix is uniformly bounded, ifN >
√

dπ
q . Then we use(2N + 1)d

sampled data for the reconstruction ofM frequency vectorsf j andM complex coefficients
cj of (1.1).

However, our aim is an efficient parameter estimation of (1.1) by a relatively low num-
ber of given sampled datah(n) (n ∈ G) on a sparse sampling gridG. The corresponding
approach is calledsparse approximate Prony method(SAPM). Numerical experiments for
d-variate exponential sums withd ∈ {2, 3, 4} show the performance of our parameter recon-
struction.

This paper is divided into two parts. The first part consists of Sections2 and3, where we
discuss the Riesz stability of finitely many multivariate exponentials. It is a known fact that
an exponential sum (1.1) with well-separated frequency vectors can be well reconstructed. In
addition, one also knows that the parameter estimation of anexponential sum with clustered
frequency vectors is very difficult. What is the basic cause ofthese effects? In Section2,
we investigate the Riesz stability of multivariate exponentials with respect to the contin-
uous norms ofL2([−N, N ]d) andC([−N, N ]d), respectively, where we assume that the
frequency vectors fulfill the gap condition (2.1); see Lemma2.1 and Corollary2.3. These
results are mainly based on Ingham-type inequalities; see [14, pp. 59–66 and pp. 153–156].
Furthermore, we present a result for the converse assertion, i.e., if finitely many multivariate
exponentials are Riesz stable, then the corresponding frequency vectors are well-separated;
see Lemma2.2. In Section3, we extend these stability results to draw conclusions for the
discrete norm ofℓ2(Zd

N ). Moreover, we prove that the condition number of the coefficient
matrix of (1.4) is uniformly bounded, if we choose the full sampling gridG = Z

d
N and ifN is

sufficiently large. By the results of Section3, one can see that well-separated frequency vec-
tors are essential for a successful parameter estimation of(1.1). Up to now, a corresponding
result for a sparse sampling gridG is unknown.

The second part of this paper consists of Sections4–7, where we present a novel efficient
parameter recovery algorithm of (1.1) for a sparsesampling grid. In Section4 we sketch
the approximate Prony method in the univariate setting. Then we extend this method to
bivariate exponential sums in Section5. Here we suggest the new SAPM. The main idea
is to project the bivariate reconstruction problem to several univariate problems and combine
finally the results of the univariate reconstructions. We use only few data sampled along some
straight lines in order to reconstruct a bivariate exponential sum. In Section6, we extend this
reconstruction method tod-variate exponential sums for moderately sized dimensionsd ≥ 3.
Finally, various numerical examples are presented in Section7.

2. Stability of exponentials. The main difficulty here is known to be the reconstruction
of frequency vectors with small separation distanceq > 0; see (1.2). Therefore first we
discuss the stability properties of the finitely manyd-variate exponentials in dependence ofq.
We start with a generalization of the known Ingham inequalities; see [11].

LEMMA 2.1. [14, pp. 153–156]. Letd ∈ N, M ∈ N \ {1} andN > 0 be given. If the
frequency vectorsf j ∈ R

d (j = 1, . . . ,M) fulfill the gap condition onRd,

(2.1) ‖f j − f l‖∞ ≥ q >

√
d π

N
(j, l = 1, . . . ,M ; j 6= l),
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then the exponentialseifj ·(·) (j = 1, . . . ,M) are Riesz stable inL2([−N,N ]d), i.e., for all
complex vectorsc = [cj ]

M
j=1,

(2.2) γ1 ‖c‖2
2 ≤ ‖

M
∑

j=1

cj eifj ·(·)‖2
2 ≤ γ2 ‖c‖2

2,

with some positive constantsγ1, γ2, independent of the particular choice of the coefficients
cj . Here‖c‖2 denotes the Euclidean norm ofc ∈ C

M and

‖f‖2 :=
( 1

(2N)d

∫

[−N,N ]d
|f(x)|2 dx

)1/2

(f ∈ L2([−N,N ]d)) .

Note that ford = 1, we obtain exactly the classical Ingham inequalities(see[11]) with
the positive constants

γ1 =
2

π

(

1 − π2

N2q2

)

, γ2 =
4
√

2

π

(

1 +
π2

4N2q2

)

.

In the cased ≥ 2, the Lemma2.1 provides only the existence of positive constantsγ1, γ2

without corresponding explicit expressions.
Obviously, the exponentials

(2.3) eifj ·(·) (j = 1, . . . ,M)

with distinct frequency vectorsf j ∈ R
d (j = 1, . . . ,M) are linearly independent and Riesz

stable. Now we show that from the first inequality (2.2) it follows that the frequency vectors
f j are well–separated. The following lemma generalizes a former result [17] for univariate
exponentials.

LEMMA 2.2. Letd ∈ N, M ∈ N\{1} andN > 0. Further letf j ∈ R
d (j = 1, . . . ,M)

be given. If there exists a constantγ1 > 0 such that

γ1 ‖c‖2
2 ≤ ‖

M
∑

j=1

cj eifj ·(·)‖2
2

for all complex vectorsc = [cj ]
M
j=1, then the frequency vectorsf j are well-separated by

‖f j − f l‖∞ ≥
√

2γ1

dN

for all j, l = 1, . . . ,M (j 6= l). Moreover, the exponentials(2.3) are Riesz stable in
L2([−N,N ]d).

Proof. 1. In the following proof we use similar arguments as in [5, Theorem 7.6.5].
We choosecj = −cl = 1 for j 6= l. All the other coefficients are equal to 0. Then by the
assumption, we obtain

2 γ1 ≤ ‖eifj ·(·) − eif l·(·)‖2
2

=
1

(2N)d

∫

[−N,N ]d
|1 − ei(f l−fj)·x|2 dx

=
1

(2N)d

∫

[−N,N ]d
4 sin2

(

(f l − f j) · x/2
)

dx

≤ 1

(2N)d

∫

[−N,N ]d

∣

∣(f l − f j) · x
∣

∣

2
dx

≤ 1

(2N)d

∫

[−N,N ]d
‖f l − f j‖2

1 N2 dx ,(2.4)
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where we have used the Hölder estimate

|(f l − f j) · x| ≤ ‖f l − f j‖1 ‖x‖∞ ≤ ‖f l − f j‖1 N

for all x ∈ [−N, N ]d. Therefore (2.4) shows that

d ‖f l − f j‖∞ ≥ ‖f l − f j‖1 ≥
√

2γ1

N

for all j, l = 1, . . . ,M (j 6= l).
2. We see immediately thatM is an upper Riesz bound for the exponentials (2.3) in

L2([−N,N ]d). By the Cauchy–Schwarz inequality we obtain

|
M
∑

j=1

cj eifj ·x|2 ≤ M ‖c‖2
2

for all c = (cj)
M
j=1 ∈ C

M and allx ∈ [−N, N ]d such that

‖
M
∑

j=1

cj eifj ·(·)‖2
2 ≤ M ‖c‖2

2 .

By the Lemmas2.1and2.2, the Riesz stability of the exponentials (2.3) in L2([−N, N ]d)
is equivalent to the fact that the frequency vectorsf j are well–separated. Now we show that
in Lemma2.1the square norm can be replaced by the uniform norm ofC([−N, N ]d).

COROLLARY 2.3. If the assumptions of Lemma2.1 are fulfilled, then the exponentials
(2.3) are Riesz stable inC([−N,N ]d), i.e., for all complex vectorsc = [cj ]

M
j=1

√

γ1

M
‖c‖1 ≤ ‖

M
∑

j=1

cj eifj ·(·)‖∞ ≤ ‖c‖1

with the uniform norm

‖f‖∞ := max
x∈[−N,N ]d

|f(x)| (f ∈ C([−N,N ]d)).

Proof. Let h0 ∈ C([−N,N ]d) be defined by (1.1). Then‖h0‖2 ≤ ‖h0‖∞ < ∞. Using
the triangle inequality, we obtain that

‖h0‖∞ ≤
M
∑

j=1

|cj | · 1 = ‖c‖1 .

From Lemma2.1and‖c‖1 ≤
√

M ‖c‖2, it follows that
√

γ1

M
‖c‖1 ≤ √

γ1 ‖c‖2 ≤ ‖h0‖2 .

Now we use the uniform norm ofC([−N, N ]d) and estimate the error‖h0 − h̃‖∞ be-
tween the original exponential sum (1.1) and its reconstruction

h̃(x) :=

M
∑

j=1

c̃j eif̃j ·x (x ∈ [−N, N ]d).
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We obtain a small error‖h0−h̃‖∞ in the case
∑M

j=1 |cj− c̃j | ≪ 1 and‖f j−f̃ j‖∞ ≤ δ ≪ 1
(j = 1, . . . ,M).

THEOREM 2.4. LetM ∈ N \ {1} andN > 0 be given. Letc = [cj ]
M
j=1 andc̃ = [c̃j ]

M
j=1

be arbitrary complex vectors. Iff j , f̃ j ∈ R
d (j = 1, . . . ,M) fulfill the conditions

‖f j − f l‖∞ ≥ q >
3
√

dπ

2N
(j, l = 1, . . . ,M ; j 6= l),

‖f̃ j − f j‖∞ ≤ δ <

√
dπ

4N
(j = 1, . . . ,M),

then both(2.3) and

eif̃j ·(·) (j = 1, . . . ,M)

are Riesz stable inC([−N, N ]d). Furthermore,

‖h0 − h̃‖∞ ≤ ‖c − c̃‖1 + dδN ‖c‖1 .

Proof. 1. By the gap condition onRd we know that

‖f j − f l‖∞ ≥ q >
3
√

dπ

2N
>

√
dπ

N
(j, l = 1, . . . ,M ; j 6= l).

Hence the original exponentials (2.3) are Riesz stable inC([−N, N ]d) by Corollary 2.3.
Using the assumptions, we conclude that

‖f̃ j − f̃ l‖∞ ≥ ‖f j − f l‖∞ − ‖f̃ j − f j‖∞ − ‖f l − f̃ l‖∞

≥ q − 2

√
dπ

4N
>

√
dπ

N
.

Thus the reconstructed exponentials

eif̃j ·(·) (j = 1, . . . ,M)

are Riesz stable inC([−N, N ]d) by Corollary2.3, too.
2. Now we estimate the normwise error‖h0 − h̃‖∞ by the triangle inequality. Then we

obtain

‖h0 − h̃‖∞ ≤ ‖
M
∑

j=1

(cj − c̃j) eif̃j ·(·)‖∞ + ‖
M
∑

j=1

cj (eifj ·(·) − eif̃j ·(·))‖∞

≤
M
∑

j=1

|cj − c̃j | +
M
∑

j=1

|cj | max
x∈[−N,N ]d

|eifj ·x − eif̃j ·x| .

Since fordj := f̃ j − f j (j = 1, . . . ,M) and arbitraryx ∈ [−N, N ]d, we can estimate

|eifj ·x − eif̃j ·x| = |1 − eidj ·x| =
√

2 − 2 cos(dj · x)

= 2 | sin dj · x
2

| ≤ |dj · x| ≤ ‖dj‖∞ ‖x‖1 ≤ dδ N

such that we obtain

‖h0 − h̃‖∞ ≤ ‖c − c̃‖1 + dδN ‖c‖1 .
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3. Stability of exponentials on a grid. In the last section we studied the Riesz stability
of d-variate exponentials (2.3) with respect to continuous norms. Now we investigate the
Riesz stability ofd-variate exponentials restricted on the full gridZ

d
N with respect to the

discrete norm ofℓ2(Zd
N ). First we will show that a discrete version of Lemma2.1is also true

for d-variate exponential sums (1.1). If we sample an exponential sum (1.1) on the full grid
Z

d
N , then it is impossible to distinguish between the frequencyvectorsf j andf j + 2πk for

certaink ∈ Z
d, since by the periodicity of the complex exponential

eif̃j ·n = ei (f̃
j
+2πk)·n (n ∈ Z

d
N ) .

Therefore we assume in the following thatf j ∈ [−π, π)d (j = 1, . . . ,M) and we measure
the distance between two distinct frequency vectorsf j , f l ∈ [−π, π)d (j, l = 1, . . . ,M ;
j 6= l) by

dist(f j ,f l) := min{‖(f j + 2πk) − f l‖∞ : k ∈ Z
d} .

Then theseparation distanceof the set{f j ∈ [−π, π)d : j = 1, . . . ,M} is defined by

min {dist(f j ,f l) : j, l = 1, . . . ,M ; j 6= l} ∈ (0, π].

The separation distance can be interpreted as the smallest gap between two distinct frequency
vectors in thed-dimensional torusTd. Since we restrict an exponential sumh0 on the full
sampling gridZd

N , we use the norm

1

(2N + 1)d/2

(

∑

k∈Zd
N

|h0(k)|2
)1/2

in the Hilbert spaceℓ2(Zd
N ).

LEMMA 3.1. [15]. Let q ∈ (0, π] andM ∈ N \ {1} be given. If the frequency vectors
f j ∈ (−π + q

2 , π − q
2 )d (j = 1, . . . ,M) satisfy

‖f j − f l‖∞ ≥ q >

√
dπ

N
(j, l = 1, . . . ,M ; j 6= l) ,

then the exponentials(2.3) are Riesz stable inℓ2(Zd
N ), i.e., all complex vectorsc = [cj ]

M
j=1

satisfy the following Ingham-type inequalities

γ3 ‖c‖2
2 ≤ 1

(2N + 1)d

∑

k∈Zd
N

|
M
∑

j=1

cj ei fj ·k |2 ≤ γ4 ‖c‖2
2

with some positive constantsγ3 andγ4, independent of the particular choice ofc.
Note that Lemma3.1 delivers only the existence of positive constantsγ3, γ4 without

corresponding explicit expressions.
LEMMA 3.2. Let d ∈ N, M ∈ N \ {1} and N ∈ N with N ≥ 2M + 1 be given.

Furthermore, letf j ∈ [−π, π)d (j = 1, . . . ,M). If there exists a constantγ3 > 0 such that

γ3 ‖c‖2
2 ≤ 1

(2N + 1)d

∑

k∈Zd
N

|
M
∑

j=1

cj eifj ·k|2
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for all complex vectorsc = [cj ]
M
j=1, then the frequency vectorsf j are well-separated by

dist(f j ,f l) ≥
√

2γ3

dN

for all j, l = 1, . . . ,M with j 6= l. Moreover, the exponentials(2.3) are Riesz stable in
ℓ2(Zd

N ).
The proof follows similar lines as the proof of Lemma2.2 and is omitted here. By

Lemmas3.1 and3.2, the Riesz stability of the exponentials (2.3) in ℓ2(Zd
N ) is equivalent to

the condition that the frequency vectorsf j are well-separated.
Introducing therectangular Fourier-type matrix

F := (2N + 1)−d/2
[

ei fj ·k
]

k∈Zd
N

, j=1,...,M
∈ C

(2N+1)d×M ,

we improve the result of [22, Theorem 4.3].
COROLLARY 3.3. Under the assumptions of Lemma3.1, the rectangular Fourier-type

matrixF has a uniformly bounded condition numbercond2(F ) for all integersN >
√

d π
q .

Proof. By Lemma3.1, we know that for allc ∈ C
M

(3.1) γ3 cHc ≤ cHF HF c ≤ γ4 cHc

with positive constantsγ3, γ4. Let λ1 ≥ λ2 ≥ . . . ≥ λM ≥ 0 be the ordered eigenvalues of
F HF ∈ C

M×M . Using the Rayleigh-Ritz Theorem and (3.1), we obtain that

γ3 cHc ≤ λM cHc ≤ cHF HF c ≤ λ1 cHc ≤ γ4 cHc

and hence

0 < γ3 ≤ λM ≤ λ1 ≤ γ4 < ∞ .

ThusF HF is positive definite and

cond2(F ) =

√

λ1

λM
≤

√

γ4

γ3
.

REMARK 3.4. Let us consider the parameter estimation problem (1.3) in the special case
G = Z

d
N with (2N +1)d given sampled datah(n) (n ∈ Z

d
N ). Assume that distinct frequency

vectorsf j ∈ [−π, π)d (j = 1, . . . , M) with separation distanceq are determined. If we
replace (1.3) by the overdetermined linear system

M
∑

j=1

cj eif ′

j ·k = h(k) (k ∈ Z
d
N ) ,

then by Corollary3.3 the coefficient matrix has a uniformly bounded condition number for
all N >

√
dπ
q . Furthermore, this matrix has full rankM . Hence the least squares solution

[cj ]
M
j=1 can be computed and the sensitivity of the least squares solution to perturbations can

be bounded [7, pp. 239 – 244]. Unfortunately, this method requires too many sampled data.
In Sections5 and 6, we propose another parameter estimation method which usesonly a
relatively small number of sampled data.
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4. Approximate Prony method for d = 1. Here we sketch theapproximate Prony
method(APM) for the cased = 1. For details see [3, 23, 21]. Let M ∈ N \ {1} andN ∈ N

with N ≥ 2M + 1 be given. ByZN we denote the finite set[−N, N ] ∩ Z. We consider a
univariate exponential sum

h0(x) :=

M
∑

j=1

cj eifjx (x ∈ R)

with distinct, ordered frequencies

−π ≤ f1 < f2 < . . . < fM < π

and complex coefficientscj 6= 0. Assume that these frequencies are well-separated in the
sense that

dist(fj , fl) := min{|(fj + 2πk) − fl| : k ∈ Z} >
π

N

for all j, l = 1, . . . ,M with j 6= l. Suppose that noisy sampled datah(k) := h0(k) + e(k) ∈
C (k ∈ ZN ) are given, where the magnitudes of the error termse(k) are uniformly bounded
by a certain accuracyε1 > 0. Further we assume that|cj | > ε0 (j = 1, . . . ,M) for a conve-
nient bound0 < ε0 ≪ 1.

Then we consider the followingnonlinear approximation problem: Recover the distinct
frequenciesfj ∈ [−π, π) and the complex coefficientscj so that

|h(k) −
M
∑

j=1

cj eifjk| ≤ ε (k ∈ ZN )

for very small accuracyε > 0 and for minimal numberM of nontrivial summands. This
problem can be solved by the following

ALGORITHM 4.1. (APM)

Input: L, N ∈ N (3 ≤ L ≤ N , L is an upper bound of the number of exponentials),
h(k) = h0(k) + e(k) ∈ C (k ∈ ZN ) with |e(k)| ≤ ε1, and boundsεl > 0 (l = 0, 1, 2).

1. Determine the smallest singular value of the rectangular Hankel matrix

H := [h(k + l)]N−L, L
k=−N, l=0

and related right singular vectoru = (ul)
L
l=0 by singular value decomposition.

2. Compute all zeros of the polynomial
∑L

l=0 ul z
l and determine all the zeros̃zj

(j = 1, . . . , M̃) that fulfill the property| |z̃j | − 1| ≤ ε2. Note thatL ≥ M̃ .
3. For w̃j := z̃j/|z̃j | (j = 1, . . . , M̃), computẽcj ∈ C (j = 1, . . . , M̃) as least squares
solution of the overdetermined linear Vandermonde-type system

M̃
∑

j=1

c̃j w̃k
j = h(k) (k ∈ ZN ) .

For large M̃ and N , we can apply the CGNR method (conjugate gradient method applied
to the normal equations), where the multiplication of the rectangular Fourier-type matrix
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[w̃k
j ]N,M̃

k=−N,j=1 is realized in each iteration step by the nonequispaced fastFourier transform
(NFFT); see [13].
4. Delete all thew̃l (l ∈ {1, . . . , M̃}) with |c̃l| ≤ ε0 and denote the remaining entries byw̃j

(j = 1, . . . ,M) with M ≤ M̃ .
5. Repeat step3 and computẽcj ∈ C (j = 1, . . . ,M) as least squares solution of the
overdetermined linear Vandermonde-type system

M
∑

j=1

c̃j w̃k
j = h(k) (k ∈ ZN )

with respect to the new set{w̃j : j = 1, . . . ,M} again. Setf̃j := Im (log w̃j)
(j = 1, . . . ,M), wherelog is the principal value of the complex logarithm.

Output:M ∈ N, f̃j ∈ [−π, π), c̃j ∈ C (j = 1, . . . ,M).

REMARK 4.2. The convergence and stability properties of Algorithm4.1are discussed
in [23]. In all numerical tests of Algorithm4.1(see Section7 and [23, 21]), we have obtained
very good reconstruction results. All frequencies and coefficients can be computed such that

max
j=1,...,M

|fj − f̃j | ≪ 1,

M
∑

j=1

|cj − c̃j | ≪ 1 .

We have to assume that the frequenciesfj are well-separated, that the|cj | are not too small,
that the number2N + 1 of samples is sufficiently large, that a convenient upper bound L
of the number of exponentials is known, and that the error bound ε1 of the sampled data is
small. Up to now, useful error estimates ofmaxj=1,...,M |fj − f̃j | and

∑M
j=1 |cj − c̃j | are

unknown.
REMARK 4.3. The above algorithm has been tested forM ≤ 100 andN ≤ 105 in

MATLAB with double precision arithmetic. For fixed upper bound L and variableN , the
computational cost of this algorithm is very moderate with aboutO(N log N) flops. In step
1, the singular value decomposition needs14 (2N−L+1)(L+1)2+8 (L+1)2 flops. In step
2, the QR decomposition of the companion matrix requires4

3 (L + 1)3 flops; see [9, p. 337].
For large valuesN andM̃ , one can use the nonequispaced fast Fourier transform iteratively

in steps 3 and 5. Since the condition number of the Fourier-type matrix[w̃k
j ]N,M̃

k=−N,j=1 is
uniformly bounded by Corollary3.3, we need finitely many iterations of the CGNR method.
In each iteration step, the product between this Fourier-type matrix and an arbitrary vector of
lengthM̃ can be computed with the NFFT byO(N log N + L | log ε|) flops, whereε > 0 is
the wanted accuracy; see [13].

REMARK 4.4. In this paper, we use the Algorithm4.1 for parameter estimation of
univariate exponential sums. But we can replace this procedure also by another Prony-like
method [24], such as ESPRIT [26, 27] or by a matrix pencil method [10, 29].

REMARK 4.5. By similar ideas, we can reconstruct also all parameters of anextended
exponential sum

h0(x) =
M
∑

j=1

pj(x) ei fjx (x ∈ R) ,

wherepj (j = 1, . . . ,M) is an algebraic polynomial of degreemj ≥ 0; see [4, p. 169]. Then
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we can interpret the exactly sampled values

h0(n) =
M
∑

j=1

pj(n) zn
j (n ∈ ZN )

with zj := ei fj as a solution of a homogeneous linear difference equation

(4.1)
M0
∑

k=0

pk h0(j + k) = 0 (j ∈ Z) ,

where the coefficientspk (k = 0, . . . ,M0) are defined by

M
∏

j=1

(z − zj)
mj+1 =

M0
∑

k=0

pk zk , M0 :=

M
∑

j=1

(mj + 1) .

Note that in this casezj is a zero of ordermj of the above polynomial and we can cover
multiple zeros with this approach. Consequently, (4.1) has the general solution

h0(k) =

M
∑

j=1

(

mj
∑

l=0

cj,l k
l
)

zk
j (k ∈ Z) .

Then we determine the coefficientscj,l (j = 1, . . . ,M ; l = 0, . . . ,mj) in such a way that

M
∑

j=1

(

mj
∑

l=0

cj,l k
l
)

zk
j = h(k) (k ∈ ZN ) ,

where we assume thatN ≥ 2M0 + 1. To this end, we compute the least squares solution of
the above overdetermined linear system.

5. Sparse approximate Prony method ford = 2. Let M ∈ N \ {1} andN ∈ N

with N ≥ 2M + 1 be given. The aim of this section is to present a new efficient parameter
estimation method for a bivariate exponential sum of orderM using onlyO(N) sampling
points. The main idea is to project the bivariate reconstruction problem to several univariate
problems and to solve these problems by methods from Section4. Finally we combine the
results from the univariate problems. Note that it is not necessary to sample the bivariate
exponential sum

h0(x1, x2) =

M
∑

j=1

cj ei (fj,1x1+fj,2x2) .

on the full sampling gridZd
N . Assume that the distinct frequency vectors

f j = [fj,1, fj,2]
⊤ ∈ [−π, π)2 (j = 1, . . . ,M)

arewell-separatedby

(5.1) dist(fj,l, fk,l) > π/N

for all j, k = 1, . . . ,M andl = 1, 2, if fj,l 6= fk,l. We solve the corresponding parameter
estimation problem stepwise and call this new proceduresparse approximate Prony method
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(SAPM). Here we use only noisy valuesh(n, 0), h(0, n), h(n, αn + β) (n ∈ ZN ) sampled
along straight lines, whereα ∈ Z \ {0} andβ ∈ Z are conveniently chosen.

First we consider the given noisy datah(n, 0) (n ∈ ZN ) of

(5.2) h0(n, 0) =

M
∑

j=1

cj eifj,1n =

M1
∑

j1=1

cj1,1 eif ′

j1,1n ,

where1 ≤ M1 ≤ M , f ′
j1,1 ∈ [−π, π) (j1 = 1, . . . ,M1) are the distinct values offj,1

(j = 1, . . . ,M) andcj1,1 ∈ C are certain linear combinations of the coefficientscj . Assume
that cj1,1 6= 0. Using Algorithm4.1, we compute the distinct frequenciesf ′

j1,1 ∈ [−π, π)
(j1 = 1, . . . ,M1).

Analogously, we consider the given noisy datah(0, n) (n ∈ ZN ) of

(5.3) h0(0, n) =

M
∑

j=1

cj eifj,2n =

M2
∑

j2=1

cj2,2 eif ′

j2,2n,

where1 ≤ M2 ≤ M , f ′
j2,2 ∈ [−π, π) (j2 = 1, . . . ,M2) are the distinct values offj,2

(j = 1, . . . ,M) andcj2,2 ∈ C are certain linear combinations of the coefficientscj . Assume
that cj2,2 6= 0. Using Algorithm4.1, we compute the distinct frequenciesf ′

j2,2 ∈ [−π, π)
(j2 = 1, . . . ,M2).

Then we form the Cartesian product

(5.4) F = {[f ′
j1,1, f

′
j2,2]

⊤ ∈ [−π, π)2 : j1 = 1, . . . ,M1, j2 = 1, . . . ,M2}
of the sets{f ′

j1,1 : j1 = 1, . . . ,M1} and {f ′
j2,2 : j2 = 1, . . . ,M2}. Now we test if

[f ′
j1,1, f

′
j2,2]

⊤ ∈ F is an approximation of an actual frequency vectorf j = [fj,1, fj,2]
⊤

(j = 1, . . . ,M). Choosing further parametersα ∈ Z \ {0}, β ∈ Z, we consider the given
noisy datah(n, αn + β) (n ∈ ZN ) of

(5.5) h0(n, αn + β) =
M
∑

j=1

cj eiβfj,2 ei(fj,1+αfj,2)n =

M ′

2
∑

k=1

ck,3 eifk(α)n ,

where 1 ≤ M ′
2 ≤ M , fk(α) ∈ [−π, π) (k = 1, . . . ,M ′

2) are the distinct values of
(fj,1 + αfj,2)2π (j = 1, . . . ,M). Here (fj,1 + αfj,2)2π is the symmetric residuum of
fj,1 + αfj,2 modulo2π, i.e. fj,1 + αfj,2 ∈ (fj,1 + αfj,2)2π + 2π Z and(fj,1 + αfj,2)2π ∈
[−π, π). Note thatfk(α) ∈ [−π, π) and thatfj,1 + αfj,2 can be located outside of[−π, π).
The coefficientsck,3 ∈ C are certain linear combinations of the coefficientscj eiβfj,2 . As-
sume thatck,3 6= 0. Using Algorithm4.1, we compute the distinct frequenciesfk(α) ∈
[−π, π) (k = 1, . . . ,M ′

2).
Then we form the set̃F of all those[f ′

j1,1, f
′
j2,2]

⊤ ∈ F so that there exists a frequency
fk(α) (k = 1, . . . ,M ′

2) with

|fk(α) − (f ′
j1,1 + αf ′

j2,2)2π| < ε1 ,

whereε1 > 0 is an accuracy bound. Clearly, one can repeat the last step with other parameters
α ∈ Z \ {0} andβ ∈ Z to obtain a smaller set̃F := {f̃ j = [f̃j,1, f̃j,2]

⊤ : j = 1, . . . , |F̃ |}.

Finally, we compute the coefficients̃cj (j = 1, . . . , |F̃ |) as least squares solution of the
overdetermined linear system

(5.6)
|F̃ |
∑

j=1

c̃j eif̃j ·n = h(n) (n ∈ G) ,
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whereG := {(n, 0), (0, n), (n, α n + β); n ∈ ZN} is the sparse sampling grid. In other
words, this linear system (5.6) reads as follows

|F̃ |
∑

j=1

c̃j eif̃j,1n = h(n, 0) (n ∈ ZN ) ,

|F̃ |
∑

j=1

c̃j eif̃j,2n = h(0, n) (n ∈ ZN ) ,

|F̃ |
∑

j=1

c̃j eiβf̃j,2 ei(f̃j,1+αf̃j,2)n = h(n, αn + β) (n ∈ ZN ) .

Unfortunately, these three system matrices may possess equal columns. Therefore we repre-
sent these matrices as productsF l M l (l = 1, 2, 3), whereF l is a nonequispaced Fourier
matrix with distinct columns and where all entries ofM l are equal to 0 or 1 and only one
entry of each column is equal to 1. By [22, Theorem 4.3] the nonequispaced Fourier matrices

F l :=
[

eif̃j,ln
]

n∈ZN ,j=1,...,|F̃ | (l = 1, 2) ,

F 3 :=
[

ei(f̃j,1+αf̃j,2)n
]

n∈ZN ,j=1,...,|F̃ |

possess left inversesLl. If we introduce the vectorsh1 := [h(n, 0)]Nn=−N , h2 := [h(0, n)]Nn=−N ,

h3 := [h(n, αn+β)]Nn=−N , c̃ := [c̃j ]
|F̃ |
j=1, and the diagonal matrixD := diag (exp(iβf̃j,2))

|F̃ |
j=1,

then we obtain the linear system

(5.7)





M1

M2

M3 D



 c̃ =





L1 h1

L2 h2

L3 h3



 .

By a convenient choice of the parametersα ∈ Z \ {0} andβ ∈ Z, the rank of the above
system matrix is equal to|F̃ |. If this is not the case, we can use sampled values ofh0 along
another straight line. We summarize:

ALGORITHM 5.1. (SAPM ford = 2)
Input: h(n, 0), h(0, n) ∈ C (n ∈ ZN ), boundsε0, ε1 > 0,
m number of additional straight lines, parametersαl ∈ Z \ {0}, βl ∈ Z (l = 1, . . . ,m),
h(n, αln + βl) ∈ C (n ∈ ZN ; l = 1, . . . ,m).

1. From the noisy datah(n, 0) (n ∈ ZN ) and h(0, n) (n ∈ ZN ) compute by Algo-
rithm 4.1 the distinct frequenciesf ′

j1,1 ∈ [−π, π) (j1 = 1, . . . ,M1) in (5.2) and f ′
j2,2 ∈

[−π, π) (j2 = 1, . . . ,M2) in (5.3), respectively. SetG := {(n, 0), (0, n) : n ∈ ZN}.
2. Form the Cartesian product(5.4).
3. For l = 1, . . . ,m do:

From the noisy datah(n, αln + βl) (n ∈ ZN ), compute the distinct fre-
quenciesfk(αl) ∈ [−π, π) (k = 1, . . . ,M ′

2) in (5.5) by Algorithm4.1.
Form the setF ′ := {f ′

j : j = 1, . . . , |F ′|} of all those[f ′
j1,1, f

′
j2,2]

⊤ ∈ F
so that there exists a frequencyfk(αl) (k = 1, . . . ,M ′

2) with

|fk(αl) − (f ′
j1,1 + αlf

′
j2,2)2π| < ε1 .

SetG := G ∪ {(n, αln + βl) : n ∈ ZN}.
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4. Compute the least squares solution of the overdeterminedlinear system

|F ′|
∑

j=1

c′j eif ′

j ·n = h(n) (n ∈ G)

for the frequency setF ′.
5. Form the subset̃F = {f̃ j : j = 1, . . . , |F̃ |} of F ′ of all thosef ′

k ∈ F ′

(k = 1, . . . , |F ′|) with |c′k| > ε0.
6. Compute the least squares solution of the overdeterminedlinear system(5.6) corre-

sponding to the new frequency setF̃ .
Output:M := |F̃ | ∈ N, f̃ j ∈ [−π, π)2, c̃j ∈ C (j = 1, . . . ,M).
Note that it can be useful in some applications to choose gridpoints (n, αln + βl)

(n ∈ ZN ) on random straight lines.
REMARK 5.2. For the above parameter reconstruction, we have used sampled values of

a bivariate exponential sumh0 on m + 2 straight lines. We have determined in the step 3 of
Algorithm 5.1only a setF ′ which contains the set̃F of all exact frequency vectors as a subset.
This method is related to a result of A. Rényi [25] which is known in discrete tomography:M
distinct points inR

2 are completely determined, if their orthogonal projections ontoM + 1
arbitrary distinct straight lines through the origin are known. Let us additionally assume that
‖f j‖2 < π (j = 1, . . . ,M). Further letϕℓ ∈ [0, π) (ℓ = 0, . . . ,M) be distinct angles. From
sampled datah0(n cos ϕℓ, n sinϕℓ) (n ∈ ZN ) we reconstruct the parametersfj,1 cos ϕℓ +
fj,2 sinϕℓ for j = 1, . . . ,M andℓ = 0, . . . ,M . Since|fj,1 cos ϕℓ + fj,2 sin ϕℓ| < π, we
have

(fj,1 cos ϕℓ + fj,2 sin ϕℓ)2π = fj,1 cos ϕℓ + fj,2 sinϕℓ .

Thusfj,1 cos ϕℓ + fj,2 sinϕℓ is equal to the distance betweenf j and the linex1 cos ϕℓ +
x2 sin ϕℓ = 0, i.e., we know the orthogonal projection off j onto the straight linex1 cos ϕℓ−
x2 sin ϕℓ = 0. Hence we know thatm ≤ M − 1.

6. Sparse approximate Prony method ford ≥ 3. Now we extend Algorithm5.1 to
the parameter estimation of ad-variate exponential sum (1.1), where the dimensiond ≥ 3 is
moderately sized. LetM ∈ N \ {1} andN ∈ N with N ≥ 2M + 1 be given. Assume that
the distinct frequency vectorsf j = [fj,l]

d
l=0 are well–separated by the condition

dist(fj,l, fk,l) > π/N

for all j, k = 1, . . . ,M andl = 1, . . . , d with fj,l 6= fk,l.
Our strategy for parameter recovery of (1.1) is based on a stepwise enhancement of the

dimension from 2 tod.
For r = 2, . . . , d, we introduce the matrices

α(r) :=









α
(r)
1,1 · · · α

(r)
1,r−1

...
. ..

...

α
(r)
mr,1 · · · α

(r)
mr,r−1









∈ (Z \ {0})mr×(r−1) ,

β(r) :=









β
(r)
1,1 · · · β

(r)
1,r−1

...
. ..

...

β
(r)
mr,1 · · · β

(r)
mr,r−1









∈ Z
mr×(r−1) ,
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whereα
(r)
l,1 , . . . , α

(r)
l,r−1 andβ

(r)
l,1 , . . . , β

(r)
l,r−1 are the parameters of the grid points

(n, α
(r)
l,1 n + β

(r)
l,1 , . . . , α

(r)
l,r−1n + β

(r)
l,r−1, 0, . . . , 0) ∈ Z

d (n ∈ Z
d)

lying at thel-th straight line(l = 1, . . . ,mr). By α
(r)
l (l = 1, . . . ,mr), we denote thel–th

row of the matrixα(r).
Using the given valuesh(n, 0, 0, . . . , 0), h(0, n, 0, . . . , 0), h(n, α

(2)
l,1 n + β

(2)
l,1 , 0, . . . , 0)

(l = 1, . . . ,m2) for n ∈ ZN , we determine frequency vectors[f ′
j,1, f

′
j,2]

⊤ ∈ [−π, π)2

(j = 1, . . . ,M ′) by Algorithm 5.1.
Then we consider the noisy datah(0, 0, n, 0, . . . , 0) (n ∈ ZN ) of

h0(0, 0, n, 0, . . . , 0) =

M
∑

j=1

cj eifj,3n =

M3
∑

j3=1

cj3,3 eif ′

j3,3n,

where1 ≤ M3 ≤ M , wheref ′
j3,3 ∈ [−π, π) (j3 = 1, . . . ,M3) the distinct values offj,3

(j = 1, . . . ,M), and wherecj3,3 ∈ C are certain linear combinations of the coefficients
cj . Assume thatcj3,3 6= 0. Using the Algorithm4.1, we compute the distinct frequencies
f ′

j3,3 ∈ [−π, π) (j3 = 1, . . . ,M3). Now we form the Cartesian product

F := {[f ′
j,1, f

′
j,2, f

′
j3,3]

⊤ ∈ [−π, π)3 : j = 1, . . . ,M ′; j3 = 1, . . . ,M3}

of the sets{[f ′
j,1, f

′
j,2]

⊤ : j = 1, . . . ,M ′} and{f ′
j3,3 : j = 1, . . . ,M3}. Now we form a

subset ofF by using the data

h(n, α
(3)
l,1 n + β

(3)
l,1 , α

(3)
l,2 n + β

(3)
l,2 , 0, . . . , 0) (l = 1, . . . ,m3) .

Since

h0(n, α
(3)
l,1 n + β

(3)
l,1 , α

(3)
l,2 n + β

(3)
l,2 , 0, . . . , 0)

=

M
∑

j=1

cj ei(β
(3)
l,1 f ′

j,2+β
(3)
l,2 f ′

j,3) ei(f ′

j1,1+f ′

j2,2α
(3)
l,1+f ′

j3,3α
(3)
l,2 )n

=

M ′

3
∑

k=1

ck,3 eifk(α
(3)
l

)n ,

where1 ≤ M ′
3 ≤ M and wherefk(α

(3)
l ) ∈ [−π, π) (k = 1, . . . ,M ′

3) are the distinct values

of (f ′
j,1 +α

(3)
l,1 f ′

j,2 +α
(3)
l,2 f ′

j,3)2π. The coefficientsck,3 ∈ C are certain linear combinations of

the coefficientscj ei(β
(3)
l,1 f ′

j,2+β
(3)
l,2 f ′

j,3). Then we form the setF ′ := {f ′
j : j = 1, . . . , |F ′|} of

all those[f ′
j1,1, f

′
j2,2, f

′
j3,3]

⊤ ∈ F so that there exists a frequencyfk(α
(3)
l ) (k = 1, . . . ,M ′

3)
with

|fk(α
(3)
l ) − (f ′

j1,1 + f ′
j2,2α

(3)
l,1 + f ′

j3,3α
(3)
l,2 )2π| < ε1 .

Continuing analogously this procedure, we obtain
ALGORITHM 6.1. (SAPM ford ≥ 3)

Input: h(n, 0, . . . , 0), h(0, n, 0, . . . , 0), . . . , h(0, . . . , 0, n) (n ∈ ZN ), boundsε0, ε1 > 0,
mr number of straight lines for dimensionr = 2, . . . , d, parameters of straight linesα(r),
β(r) ∈ Z

mr×(r−1).
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1. From the noisy datah(n, 0, . . . , 0), h(0, n, 0, . . . , 0), . . ., h(0, . . . , 0, n) (n ∈ ZN )
compute by Algorithm4.1 the distinct frequenciesf ′

jr,r ∈ [−π, π) (jr = 1, . . . ,Mr) for
r = 1, . . . , d.
SetG := {(n, 0, . . . , 0), . . . , (0, . . . , 0, n) : n ∈ ZN}.

2. SetF := {f ′
j1,1 : j1 = 1, . . . ,M1}.

3. For r = 2, . . . , d do:
Form the Cartesian product

F := F×{f ′
jr,r : jr = 1, . . . ,Mr} = {[f⊤

l , f ′
j,r]

⊤ : l = 1, . . . |F |, j = 1, . . . ,Mr} .

For l = 1, . . . ,mr do:
For the noisy data

h(n, α
(r)
l,1 n+β

(r)
l,1 , . . . , α

(r)
l,r−1n+β

(r)
l,r−1, 0, . . . , 0) (n ∈ ZN ) ,

compute the distinct frequenciesfk(α
(r)
l ) ∈ [−π, π)(k = 1, . . . ,M ′

r)

by Algorithm4.1. Form the set̃F of all those[f ′
j1,1, f

′
j2,2, . . . , f

′
jr,r]

⊤ ∈ F

so that there exists a frequencyfk(α
(r)
l ) with

|fk(α
(r)
l ) − (f ′

j1,1 + α
(r)
l,1 fj2,2 + · · · + α

(r)
l,r−1f

′
jr,r)2π| < ε1 .

SetF := F̃ and

G := G∪{(n, α
(r)
l,1 n+β

(r)
l,1 , . . . , α

(r)
l,r−1n+β

(r)
l,r−1, 0, . . . , 0) : n ∈ ZN}.

4. Compute the least squares solution of the overdeterminedlinear system

(6.1)
|F |
∑

j=1

c′j eifj ·n = h(n) (n ∈ G)

for the frequency setF = {f j : j = 1, . . . , |F |}.

5. Form the set̃F := {f̃ j : j = 1, . . . , |F̃ |} of all thosefk ∈ F (k = 1, . . . , |F |) with
|c′k| > ε0.

6. Compute the least squares solution of the overdeterminedlinear system

(6.2)
|F̃ |
∑

j=1

c̃j eif̃j ·n = h(n) (n ∈ G)

corresponding to the new frequency setF̃ = {f̃ j : j = 1, . . . , |F̃ |}.

Output:M := |F̃ | ∈ N, f̃ j ∈ [−π, π)d, c̃j ∈ C (j = 1, . . . ,M).

REMARK 6.2. Note that we solve the overdetermined linear systems (6.1) and (6.2) only
by using the valuesh(n) (n ∈ G), which we have used to determine the frequenciesf̃ j . If
more valuesh(n) are available, clearly one can use these values as well in thefinal step to
ensure a better least squares solvability of the linear systems; see (5.7) for the cased = 2
and Corollary3.3. In addition we mention that there are various possibilities to combine the
different dimensions; see, e.g., Example7.4.

REMARK 6.3. Our method can be interpreted as a reconstruction method for sparse
multivariate trigonometric polynomials from few samples;see [16, 12, 32] and the references
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therein. More precisely, letΠd
N denote the space of alld–variate trigonometric polynomials

of maximal orderN . An elementp ∈ Πd
N can be represented in the form

p(y) =
∑

k∈Zd
N

ck e2πi k·y
(

y ∈ [−1

2
,

1

2
]d

)

with ck ∈ C. There exist completely different methods for the reconstruction of “sparse
trigonometric polynomials”, where one assumes that the number M of the nonzero coeffi-
cientsck is much smaller than the dimension ofΠd

N . Therefore our method can be used
with

h(x) := p(
x

2N
) =

M
∑

j=1

cj ei fj ·x
(

x ∈ [−N,N ]d
)

,

andx = 2Ny andf j = πk/N if ck 6= 0. Using Algorithm6.1, we find the frequency
vectorsf j and the coefficientscj and we setk := round(Nf j/π), ck := cj . By [8]
one knows sharp versions ofL2–norm equivalences for trigonometric polynomials under the
assumption that the sampling set contains no holes larger than the inverse polynomial degree;
see also [2].

7. Numerical experiments. We apply the algorithms presented in Section5 to various
examples. We have implemented our algorithms in MATLAB with IEEE double precision
arithmetic. We compute the relative error of the frequencies given by

e(f) := max
l=1,...,d

max
j=1,...,M

|fj,l − f̃j,l|

max
j=1,...,M

|fj,l|
,

where f̃j,l are the frequency components computed by our algorithms. Analogously, the
relative error of the coefficients is defined by

e(c) :=

max
j=1,...,M

|cj − c̃j |

max
j=1,...,M

|cj |
,

where c̃j are the coefficients computed by our algorithms. Furthermore, we determine the
relative error of the exponential sum by

e(h) :=
max |h(x) − h̃(x)|

max |h(x)| ,

where the maximum is determined by approximately10000 equispaced points from a grid of
[−N,N ]d, and where

h̃(x) :=
M
∑

j=1

c̃j ef̃j ·x

is the exponential sum recovered by our algorithms. We remark that the approximation prop-
erty ofh andh̃ in the uniform norm of the univariate method was shown in [21, Theorem 3.4].
We begin with an example previously considered in [28].

EXAMPLE 7.1. The bivariate exponential sum (1.1) taken from [28, Example 1] pos-
sesses the following parameters

[f⊤
j ]3j=1 =





0.48π 0.48π
0.48π −0.48π

−0.48π 0.48π



 , [cj ]
3
j=1 =





1
1
1



 .
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We sample this exponential sum (1.1) at the nodesh(k, 0), h(0, k) and h(k, αk + β),
(k ∈ ZN ), whereα, β ∈ Z are given in Table7.1. Therefore the number of total sampling
points used in our method are only3(2N + 1) or 4(2N + 1). Then we apply our Algorithm
5.1 for exact sampled data and for noisy sampled datah̃(k) = h(k) + 10−δ ek, whereek is
uniformly distributed in[−1, 1]. The notationδ = ∞ means that exact data are given. We
present the chosen parameters and the results in Table7.1. We choose same boundsε0 = ε1

in Algorithm 5.1and obtain very precise results even in the case, where the unknown number
M = 3 is estimated byL.

TABLE 7.1
Results of Example7.1.

L N ε0 α β δ e(f) e(c) e(h)
5 6 10−4 1 0 ∞ 1.7e−15 5.9e−14 3.2e−13
10 20 10−4 1 0 ∞ 5.4e−15 4.5e−14 4.5e−14
5 25 10−3 1 0 6 5.6e−09 1.6e−07 2.5e−07
5 25 10−3 1, 2 0, 0 6 1.0e−08 5.9e−07 7.4e−07
5 25 10−3 1 0 5 1.7e−08 1.2e−06 1.3e−06

EXAMPLE 7.2. We consider the bivariate exponential sum (1.1) with following parame-
ters

[f⊤
j ]8j=1 =

























0.1 1.2
0.19 1.3
0.3 1.5

0.35 0.3
−0.1 1.2
−0.19 0.35
−0.3 −1.5
−0.3 0.3

























, [cj ]
8
j=1 =

























1 + i
2 + 3 i
5 − 6 i
0.2 − i

1 + i
2 + 3 i
5 − 6 i
0.2 − i

























.

For given exact data, the results are presented in Table7.2. Note that the condition (5.1) is
not fulfilled, but the reconstruction is still possible in some cases. In order to fulfill (5.1), one
has to chooseN > π

0.05 , i.e.,N ≥ 63.

The dash− in Table7.2means that we are not able to reconstruct the signal parameters.
In the caseL = 15, N = 30, α = 1, β = 0, we are not able to find the 8 given frequency
vectors and coefficients. There are other solutions of the reconstruction problem with 15 fre-
quency vectors and coefficients. However, if we choose one more line withα = 2, β = 0 or
if we choose more sampling points withN = 80, then we obtain good parameter estimations.

Furthermore, we use noisy sampled datah(k) = h0(k)+10−δ ek, whereek is uniformly
distributed in[−1, 1]. Instead of predeterminated valuesα andβ, we choose these values
randomly. We use only one additional line for sampling and present the results in Table7.3,
wheree(f), e(c) ande(h) are the averages over 100 runs. Note that in this case we use only
3(2N + 1) sampling points for the parameter estimation.
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TABLE 7.2
Results of Example7.2with exact data.

L N ε0 α β e(f) e(c) e(h)
8 15 10−4 1 0 2.7e−09 5.7e−09 3.4e−09
8 15 10−4 1, 2, 3 0, 1, 2 2.7e−09 5.9e−09 3.3e−09
15 30 10−4 1 0 1.4e−13 3.4e−13 6.5e−13
15 30 2 · 10−1 1 0 – – –
15 30 2 · 10−1 1, 2 0, 0 1.4e−13 4.0e−13 6.0e−13
15 80 2 · 10−1 1 0 3.5e−15 3.2e−14 7.5e−14

TABLE 7.3
Results of Example7.2with noisy data.

L N ε0 δ e(f) e(c) e(h)
8 35 10−3 6 1.4e−06 3.9e−06 5.5e−06
15 30 10−3 6 1.2e−05 3.9e−05 5.3e−05
15 50 10−3 5 4.0e−07 4.1e−06 3.8e−06
15 50 10−3 6 3.8e−08 3.6e−07 3.3e−07

EXAMPLE 7.3. We consider the trivariate exponential sum (1.1) with following param-
eters

[f⊤
j ]8j=1 =

























0.1 1.2 0.1
0.19 1.3 0.2
0.4 1.5 1.5

0.45 0.3 −0.3
−0.1 1.2 0.1

−0.19 0.35 −0.5
−0.4 −1.5 0.25
−0.4 0.3 −0.3

























, [cj ]
8
j=1 =

























1 + i
2 + 3 i
5 − 6 i
0.2 − i

1 + i
2 + 3 i
5 − 6 i
0.2 − i

























.

and present the results in Table7.4. We use only5(2N + 1) or 6(2N + 1) sampling points
for the parameter estimation.

TABLE 7.4
Results of Example7.3.

L N ε0 α(1) α(2) β(1) β(2) δ e(f) e(c) e(h)

8 15 10−4 [1]
[

1 1
]

[0]
[

0 0
]

∞ 1.5e–10 1.7e–10 8.2e–11
8 15 10−4 [1]

[

1 1
]

[1]
[

1 1
]

∞ 1.5e–10 1.7e–10 8.1e–11
10 30 10−3 [1]

[

1 1
]

[0]
[

0 0
]

6 8.7e–07 1.5e–06 2.9e–06

10 30 10−3 [1]

[

1 1
1 2

]

[0]

[

0 0
0 0

]

6 7.8e–08 1.1e–06 1.5e–06

10 30 10−3 [1]

[

1 1
1 2

]

[0]

[

0 0
0 0

]

5 4.5e–06 1.0e–05 1.6e–05

10 30 10−3 [1]

[

1 1
1 2

]

[0]

[

0 0
0 0

]

4 1.2e–05 2.5e–05 5.2e–05
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EXAMPLE 7.4. Now we consider the 4–variate exponential sum (1.1) with following
parameters

[f⊤
j ]8j=1 =

























0.1 1.2 0.1 0.45
0.19 1.3 0.2 1.5
0.3 1.5 1.5 −1.3

0.45 0.3 −0.3 0.4
−0.1 1.2 0.1 −1.5

−0.19 0.35 −0.5 −0.45
−0.4 −1.5 0.25 1.3
−0.4 0.3 −0.3 0.4

























, [cj ]
8
j=1 =

























1 + i
2 + 3 i
5 − 6 i
0.2 − i

1 + i
2 + 3 i
5 − 6 i
0.2 − i

























.

Instead of using Algorithm6.1 directly, we apply Algorithm5.1 for the first two variables
and then for the last variables with the parametersα(2) andβ(2). Then we take the tensor
product of the obtained two parameter sets and use the additional parameters fromα(4) and
β(4) in order to find a reduced set. Finally we solve the overdetermined linear system. The
results are presented in Table7.5. We use only7(2N +1) or 10(2N +1) sampling points for
the parameter estimation.

TABLE 7.5
Results of Example7.4.

L N ε0 α(2) α(4) β(2) β(4) δ e(f) e(c) e(h)

8 15 10−4 1
ˆ

1 1 1
˜

0
ˆ

0 0 0
˜

∞ 1.7e-10 2.5e-11 1.6e-10

8 15 10−4 1
ˆ

1 1 1
˜

1
ˆ

1 1 1
˜

∞ 1.7e-10 2.4e-11 1.6e-10

15 30 10−4 1
ˆ

1 1 1
˜

0
ˆ

0 0 0
˜

∞ 1.3e-14 6.4e-15 8.8e-14

15 30 10−3 1
ˆ

1 1 1
˜

0
ˆ

0 0 0
˜

6 1.0e-06 3.2e-07 3.0e-06

15 30 10−3 1
ˆ

1 1 1
˜

0
ˆ

0 0 0
˜

5 1.3e-05 3.4e-06 4.2e-05

15 30 10−3

»

1
−1

– »

1 1 1
−1 1 −1

– »

0
0

– »

0 0 0
0 0 0

–

6 1.1e-06 2.7e-07 3.9e-06

15 30 10−3

»

1
−1

– »

1 1 1
−1 1 −1

– »

0
0

– »

0 0 0
0 0 0

–

5 8.8e-06 1.9e-06 3.3e-05

15 50 10−3

»

1
−1

– »

1 1 1
−1 1 −1

– »

0
0

– »

0 0 0
0 0 0

–

5 4.5e-07 1.2e-07 1.6e-06

15 50 10−3

»

1
−1

– »

1 1 1
−1 1 −1

– »

0
0

– »

0 0 0
0 0 0

–

4 8.0e-07 2.4e-07 1.1e-05
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