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IMPLICIT-EXPLICIT PREDICTOR-CORRECTOR METHODS COMBINED
WITH IMPROVED SPECTRAL METHODS FOR PRICING EUROPEAN STYLE

VANILLA AND EXOTIC OPTIONS ∗

EDSON PINDZA†, KAILASH C. PATIDAR†‡, AND EDGARD NGOUNDA†

Abstract. In this paper we present a robust numerical method to solve several types of European style op-
tion pricing problems. The governing equations are described by variants of Black-Scholes partial differential
equations (BS-PDEs) of the reaction-diffusion-advectiontype. To discretise these BS-PDEs numerically, we use
the spectral methods in the asset (spatial) direction and couple them with a third-order implicit-explicit predictor-
corrector (IMEX-PC) method for the discretisation in the timedirection. The use of this high-order time integration
scheme sustains the better accuracy of the spectral methods for which they are well-known. Our spectral method
consists of a pseudospectral formulation of the BS-PDEs by means of an improved Lagrange formula. On the other
hand, in the IMEX-PC methods, we integrate the diffusion termsimplicitly whereas the reaction and advection terms
are integrated explicitly. Using this combined approach, wefirst solve the equations for standard European options
and then extend this approach to digital options, butterfly spread options, and European calls in the Heston model.
Numerical experiments illustrate that our approach is highlyaccurate and very efficient for pricing financial options
such as those described above.

Key words. European options, butterfly spread options, digital options, Black-Scholes equation, barycentric
interpolation, implicit-explicit predictor-corrector methods
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1. Introduction. In this paper we consider a class of European style options described
by Black-Scholes equations [7]. In general, closed-form analytical solutions of some of these
Black-Scholes PDEs do not exist and therefore one has to resort to numerical methods in
order to solve them. In the literature, the following four main families of methods have been
developed and extensively used for Black-Scholes PDEs: lattice methods [10, 21, 32], Monte
Carlo simulations [5, 13, 41, 45], finite difference (FD) methods [11, 42, 59], and analytical
approximations [20, 27, 35]. The first two are classified as stochastic simulation methods
since they approximate the underlying process directly. The other two methods are usually
performed on the Black-Scholes PDEs with appropriate approximate boundary conditions.

Popular techniques such as lattice methods can be very efficient for valuing simple
calls and puts, however, they become less efficient when valuing more complicated options.
FD methods are more desirable over binomial (or trinomial) trees because the transition from
a differential equation to a difference equation is easier when the grid/mesh is simple and
regular. This offers more flexibility as compared to the lattice methods. However, it is well
known that the kink at the strike price in the payoff functioncauses lower-order convergence
when higher-order FD schemes are applied to solve these option pricing PDEs.

Numerous ideas have been proposed to enhance the convergence of FD methods. Clarke
and Parrott [19] used a coordinate transformation, stretched the region around the strike
price where there is a discontinuity in the first derivative of the final condition, and found
that the accuracy of their implicit FD method was improved. Another way of obtaining
more grid points around the discontinuity is to use adaptivegrid points as in Persson and
von Sydow [44]. Recently, Oosterlee et al. [43] obtained a fourth-order accurate solution
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for European options using the grid stretching transformation [52] in combination with the
fourth-order spatial discretisation based on a five-point stencil and the fourth-order backward
differencing formula (BDF4) for time discretisation. Morerecently, Tangman et al. [50] con-
sidered the higher-order compact (HOC) schemes and used a grid stretching that concentrates
the grid nodes at the strike price for the European options.

In this paper we will explore spectral methods to discretisethe option pricing problems
in the asset (spatial) direction. Spectral methods are a class of approximation methods that are
well known for the task of solving partial differential equations [17]. For smooth enough solu-
tions, they are exponentially convergent in the number of degrees of free-
dom [16, 24, 49]. Although widely used in fields such as fluid mechanics, their use in option
pricing have been rare. The main drawback for their direct application to option pricing is
that the payoff functions for typical options or the initialconditions in the governing PDEs
are nonsmooth. Thus, the collocation approximations are reduced to low-order accuracy,
making them not competitive with existing finite differencemethods. The literature is rich
in ideas for overcoming this problem. One approach is to regularise the initial condition as
proposed by Greenberg [28]. Suh [47, 48] used the Broadie-Detemple [12] approach and
obtained a significant improvement of the pseudospectral method over the finite difference
methods (FDM) while solving PDEs and PIDEs (partial integro-differential equations) in fi-
nance. Tangman et al. [51] presented a new approach which consists in dividing the setof
Chebyshev points into two at the strike priceE. To this end, the new set of points will cluster
the grid nodes not only at the boundaries but also at the singularity located at the strike price
for a European option. Using such a strategy, the Chebyshev collocation method achieved
fourth-order accuracy. Zhu [60] proposed a spectral element method based on the regularisa-
tion approach of Greenberg [28] to price European options with and without jumps in one and
two dimensions. He successfully recovered the exponentialaccuracy of spectral methods.

To discretise the problem in time direction, we use a class ofimplicit-explicit (IMEX)
methods. These methods have been used in conjunction with spectral methods [16] to solve
problems involving different types of PDEs. Ascher et al. [4] constructed families of first-,
second-, third-, and fourth-order IMEX multistep methods to solve convection-diffusion equa-
tions. Ruuth [46] used IMEX multistep methods and efficiently solved reaction-diffusion
problems in pattern formation. Recently, Hundsdorfer and Ruuth [34] extended the con-
struction of IMEX multistep methods with general monotonicity and boundedness proper-
ties to hyperbolic systems with stiff source or relaxation terms. IMEX multistep methods
also appear in the field of option pricing. In particular, forjump-diffusion PIDE, Almendral
and Oostelee [2] proposed a second-order backward differentiation formula (BDF). Feng and
Linetsky [22] proposed an extrapolation approach in combination with the first-order accurate
IMEX-Euler scheme. Their experiments show that the extrapolation method improved signif-
icantly over the first-order IMEX-Euler scheme in solving the jump-diffusion PIDE. Another
family of IMEX schemes is based on Runge-Kutta methods. Ascher et al. [3] constructed
IMEX Runge-Kutta methods for solving convection-diffusion-reaction problems. De Fru-
tos [25, 26] introduced IMEX-RK methods as an alternative to other existing time integration
methods for pricing options. We refer the interested readers to [3, 8, 14, 15, 25, 36] for recent
developments on IMEX-RK methods.

The class of IMEX methods that we will be using belongs to the family of IMEX-PC
schemes. These are successfully applied to solve stiff PDEs. The main idea is to split the
basic multistep IMEX into predictor-corrector (PC) schemes. Cash [18] used this idea to
construct a new class of multistep methods. By splitting theBDF, he obtained a new BDF
which has considerably better stability than the standard BDF while maintaining the same
accuracy. Voss and Casper [55] used a split version of the Adams-Moulton formulae as a
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novel family of PC schemes for stiff ODEs. Voss and Khaliq [56] considered theθ-methods
in a linearly implicit form as the predictor and derived an implicit second-order PC scheme
for reaction-diffusion problems. Recently, Li et al. [40] adopted the strategy found in [4]
to construct a family of higher-order IMEX-PC schemes for nonlinear parabolic differential
equations. Their numerical results show that these IMEX-PCmethods have a significant
better stability than those found in [4]. More recently, Grooms and Julien [29] derived a
fourth-order IMEX-PC scheme. Their method used the fourth-order total variation IMEX
scheme found in [34] as a predictor and the fourth-order BDF scheme as a corrector. To the
best of our knowledge, IMEX-PC methods have not been used to price financing options,
except in [37] where a second-order IMEX-PC scheme is used to price American options.

In this paper we present a spectral method based on the improved Lagrange formula
to compute European, digital, and butterfly spread options.Our method is coupled with a
third-order IMEX-PC for time integration. The reason for using higher-order IMEX-PC is
that we expect our spectral method to provide exponential accuracy, which is usually affected
by lower-order temporal schemes. We then extend this approach to solve a two-dimensional
option pricing problem described by the Heston model.

The rest of this paper is organised as follows: in Section2, we describe the formulation
of the option pricing problem in the Black-Scholes framework. In Section3, the spatial
approximations of the pricing equations using spectral methods are considered. In Section4,
we review the IMEX-PC methods for solving the semi-discretesystem resulting from the
spatial discretisation. The overall method is analysed in Section5. Numerical experiments
are conducted in Section6. The extension of the proposed approach to a two-dimensional
case is given in Section7. Finally, in Section8 we present some concluding remarks and
scope for future research.

2. The mathematical model.Consider the financial market model given by the follow-

ing tupleM =
(
Ω,F ,P, (Fτ )τ≥0 , (Sτ )τ≥0

)
whereΩ is the set of all possible outcomes of

the experiment known as the sample space,F is the set of all events, i.e., permissible com-
binations of outcomes,P is a mapF → [0, 1] which assigns a probability to each event,Fτ

is a natural filtration, andSτ is a risky underlying asset price process. The triplet(Ω,F ,P)
is defined as a probability space. LetZτ be aP-Brownian motion,σ > 0 the volatility of
the underlying asset,µ > 0 the expected rate of return,r > 0 the interest rate, andδ > 0
the continuous dividend yield. Without loss of generality,µ, σ, r, andδ are assumed to be
constant. Then under the equivalent martingale measureQ, the stochastic process of the asset
priceSτ is assumed to follow the geometric Brownian motion

(2.1)
dSτ

Sτ

= µdt+ σdZτ .

Now, consider a portfolio that involves short selling of oneunit of a European call option and
long holding of∆τ units of the underlying asset. The portfolio valueΠ(Sτ , τ) at timeτ is
then given by

(2.2) Π = −V +∆τSτ ,

whereV = V (Sτ , τ) denotes the value of the option. The jump in the value of the portfolio
in one time step is

dΠ = −dV +∆τdSτ .
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Note that∆τ changes with timeτ , reflecting the dynamic nature of hedging. SinceV is a
stochastic function ofSτ , we apply Ito’s lemma to compute its differential, which gives

(2.3) dV =
∂V

∂τ
dτ +

∂V

∂Sτ

dSτ +
σ2S2

τ

2

∂2V

∂S2
τ

dτ.

Substituting (2.1) and (2.3) into (2.2) and simplifying, we obtain

dΠ =

[
−∂V

∂τ
− σ2S2

τ

2

∂2V

∂S2
τ

+

(
∆τ − ∂V

∂Sτ

)
µSτ

]
dτ +

(
∆τ − ∂V

∂Sτ

)
σSτdZτ .

The cumulative financial gain on the portfolio at timeτ is given by

G(Π(Sτ , τ)) =

∫ τ

0

−dV +

∫ τ

0

∆τdSτ(2.4)

=

∫ τ

0

[
−∂V

∂u
− σ2S2

u

2

∂2V

∂S2
u

+

(
∆u − ∂V

∂Su

)
µSu

]
du

+

∫ u

0

(
∆u − ∂V

∂Su

)
σSudZu.

The stochastic component of the portfolio gain stems from the second term of (2.4).
Suppose we adopt the dynamic hedging strategy by choosing∆u = ∂V

∂Su
at all

timesu < τ . Then the financial gain becomes deterministic at all times.By virtue of no
arbitrage, the financial gain should be the same as the gain from investing on the risk free
asset with a dynamic position whose value equals−V +Su

∂V
∂Su

. The deterministic gain from
this dynamic position of the riskless asset is given by

G̃τ =

∫ u

0

(
−rV + (r − δ)Su

∂V

∂Su

)
du.

By equating these two deterministic gainsG(Π(Sτ , τ)) andG̃τ , we have

−∂V

∂u
− σ2S2

u

2

∂2V

∂S2
u

=

(
−rV + (r − δ)Su

∂V

∂Su

)
, 0 < u < τ,

which is satisfied for any asset priceS if V (S, τ) satisfies the equation

∂V

∂τ
+

σ2S2

2

∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV = 0, 0 < τ < T.

The above partial differential equation is called the Black-Scholes equation [7].
Now, by a change of variablest = T − τ (T is the time of expiration), we can rewrite

the above equation as

(2.5)
∂V

∂t
=

1

2
σ2S2 ∂

2V

∂S2
+ (r − δ)S

∂V

∂S
− rV.

The boundary and the final conditions make the difference between American and Euro-
pean style options as well as between puts and calls and othertypes of options. In this article,
we consider European vanilla, binary, and spread options, whose final and boundary con-
ditions are given in Section6, where we provide numerical results. We then, in Section7,
extend this approach to solve a two-dimensional option pricing problem described by the
Heston model.



ETNA
Kent State University 

http://etna.math.kent.edu

272 E. PINDZA, K. C. PATIDAR, AND E. NGOUNDA

3. Spectral method for the discretisation in space.In our spectral discretisation in
space, we will be using a class of Lagrange interpolation formulae. This interpolation is
theoretically very powerful and deplored mainly for numerical practice as reported in many
textbooks of numerical analysis [1]. With slight modifications, the Lagrange formula is in-
deed of great practical use. This has been noted by several authors, including Henrici [30]
and Werner [58]. Berrut and Trefethen [6] modified the Lagrange polynomial through the
formula of barycentric interpolation and proposed an improved Lagrange formula. In this
section, we review the improved Lagrange formula and propose a spatial dicretisation of the
option pricing problems discussed in earlier sections.

3.1. Lagrange interpolation. We would like to find the polynomialpN (x) from the
vector space of all polynomials of degree at mostN that interpolates the datafj at distinct
interpolation pointsxj , j = 0, . . . , N , i.e.,

pN (xj) = fj , j = 0, . . . , N.

Recall that the Lagrange form ofpN (x) is ([39])

(3.1) pN (x) =
N∑

j=0

fjℓj(x), ℓj(x) =
N∏

k=0,k 6=j

x− xk

xj − xk

,

where the Lagrange polynomialℓj corresponding to the nodexj has the property

ℓj(xk) =

{
1 j = k,

0 otherwise.

The drawbacks of the Lagrange formula (3.1) are
1. It takesO(N2) additions and multiplications for each evaluation ofpN (x).
2. A new computation from scratch has to be performed if we adda new pair of

data(xN+1, fN+1).
3. Instability may be present in numerical computation.

It would be advantageous to modify the formula (3.1) in order to overcome the above short-
comings.

3.2. A modified Lagrange formula. Following [6], the Lagrange formula (3.1) can be
rewritten in such a way thatpN (x) is computed inO(N) operations. We defineℓ(x), the
numerator ofℓj in (3.1), as

ℓ(x) =
1

x− xj

N∏

k=0

(x− xk).

In addition, if we define the barycentric weight by

wj =
1

∏N
k=0,k 6=j(xj − xk)

, j = 0, . . . , N,

i.e.,wj = 1/ℓ′(xj), thenℓj in (3.1) becomes

ℓj(x) = ℓ(x)
wj

x− xj

.

Consequently, the Lagrange formula (3.1) becomes

(3.2) pN (x) = ℓ(x)

N∑

j=0

wj

x− xj

fj .
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3.3. Barycentric formula. The formula (3.2) can be written in a more elegant way. If
we represent the constant functionf(x) = 1, we obtain

(3.3) 1 =
N∑

j=0

ℓj(x) = ℓ(x)
N∑

j=0

wj

x− xj

.

Dividing (3.2) by (3.3), we get the barycentric formula forpN

(3.4) pN (x) =

∑N
j=0

wj

x−xj
fj

∑N
j=0

wj

x−xj

.

This is the most used form of Lagrange interpolation in practice. We see that the formula (3.4)
is special case of (3.2).

A significant advantage of the spectral collocation method based on the modified barycen-
tric Lagrange interpolation is that after the transformation, the derivatives in the underlying
differential equation do not have to be transformed correspondingly as it is usual in other
spectral collocation methods. More details regarding the convergence and stability properties
of the modified Lagrange formula are extensively discussed in [6, 33, 57].

3.4. Calculation of the component matrices.Suppose that the solutionu of the semi-
discrete version of the PDE (2.5) is represented in the Lagrange form

(3.5) u(x) =

N∑

j=0

ujℓj(x).

Then the first and the second derivatives ofu are given by

(3.6) u′(x) =
N∑

j=0

ujℓ
′
j(x), u′′(x) =

N∑

j=0

ujℓ
′′
j (x).

The barycentric formula ofℓj is given by

(3.7) ℓj(x) =

wj

x−xj∑N
k=0

wk

x−xk

.

Multiplying both sides of (3.7) by x− xi and simplifying, we get

(3.8) ℓj(x)

N∑

k=0

wk

x− xi

x− xk

= wj

x− xi

x− xj

.

Let

s(x) =

N∑

k=0

wk

x− xi

x− xk

.

Then the first and the second derivatives of (3.8) yield the following equations

(3.9) ℓ′j(x)s(x) + ℓj(x)s
′(x) = wj

(
x− xi

x− xj

)′
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and

(3.10) ℓ′′j (x)s(x) + 2ℓ′j(x)s
′(x) + ℓj(x)s

′′(x) = wj

(
x− xi

x− xj

)′′

.

To find the entries of the first and second differentiation matrices, we solve (3.9) and (3.10)
atx = xi. This gives

s(xi) = wi, s′(xi) =

N∑

k=0,k 6=i

wk/(xi − xk), s′′(xi) = −2

N∑

k=0,k 6=i

wk/(xi − xk)
2.

Wheni 6= j we obtain

ℓj(xi) = 0, ℓ′j(xi) =
wj/wi

xi − xj

, ℓ′′j (xi) = −2
wj/wi

xi − xj




N∑

k=0,k 6=i

wk/wi

xi − xk

− 1

xi − xj


 .

Wheni = j we obtain

ℓ′j(xj) = −
N∑

i6=j

ℓ′j(xi), ℓ′′j (xj) = −
N∑

i6=j

ℓ′′j (xi).

The above can be used for the entries of the first- and second-order differentiation matri-
cesD(1) andD(2) which are given by

D
(1)
ij = ℓ′j(xi), D

(2)
ij = ℓ′′j (xi).

3.5. Chebyshev grid transformations.Spectral methods are exponentially accurate for
smooth problems but in option pricing problems the initial condition is typically not differen-
tiable and may be discontinuous. It is known (see, e.g., [53]) that local grid refinements may
improve the accuracy near a region of singularity and hence improve the overall accuracy of
the numerical method. Therefore, a local grid refinement near the non-differentiable or dis-
continuous payoff condition seems to be a logical choice to retain a satisfactory accuracy. In
this paper we use an analytic coordinate transformation to stretch grids around strike prices.
Following [53], we use the transformation

(3.11) x = g(z) = α+ β sinh

[
sinh−1

(
1 + α

β

)
1 + z

2
− sinh−1

(
1− α

β

)
1− z

2

]
,

whereα is the point of singularity in the Chebyshev domain[−1, 1], β is a parameter that
determines the stretching rate aroundα, andzk = cos(πk/N) are the Chebyshev-Gauss-
Lobatto (CGL) collocation points.

In the case of multiple regions of singularity, it is possible to combine maps with a single
point of singularity in order to concentrate points around these regions. Suppose that we
have a collection of mapshk(z), k = 1, . . . , n, which cluster points around regions of rapid
changeδk with distribution parametersβk. We define such maps by

(3.12) G(z) = H−1(z),

where

H(z) =
n∑

k=1

akh
−1
k (z),

n∑

k=1

ak = 1, ak > 0.
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In the case of butterfly spread options, we have three singularities and therefore we will have

(3.13) H(z) = a1h
−1
1 (z) + a2h

−1
2 (z) + a3h

−1
3 (z), a1 + a2 + a3 = 1, a1, a2, a3 > 0.

Maps such as (3.12) are nonlinear and have to be solved numerically using generic nonlinear
equation solvers.

3.6. Application to the Black-Scholes PDE.The Black-Scholes PDE (2.5) is discret-
ized in the asset (space) direction by means of a modified barycentric Lagrange colloca-
tion (BLC) approach. Letx = g(zj) be the transformed Chebyshev points. Then the first
step is to transformx ∈ [−1, 1] intoS ∈ [Sm, SM ] that better suits the option at hand. We do
this throughx = (2S − (SM − Sm))/(SM + Sm) whereSm andSM are the minimal and
the maximal values of the underlying asset. Now writingV (S, t) = u(x, t), the PDE (2.5)
together with its initial and boundary conditions yield

ut = p(x)uxx + q(x)ux + ru,

u(x, 0) = u0, − 1 ≤ x ≤ 1, Sm ≤ S ≤ SM ,

u(−1, t) = u0, u(1, t) = uN , 0 ≤ t ≤ T,

where

p(x) =
1

2
σ2S2

(
2

SM − Sm

)2

, q(x) = (r − δ)S

(
2

SM − Sm

)
.

Substituting (3.5) and (3.6) yields the following system of nonlinear ODEs

ut(x, t) = p(x)
N∑

k=0

uk(t)ℓ
′′

k (x) + q(x)
N∑

j=0

uk(t)ℓ
′

k(x) + r
N∑

k=0

uk(t)ℓk(x),

u0 = u(−1, t), uN = u(1, t).

(3.14)

In order to write (3.14) in matrix form, we introduce the following matrix and vector notation

u = [u1, u2, . . . , uN−1]
T ,

D(1) =
(
D

(1)
ij

)
, D

(1)
ij = ℓ

′

j(xi), i, j = 1, . . . , N − 1,

D(2) =
(
D

(2)
ij

)
, D

(2)
ij = ℓ

′′

j (xi), i, j = 1, . . . , N − 1,

P = diag(p(xi)), Q = diag(q(xi)), i = 1, . . . , N − 1,

moreoverI denotes an(N − 1) × (N − 1) identity matrix.P andQ are diagonal matrices
whose entries arep(xi) andq(xi), i = 1, 2, . . . , N − 1, respectively. Consequently, (3.14)
can be expressed as an initial value problem of the form

(3.15)
du
dt

= Au + g(t,u), u(0) = u0,

where

A = PD(2)

g(t,u) =
[
QD(1)

u− rIu+
(
p(xi)D

(2)
i0 + q(xi)D

(1)
i0 + rIi0

)
u0

+
(
p(xi)D

(2)
iN + q(xi)D

(1)
iN + rIiN

)
uN

]T
.
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4. Implicit-explicit predictor-corrector method for the d iscretisation in time. The
system of ODEs (3.15) can be solved by means of standard ODE time integrators. Themain
challenge when dealing with this type of problems is that explicit time integrators are inad-
equate because the diffusion term is typically stiff and necessitates excessively small time
steps. On the other hand, the use of stiffly accurate implicittime integrators which are uncon-
ditionally stable is practically time consuming. In order to avoid these problems, it could be
interesting to separate non-stiff and stiff terms. The non-stiff term has to be solved explicitly
whereas the stiff term has to be integrated implicitly. Suchtime integrators are known as
implicit-explicit (IMEX) time integrators and have been used for the time integration of spa-
tially discretised PDEs of reaction-diffusion type [46]. In this article, we use IMEX-PC meth-
ods to integrate the system of ODEs obtained after a spatial discretisation of the PDE (2.5)
mentioned above.

Let us consider the system of ODEs (3.15)

du
dt

= Au + g(t,u), u(t0) = u0,

and letk be the time step-size andun the approximation of the solution attn = kn. Following
the strategy of [4], we may write the generals-step IMEX method when applied to the system
of ODEs (3.15) as

(4.1)
s∑

j=0

ajun+j = k

s∑

j=0

bjAun+j + k

s−1∑

j=0

cjg(tn+j , un+j),

whereas 6= 0. Following [40], the split form of (4.1) yields the following IMEX-PC

(4.2) (asI − kbsA)ũn+s =

s−1∑

j=0

(−ajun+j + kbjAun+j + kcjg(tn+j , un+j)), Predictor

(asI − kbsA)un+s =

s−1∑

j=0

(−ajun+j + kbjAun+j + kbjg(tn+j , un+j))

+ kbsg(tn+s, ũn+s).

Corrector(4.3)

The above IMEX-PC uses the IMEX of [4] as the predictor and implicit schemes as the
corrector. Only the non-stiff term is corrected; the corrector treats the stiff term implicitly.
This significantly reduces the computational cost comparedwith general implicit methods.
As compared to the PC used in [37, 55], the present strategy does not require the use of
iterative solvers such as Newton’s method.

We denote by IMEX-PC(s,m) thes-step implicit-explicit predictor-corrector of orderm.
IMEX-PC(1,m): the IMEX-PC(1,m) is a family of 1-step, one-parameter (γ) IMEX-

PC schemes of orderm and can be written as follows:

(I − γkA) ũn+1 = [I + (1− γ)kA]un + kg(tn, un), Predictor

(I − γkA)un+1 = [I + (1− γ)kA]un + (1− γ)kg(tn, un)

+γkg(tn+1, ũn+1),
Corrector

where the parameter0 ≤ γ ≤ 1 prevents large truncation errors. The choiceγ = 1 yields an
IMEX-PC(1,1) scheme.
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IMEX-PC(2,m): the IMEX-PC(2,m) is a family of 2-step, two-parameter (γ and c)
IMEX-PC schemes of orderm and can be written as follows:

[(
γ + 1

2

)
I −

(
γ + c

2

)
kA

]
ũn+1

= [2γI + (1− γ − c)kA]un +
[(

1
2 − γ

)
I + c

2kA
]
un−1

+(γ + 1)kg(tn, un)− γkg(tn−1, un−1),

Predictor

[(
γ + 1

2

)
I −

(
γ + c

2

)
kA

]
ũn+1

= [2γI + (1− γ − c)kA]un +
[(

1
2 − γ

)
I + c

2kA
]
un−1

+(γ + c
2 )kg(tn+1, ũn+1) + (1− γ − c)kg(tn, un)

+ c
2kg(tn−1, un−1).

Corrector

Choosing(γ, c) = (0, 1) we obtain an IMEX-PC(2,2) scheme.
IMEX-PC(3,m): the IMEX-PC(3,m) is a family of 3-step, three-parameter (γ, θ, andc)

IMEX-PC schemes of orderm and can be written as follows:
[(

1
2γ

2 + γ + θ
)
I −

(
γ2+γ

2 + c
)
kA

]
ũn+1

=
[(

3
2γ

2 + 2γ − 1
2 + θ

)
I +

(
1− γ2 − 3c+ 23

12θ
)
kA

]
un

+
[(
− 3

2γ
2 − γ + 1

)
I +

(
γ2−γ

2 + 3c− 4
3θ

)
kA

]
un−1

+
[(

1
2γ

2 − 1
6

)
I +

(
5
12θ − c

)
kA

]
un−2

+
(

γ2+3γ
2 + 1 + 23

12θ
)
kg(tn, un)−

(
γ2 + 2γ + 4

3θ
)
kg(tn−1, un−1)

+
(

γ2+γ
2 + 5

12θ
)
kg(tn−2, un−2),

Predictor

[(
1
2γ

2 + γ + θ
)
I − k

6A
]
ũn+1

=
[(

3
2γ

2 + 2γ − 1
2 + θ

)
I +

(
1− γ2 − 3c+ 23

12θ
)
kA

]
un

+
[(
− 3

2γ
2 − γ + 1

)
I +

(
γ2−γ

2 + 3c− 4
3θ

)
kA

]
un−1

+
[(

1
2γ

2 − 1
6

)
I +

(
5
12θ − c

)
kA

]
un−2

+
(

γ2+γ
2 + c

)
kg(tn+1, ũn+1 +

(
1− γ2 − 3c+ 23

12θ
)
kg(tn, un))

−
(

γ2−γ
2 + 3c− 4

3θ
)
kg(tn−1, un−1)

+
(

5
12θ − c

)
kg(tn−2, un−2).

Corrector

The choice(γ, θ, c) = (1, 0, 0) yields an IMEX-PC(3,3) scheme.

5. Analysis of the method. In [40], Li et al. gave stability and convergence results
for IMEX-PC methods for solving stiff problems. We briefly recall some of them and as-
sociate these with our option pricing problems. Then we compare the stability regions of
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these IMEX-PC methods to those of the existing IMEX methods [4]. The order of accuracy
of the present IMEX-PC is given by the following theorem.

THEOREM 5.1 ([40]). Let us suppose that thes-step IMEX predictor schemes (4.2) are
of orderp and that the corrector schemes (4.3) have orderq. Then the resulting IMEX-PC is
of ordermin{p+ 1, q}.

We would like to analyse the stability of the IMEX-PC schemes(4.2) and (4.3) when
applied to the PDE problem (2.5). It is beneficial to transform this PDE into one with constant
coefficients by considering the transformationx = log(S/E), whereE is the strike price.
Therefore the problem (2.5) becomes

(5.1)
∂V

∂t
= b

∂2V

∂x2
− a

∂V

∂x
− cV, −∞ ≤ x ≤ ∞, 0 ≤ t ≤ T,

whereb = 1
2σ

2, a = −(r − δ − 1
2σ

2), c = r, V denotes the value of the European op-
tions,t = T − τ is the time to expiry, andT is the expiration (maturity) time.

The first step is to find a spectral representation of this problem. To this end, we consider
the following change of variables

(5.2) V (x, t) = eiξxu(t).

The substitution of (5.2) into (5.1) yields the scalar test equation

(5.3) u′ = H(ξ)u(t) +G(ξ)u(t)

whereH(ξ) = −bξ2 andG(ξ) = −iaξ − c. By applying the IMEX-PC methods (4.2)
and (4.3) to the scalar test equation (5.3) with step sizek, we obtain

(5.4) (as − kH(ξ)bs)ũn+s =

s−1∑

j=0

[−aj + kH(ξ)bj + kG(ξ)cj ]us+j ,

and

(5.5) (as − kH(ξ)bs)un+s =

s−1∑

j=0

[−aj + kH(ξ)bj + kG(ξ)bj ]us+j + kG(ξ)bsũn+s .

Substituting the variablesz = kH(ξ), w = kG(ξ), andRn = un, into the Equations (5.4)
and (5.5) and plugging in (5.4) into (5.5) yields the following characteristic equation

(5.6) ϕ(R; z, w) = Rs −
s−1∑

j=0

[
−aj + zbj + wbj

(as − zbs)
+

wbs

(as − zbs)
2 (−aj + zbj + wcj)

]
Rj .

Note that the IMEX-PC is linearly stable when all the roots ofthe characteristic polyno-
mial (5.6) have modulus less than or equal to one. In other words, letRi(z, w) be the roots
of the characteristic polynomial fori = 1, 2, . . . , s. Then we define the stability regionS of
the method as

S =
{
(z, w) ∈ C2 : |Ri(z, w)| ≤ 1, ∀i

}
.

The root of the characteristic polynomial of the IMEX-PC(1,2) method is given by

R(z, w) =
1− 2γz + z + γ2z2 − γz2 + w + γw2

(1− γz)2
,
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whereas the root of the characteristic polynomial of the first-order IMEX method [4] is given
by

R(z, w) =
1 + z − γz + w

1− γz
.

For higher-order PC methods we do not provide general explicit expressions of their charac-
teristic polynomials. We rather confine our study to specialcases. The choice(γ, c) = (1, 0)
gives the following characteristic polynomial

(
z − 3

2

)
R2 +

(
2 +

4w + 4w2

3− 2z

)
R−

(
1

2
+

w + 2w2

3− 2z

)
= 0,

whereas the root of the characteristic polynomial of the second-order IMEX method [4] is
given by

(
3

2
− z

)
R2 − (2 + 2w)R+

(
1

2
+ w

)
= 0.

Similarly, the choice(γ, θ, c) = (1, 0, 0) for the 3-step PC gives
(
11

6
− z

)
R3 −

(
3 +

6w(3 + 3w)

11− 6z

)
R2

−
(
−3

2
+

6w(−3− 6w)

22− 12z

)
R−

(
1

3
+

2w(1 + 3w)

11− 6z

)
= 0,

whereas the root of the characteristic polynomial of the third-order IMEX method [4] is given
by

(
11

6
− z

)
R3 − (3 + 3w)R2 +

(
3

2
+ w

)
R−

(
1

3
+ w

)
= 0.

Figure 5.1 shows the stability region of the IMEX scheme (4.1) and the IMEX-PC
schemes (4.2) and (4.3) in the (z, w)-plane. Figure5.1 (top) represents the region of sta-
bility of the IMEX(1,2) and IMEX-PC(1,2) schemes withγ = 1

2 . Figure5.1 (left bottom)
shows the stability region of the IMEX(2,2) and IMEX-PC(2,2) methods with(γ, c) = (1, 0),
and Figure5.1(right bottom) shows the stability region of the IMEX(3,3) and IMEX-PC(3,3)
methods with(γ, c, θ) = (1, 0, 0). Clearly, we observe that in all cases the stability region of
the IMEX scheme [4] is included in the stability region of the proposed IMEX-PCscheme.
This show that the proposed IMEX-PC methods have larger stability regions and therefore
are more stable than the IMEX methods suggested in [4].

6. Numerical experiments. In this section, we present some numerical results that we
obtained using the proposed approach. We consider Europeancall, put, digital call, and
butterfly spread options. Further extensions will be discussed in Section7.

6.1. European call options.A European call option gives the holder the right to ex-
ercise the option at maturity timeT . To buy the underlying asset at maturity timeT makes
sense if the asset price is higher than the exercise price(S > E) because one can buy the
asset forE and sell it immediately on the market forS. If this is not the case, then the option
is worthless. The value of a European call option can be determined by solving equation (2.5)
subject to the initial condition

(6.1) V (S, 0) = max(S − E, 0),
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FIG. 5.1. Absolute stability regions of the IMEX (4.1) and IMEX-PC (4.2)–(4.3): IMEX(1,2) and IMEX-
PC(1,2) withγ = 1

2
(top), IMEX(2,2) and IMEX-PC(2,2) with(γ, c) = (1, 0) (bottom left), and IMEX(3,3) and

IMEX-PC(3,3) with(γ, c, θ) = (1, 0, 0) (bottom right).

whereE is the strike price of the optionV . The boundary conditions are

V (0, t) = 0,

V (S, t) = Se−δt − Ee−rt, as S → ∞.
(6.2)

The analytic solution of the Black-Scholes equation (2.5) for European call options is
known [7, 59] and expressed as

(6.3) V (S, t) = Se−δtN(d1)− Ee−rtN(d2),

where

(6.4) d1 =
ln
(
S
E

)
+
(
r − δ + σ2

2

)
t

σ
√
t

, d2 = d1 − σ
√
t,

andN(·) is the cumulative probability distribution function for a standardised normal variable

(6.5) N(y) =
1√
2π

∫ y

−∞

e−
x2

2 dx.

Numerical results are obtained withT = 0.5, 1, and2 years as maturity times withSmin = 0
andSmax = 200 with strike priceE = 45. The number of space mesh points isN = 80,
and the other parameters are as indicated in the Tables6.1–6.5. The accuracy of the present
method was measured by means of the maximum error

L∞ = maxi=1,...,N |ui − Vi|
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TABLE 6.1
Comparison of European call option valuation using barycentric Lagrange collocation (BLC) with Chebyshev-

Gauss-Lobatto (CGL) points and the finite difference method(FD) with uniform grid points.

Schemes
T = 0.5 T = 1 T = 2

L2 L∞ L2 L∞ L2 L∞

Parameters:r = 0.05, σ = 0.2, δ = 0.00

FD 1.9265(-3) 7.5269(-3) 1.7084(-3) 6.2297(-3) 1.5913(-3) 5.4520(-3)
BLC 1.8753(-3) 9.3260(-3) 1.5087(-3) 6.3006(-3) 1.1892(-3) 4.1491(-3)

Parameters:r = 0.07, σ = 0.04, δ = 0.03

FD 7.2924(-3) 6.1838(-2) 1.1283(-2) 7.2901(-2) 1.3508(-2) 8.5026(-2)
BLC 8.2255(-3) 6.1964(-2) 4.8242(-3) 4.4339(-2) 3.0501(-3) 2.2628(-2)

Parameters:r = 0.1, σ = 0.3, δ = 0.05

FD 1.4858(-3) 4.5463(-3) 1.2127(-3) 3.2754(-3) 9.7763(-4) 2.3725(-3)
BLC 1.4758(-3) 5.8705(-3) 1.1751(-3) 3.9176(-3) 9.3080(-4) 2.4952(-3)

TABLE 6.2
Comparison of European call option valuation using barycentric Lagrange collocation (BLC) with transformed

Chebyshev-Gauss-Lobatto (CGL) points and the finite difference method (FD) with non-uniform grid points.

Schemes
T = 0.5 T = 1 T = 2

L2 L∞ L2 L∞ L2 L∞

Parameters:r = 0.05, σ = 0.2, δ = 0.00

FD 6.8107(-4) 1.4774(-3) 1.2556(-3) 2.6516(-3) 2.3119(-3) 4.5751(-3)
BLC 3.0696(-9) 8.8089(-9) 4.6061(-9) 1.3591(-8) 1.0053(-8) 3.6679(-8)

Parameters:r = 0.07, σ = 0.04, δ = 0.03

FD 1.9240(-3) 8.2068(-3) 2.3690(-3) 7.6678(-3) 3.3822(-3) 7.1610(-3)
BLC 4.0924(-8) 1.7177(-7) 6.9650(-8) 3.2579(-7) 1.5729(-7) 6.5362(-7))

Parameters:r = 0.1, σ = 0.3, δ = 0.05

FD 4.2991(-4) 8.1881(-4) 7.2360(-4) 1.3072(-3) 1.1133(-3) 1.8128(-3)
BLC 2.8688(-9) 1.1267(-8) 6.1628(-9) 2.5323(-8) 8.1796(-9) 3.8962(-8)

and the root mean square error

L2 =

√√√√ 1

N

N∑

i=1

(ui − Vi)2,

whereN is the number of points used in the discretisation in one particular direction,Vi

is the exact solution of the Black-Scholes equation given by(6.3), andui is the numerical
approximation to the exact solution of the Black-Scholes equation. For comparison purposes,
we present the absolute, maximum, and root mean square errors. However, we also add
the relative errors to get a better idea of the performance ofour method. We evaluate the
value of a European option by finite differences (FD) using uniform grids, and barycentric
Lagrange collocation (BLC) using the Chebyshev-Gauss-Lobatto (CGL) points for various
option parameters. The results are displayed in Table6.1.

Although in theory and for a range of practical problems, thehigher accuracy of gen-
eral spectral methods over finite difference methods [9, 23, 24] has been shown and demon-
strated, one can observe from Table6.1that the BLC has a moderately smaller error than that
of the FD. Numerically, higher-order methods, in particular spectral methods, have difficul-
ties in accurately approximating the solution in the regionof singularity, i.e., the region of
dramatic change. In fact, spectral collocation methods areadequate for problems involving
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TABLE 6.3
Comparison of European put option valuation using barycentric Lagrange collocation (BLC) with transformed

Chebyshev-Gauss-Lobatto (CGL) points and the finite difference method (FD) with uniform grid points.

Schemes
T = 0.5 T = 1 T = 2

L2 L∞ L2 L∞ L2 L∞

Parameters:r = 0.05, σ = 0.2, δ = 0.00

FD 1.8853(-4) 3.9139(-4) 3.6984(-4) 9.5309(-4) 7.8517(-4) 2.1599(-3)
BLC 3.4402(-9) 9.4734(-9) 2.8691(-9) 1.0938(-8) 6.7411(-9) 3.6676(-8)

Parameters:r = 0.07, σ = 0.04, δ = 0.03

FD 1.7707(-3) 7.7987(-3) 1.8909(-3) 7.4343(-3) 2.0736(-3) 7.4714(-3)
BLC 4.0791(-8) 1.7180(-7) 6.9573(-8) 3.2570(-7) 1.5726(-7) 6.5359(-7)

Parameters:r = 0.1, σ = 0.3, δ = 0.05

FD 2.8525(-4) 5.9174(-4)) 5.0501(-4) 1.3007(-3) 8.1141(-4) 2.2758(-3)
BLC 2.6238(-9) 8.3153(-9) 6.0125(-9) 1.1213(-8) 6.1796(-9) 1.4678(-8)

TABLE 6.4
Comparison of European digital call option valuation usingbarycentric Lagrange collocation (BLC) with

transformed Chebyshev-Gauss-Lobatto (CGL) points and thefinite difference method (FD) with uniform grid points.

Schemes
T = 0.5 T = 1 T = 2

L2 L∞ L2 L∞ L2 L∞

Parameters:r = 0.05, σ = 0.2, δ = 0.00

FD 6.6648(-3) 2.9135(-2) 5.4136(-3) 1.9930(-2) 4.2782(-3) 1.3269(-2)
BLC 9.6328(-6) 1.3466(-5) 8.0988(-6) 1.1035(-5) 4.9873(-6) 6.6544(-6)

Parameters:r = 0.07, σ = 0.04, δ = 0.03

FD 2.5120(-2) 2.4646(-1) 1.9574(-2) 1.5775(-1) 1.4467(-2) 1.1473(-1)
BLC 3.2479(-5) 6.2697(-5) 1.9218(-5) 4.2730(-5) 9.6899(-6) 2.7942(-5)

Parameters:r = 0.1, σ = 0.3, δ = 0.05

FD 5.2655(-3) 1.8233(-2) 4.2214(-3) 1.2180(-2) 3.2368(-3) 7.7694(-3)
BLC 6.0569(-6) 8.1388(-6) 1.9365(-6) 2.5231(-6) 3.2007(-6) 1.6415(-5)

smooth initial conditions. In the present case, the first derivative of the initial condition is dis-
continuous at the strike priceE. As a result, the BLC method cannot be significantly superior
to FD as far as the accuracy is concerned.

In order to improve the accuracy of the BLC method, we use resolution grids in the
region of dramatic change. We utilise the transformation (3.11) to increase the number of
points in the region around the strike priceS = E. Therefore, from Table6.2, we observe
a significant improvement of the BLC method when concentrating more grid points near the
strike price, while with the FD method the improvement is moderate. This is because high
resolution grids in the region of singularity atE allow the BLC to capture the rapid change
in the option price, while in the region of low change, the BLCmethod gives very accurate
results with a small number of grid points.

In Figure6.1, we illustrate the trade-off between computational time and the accuracy as
the time step is refined for the IMEX-PC(1,1) and IMEX(1,1) methods with the choiceγ = 1,
for the IMEX-PC(2,2) and IMEX(2,2) methods with the choice(γ, c) = (1, 0), and for the
IMEX-PC(3,3) and IMEX(3,3) methods with the choice(γ, θ, c) = (1, 0, 0) at timeT = 0.5.
The following parameters are used:Smin = 0, Smax = 200, r = 0.2, σ = 0.3, δ = 0.0,
E = 45, N = 100, andβ = 0.5 × 10−4. In all cases for two methods of the same order,
the IMEX-PC schemes show better results as compared to the IMEX schemes. One observes
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TABLE 6.5
Comparison of European butterfly spread option valuation using barycentric Lagrange collocation (BLC) with

transformed Chebyshev-Gauss-Lobatto (CGL) points and thefinite difference method (FD) with non-uniform grid
points.

Schemes
T = 0.5 T = 1 T = 2

L2 L∞ L2 L∞ L2 L∞

Parameters:r = 0.05, σ = 0.2, δ = 0.00

FD 1.0574(-2) 4.3091(-2) 8.6844(-3) 3.1513(-2)) 6.4097(-3) 1.9811(-2)
BLC 2.3652(-6) 5.2302(-6) 2.0773(-6) 3.8961(-6) 2.5712(-5) 1.3077(-4)

Parameters:r = 0.07, σ = 0.04, δ = 0.03

FD 3.2409(-2) 2.8985(-1) 3.1689(-2) 2.1213(-1) 3.3502(-2) 1.7927(-1)
BLC 1.0341(-6) 3.4514(-6) 7.1643(-6) 3.9076(-6) 6.2304(-5) 2.4926(-4)

Parameters:r = 0.1, σ = 0.3, δ = 0.05

FD 8.0303(-3) 2.8515(-2) 6.0627(-3) 1.7545(-2) 2.5792(-2) 9.2620(-2)
BLC 4.6265(-6) 2.4136(-5) 1.1158(-6) 5.6118(-6) 2.1265(-5) 9.2620(-5)
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FIG. 6.1. Performance of different IMEX-PC against IMEX methods for pricing European call options
with N = 100, r = 0.1, σ = 0.2, δ = 0.0, E = 45, andβ = 0.5× 10−5 at T = 0.5.

that IMEX-PC(3,3) has the best convergence compared to other methods. Therefore in the
remainder of this paper, we use IMEX-PC(3,3) as time integrating method.

Figure6.2 illustrates the convergence of the mapped BLC method for different values
of β. It can be observed that the mapped BLC converges much betterthan the FD method.
Different values of the parameterβ leads to different accuracy. The choiceβ = 0.5× 10−1

shows the worst accuracy but is still very satisfactory compared to the FD method. The
smaller the value ofβ, the better is the accuracy because then more points are clustered
near the strike priceE. However, we find thatβ = 0.5 × 10−4 gives better accuracy
thanβ = 0.5× 10−5. The main reason is that there are not enough points left awayfrom the
region of regularity and thereforeβ = 0.5× 10−4 seems to be the optimal choice for valuing
European call and put options. In the experiments below, we therefore choseβ = 0.5×10−4.
In addition, we investigate the tradeoff between computational time and the accuracy as the
asset grid space is refined. Clearly the BLC method is faster than the FD method and achieves
spectral convergence as expected.

Figure6.3 represents the numerical solution for a European call option together with its
Delta (∆), Gamma (Γ), and the numerical error. All these results are very satisfactory and
free of oscillations.
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FIG. 6.2. Convergence of the mapped BLC method for European call options withk = 5.10−4, Smin = 0,
Smax = 200, r = 0.1, σ = 0.2, δ = 0.0, E = 45, T = 0.5.

6.2. European put options. Given the value of a call option, it is possible to compute
the value of the corresponding put option via the put-call-parity [38]. However, puts and calls
do not always share the same properties. Therefore, we also evaluate European put options
by our approach.

The value of a European put can be computed numerically by solving the PDE (2.5)
subject to the initial condition

V (S, 0) = max(E − S, 0),

and the boundary conditions

V (0, t) = Ee−rt,

V (S, t) = 0 as S → ∞.

The benchmark used to validate our numerical scheme is the analytic solution of the Black-
Scholes equation (2.5) given by

Ee−rtN(−d2)− Se−δtN(d1),

whered1, d2 are defined in (6.4) andN is the cumulative normal distribution defined in (6.5).
We use the same set of parameters as in the valuation of European call options. The re-

sults are presented in Table6.3. It can be seen that the conclusions are similar to those for the
European call options. Therefore, our approach is consistent. Hence, the approach using the
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grid refinement at the strike price is found to perform significantly better than the FD method
in terms of accuracy for valuating European option pricing problems.

Now, we investigate the utility of our approach to price two types of exotic options,
namely European digital call options and butterfly spread options.

6.3. European digital call options. Another type of option that we are dealing within
this paper is the digital call option. This option belongs tothe class of exotic options. Such
contracts are traded between a financial institution (e.g.,a bank) and a customer and not at
exchanges. A digital call option, also known as cash-or-nothing call or binary option, is an
option with payoff zero before the strike price and one (or any fixed amount) after the strike
price. As an example of these options, we solve the Black-Scholes PDE model (2.5) with the
payoff function given by

V (S, 0) =

{
1 for S ≥ E,

0 for S ≤ E,

with the following boundary conditions

V (0, t) = 0,

V (S, t) = e−rt as S → ∞.

The analytic solution for the digital option is

V (S, t) = e−rtN(d2),

whered2 is in defined in (6.4). The discontinuous initial conditions for digital options are
susceptible to cause numerical oscillations of the Greeks when time integrators such as the
Crank-Nicolson method are used. However, our approach produces a non-oscillatory be-
haviour of the Greeks. Figure6.4represents the numerical solution for the digital call option
together with its Delta (∆), Gamma (Γ), and the numerical error. All these results are very
satisfactory and free of oscillations. We also investigatethe maximum error and the root mean
square error for different maturity times and different parameters as chosen in the previous
experiments. The results are presented in Table6.4. Our approach (BLC) using the grid re-
finement at strike price is found to perform significantly better than the FD method in terms
of accuracy for valuating European digital call option pricing problems, although the results
are less accurate than in the case of European calls and puts.The main reason resides in the
smoothness of the initial conditions. While the European call and put has a discontinuity in
the first derivative of the payoff, the digital options have discontinuities in the payoff itself,
i.e., the digital options, which are less smooth than the European vanilla options, produce less
accurate results compared to those of the European vanilla options for the same grid stretch-
ing parameter. This is consistent with the convergence of spectral methods, which relies on
the smoothness of the initial conditions.

6.4. Butterfly spread options. The butterfly spread is a combination of four options.
Two long position calls with exercise priceE1 andE3 and two short position calls with
exercise priceE2 = (E1 + E3)/2. The value of a European butterfly spread call option can
be determined by solving Equation (2.5) subject to the initial condition

V (S, 0) = max(S − E1)− 2max(S − E2) + max(S − E3),

and the boundary conditions

V (S, t) = 0 as S → 0, V (S, t) = 0 as S → ∞.
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FIG. 6.5. Valuation of butterfly spread options by the barycentric Lagrange collocation (BLC) method with
N = 80, k = 0.001, Sm = 0, SM = 200, r = 0.1, σ = 0.2, δ = 0.0, E1 = 45, E3 = 80, T = 0.5.

In this particular case, we need to stretch the grid points atthree different strike prices in
order to improve the accuracy of the BLC method. The suitablemap is chosen from (3.13)
with a1 = a2 = a3 = 1/3, and the grid stretching parameters areβ1 = β2 = β3 = 0.5×10−3.

Figure 6.5 displays the numerical values of the butterfly spread optiontogether with
its ∆, Γ, and its error withN = 80, Smin = 0, Smax = 200, r = 0.1, σ = 0.2, δ = 0.0,
E1 = 45, E3 = 80 at T = 0.5. To ensure that the error is dominated by the spatial dis-
cretisation, we choose the time stepk = 0.001. All the results are satisfactory and free of
oscillations. To further investigate the accuracy of the mapped BLC method for pricing butter-
fly spread options, we compare the results with those obtained by using the FD method. The
results are presented in Table6.5. We observe that the results obtained with the mapped BLC
method are more accurate than those of the FD method. Very accurate results are obtained
for different values of option parameters for different expiry times.

7. Extension of the proposed approach to solve the Heston model. The stochastic
volatility model of Heston [31] is one of the most popular equity option pricing models. This
model is an extension of the Black-Scholes PDE to two-dimensional form. Before we explain
the extension of the proposed approach, we describe this model.

Let V (S, ν, t) denotes the value of the option if at timeT − t the underlying asset price
equalsS and its variance equalsν. Heston’s stochastic volatility model [31] implies thatV
satisfies the two-dimensional parabolic PDE

Vt =
1

2
S2νVSS +

1

2
σ2νVνν + ρσSνVSν + rSVS + κ(η − ν)Vν − rV,

for 0 ≤ t ≤ T , S > 0, ν > 0. The parameterκ > 0 is the volatility mean-reversion
rate,η > 0 is the long-term mean,σ is the volatility of the variance,ρ ∈ [−1, 1] is the
correlation between the underlying asset and the variance,andr is the interest rate.
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The initial condition for a call option is

(7.1) V (S, ν, 0) = max(S − E, 0), 0 ≤ S ≤ SM , 0 ≤ ν ≤ νM ,

whereE is the strike price of the option. Boundary conditions are given by

V (0, ν, t) = 0, 0 ≤ t ≤ T, 0 ≤ ν ≤ νM ,

V (SM , ν, t) = SM − Ee−rt, 0 ≤ t ≤ T, 0 ≤ ν ≤ νM ,

Vν(S, 0, t) = 0, 0 ≤ t ≤ T, 0 ≤ S ≤ SM ,

Vν(S, νM , t) = 0, 0 ≤ t ≤ T, 0 ≤ S ≤ SM .

Let V (S, ν, T ) = Y (S, t) + C(S, ν, t), whereY satisfies the Black-Scholes equation (2.5)
for a call option (6.1)–(6.2). Then the Heston model can be written in terms ofC as

Ct =
1

2
S2νCSS +

1

2
σ2νCνν + ρσSνCSν + rSCS + κ(η − ν)Cν − rC + F,

where

F (S, ν, t) = ρσSνYSν +
1

2
σ2νYνν + κ(η − ν)Yν .

The change of variables

S = EeL1x, ν = ηeL2ω, and c(x, ω, t) = C(S, ν, t) on (x, ω) = [−1, 1]× [−1, 1]

yields the Heston PDE of the form

ct =
1

2
νL−2

1 cxx +
1

2
σ2ν−1L−2

2 cωω + ρσL−1
1 L−1

2 cxω +

(
r − 1

2
ν

)
L−1
1 cx

+

[(
1

2
σ2 − κη

)
+ κ

]
L−1
2 cω − rc+ E−1F (EeL1x, ηeL2ω, t).

(7.2)

The initial condition is

(7.3) c(x, ω, 0) = 0.

Boundary conditions are given by

c(−1, ω, t) = 0, 0 ≤ t ≤ T, −1 ≤ ω ≤ 1,

c(1, ω, t) = 0, 0 ≤ t ≤ T, −1 ≤ ω ≤ 1,

cν(x,−1, t) = 0, 0 ≤ t ≤ T, −1 ≤ x ≤ 1,

cν(x, 1, t) = 0, 0 ≤ t ≤ T, −1 ≤ x ≤ 1.

(7.4)

In order to discretise the two-dimensional problem (7.2)–(7.4), we introduce the two-dimen-
sional version of the approximation (3.4), viz.,

u(x, ω) =

∑Nx

j=0

∑Nω

k=0
wjwk

(x−xj)(ω−ωk)
u(xk, ωk)

∑Nx

j=0

∑Nω

k=0
wjwk

(x−xj)(ω−ωk)

,

wherewj , for j = 0, . . . , Nx, andwk, for k = 0, . . . , Nω, are the barycentric weights defined
by w0 = 1/2, wN = (−1)Nx/2, andwj = (−1)j , j = 1, . . . , Nx − 1.
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FIG. 7.1.Values of European call options in the Heston model using theBLC method withN = 30, E = 100,
T = 0.5, κ = 2, η = 0.01, ρ = 0.5, r = 0.1, L1 = ln(2), ln(8), βS = 0.5 × 10−3, andβν = 10−2 (grid
stretching parameters inS-, ν- directions, respectively) atT = 0.5.

In this article, our extension of the BLC to two dimensions depends on the utilisation of
the Kronecker product for matrices denoted by “⊗”. We explain the notation as per below.

Let A be anm × n matrix andB a p × q matrix. The Kronecker or tensor product ofA
andB is the matrix

A ⊗ B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB


 .

The interested reader can find a review of the properties of the Kronecker product in [54].

We utilise the Kronecker product notation because it provides for a clear separation of
operators in multiple dimensions. For instance, we consider the discretisation of the first- and
second-order derivative operators in two dimensions as follows

cx(x, ω) →
(
D(1)

x ⊗ Iω

)
c,

cxx(x, ω) →
(
D(2)

x ⊗ Iω

)
c,

cω(x, ω) →
(
Ix ⊗D(1)

ω

)
c,

cωω(x, ω) →
(
Ix ⊗D(2)

ω

)
c,

cxω(x, ω) →
(
D(1)

x ⊗D(1)
ω

)
c,

(7.5)

whereIx and Iω are the identity matrices inx andω directions, respectively, andD(1,2)
x

andD(1,2)
ω are the first- and second-order differentiation matrices inx andω directions, re-

spectively. DenotingX = x ⊗ 1
T
Nω

, Ω = 1Nx
⊗ ωT, C = c(X,Ω, t), V = diag(ηeL2Ω)
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FIG. 7.2. Performance of the BLC against the FD method for pricing European call options in the Heston
model withE = 100, T = 0.5, κ = 2, η = 0.01, ρ = 0.5, r = 0.1, L1 = ln(2), andln(8).

and substituting (7.5) into (7.2) yields

Ċ =
1

2
VL−2

1

(
D(2)

x ⊗ Iω

)
C+

1

2
σ2

V
−1L−2

2

(
Ix ⊗D(2)

ω

)
C

+ ρσL−1
1 L−1

2

(
D(1)

x ⊗D(1)
ω

)
C+

(
r − 1

2
V

)
L−1
1

(
D(1)

x ⊗ Iω

)
C

+

[(
1

2
σ2 − κη

)
+ κ

]
L−1
2

(
Ix ⊗D(1)

ω

)
C

− r (Ix ⊗ Iω)C+ E−1F (EeL1X, ηeL2Ω, t).

(7.6)

Equation (7.6) can be written in the form of a global matrix as

(7.7) Ċ = AC+ g(C, t),

where

A =
1

2
VL−2

1

(
D(2)

x ⊗ Iω

)
C+

1

2
σ2

V
−1L−2

2

(
Ix ⊗D(2)

ω

)
C,

is the stiff part of the PDE (7.2) and

g(C, t) = ρσL−1
1 L−1

2

(
D(1)

x ⊗D(1)
ω

)
C+

(
r − 1

2
V

)
L−1
1

(
D(1)

x ⊗ Iω

)
C

+

[(
1

2
σ2 − κη

)
+ κ

]
L−1
2

(
Ix ⊗D(1)

ω

)
C− r (Ix ⊗ Iω)C

+ E−1F (EeL1X, ηeL2Ω, t),

is the non-stiff part. We next apply the IMEX-PC(3,3) definedin Section4 to solve the system
of ODEs (7.7).

We compare the performance of the BLC method against that of the FD method to com-
pute the European call option prices under the Heston model.The parameter values used in
the simulation areE = 100, T = 0.5, κ = 2, η = 0.01, ρ = 0.5, r = 0.1, L1 = ln(2),
andln(8). Figure7.1represents the value of the option plotted at the final timeT = 0.5 using
the BLC method coupled with IMEX-PC(3,3) with time stepk = 0.001. Here a non-uniform
grid is applied in both directionsS and ν such that many points lie in the neighborhood
of S = K and ν = 0, respectively. This is motivated by the fact that the initial condi-
tion (7.1) possesses a discontinuity in its first derivative atS = E and that forν ≈ 0, the



ETNA
Kent State University 

http://etna.math.kent.edu

SPECTRAL METHODS FOR PRICING VANILLA AND EXOTIC OPTIONS 291

Heston PDE is advection-dominated. The results obtained here are in good agreement with
the analytical solution proposed in [31]. In Figure7.2(left), we plot the relative error against
the number of spatial grids in the asset direction. In Figure7.2 (right), the relative error is
plotted against the computational time. For this problem, the BLC method is faster than the
FD method and achieves a spectral convergence as expected.

8. Concluding remarks and scope for future research.In this paper, we have consid-
ered a spectral approach based on a barycentric Lagrange discretisation in space and com-
bined it with a third-order IMEX-PC time marching method forpricing European vanilla,
digital, and butterfly spread options. The method was first designed for one-dimensional
problems and then extended to two-dimensional problems. The proposed method is also
analysed for stability. Extensive comparisons are carriedout and presented in form of tables
and figures. It can be seen from these comparative results that we achieve high-order accuracy
using coordinate transformations that stretch the points around the strike price. These results
show that our method is very accurate and reliable in pricingthe class of options indicated in
this paper. Currently, we are exploring the utility of this approach to solve other classes of
option pricing problems.
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