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ANALYSIS OF SOME KRYLOV SUBSPACE METHODS FOR NORMAL
MATRICES VIA APPROXIMATION THEORY AND CONVEX OPTIMIZATION *
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Abstract. Krylov subspace methods are strongly related to polynospates and their convergence analysis
can often be naturally derived from approximation theormalises of this type lead to discrete min-max approxi-
mation problems over the spectrum of the matrix, from whipper bounds on the relative Euclidean residual norm
are derived. A second approach to analyzing the convergee®f the GMRES method or the Arnoldi iteration,
uses as a primary indicator the (1,1) entry of the invers& fffK,, where K, is the Krylov matrix, i.e., the matrix
whose column vectors are the first vectors of the Krylov sequence. This viewpoint allows usrovfle, among
other things, a convergence analysis for normal matricesyu®nstrained convex optimization. The goal of this
paper is to explore the relationships between these twaappes. Specifically, we show that for normal matrices,
the Karush-Kuhn-Tucker (KKT) optimality conditions dezd¥ from the convex maximization problem are identical
to the properties that characterize the polynomial of bggt@imation on a finite set of points. Therefore, these two
approaches are mathematically equivalent. In develomintg to prove our main result, we will give an improved
upper bound on the distances of a given eigenvector fromorgpaces.

Key words. Krylov subspaces, polynomials of best approximation, ma problem, interpolation, convex
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1. Introduction. This paper is concerned with the study of convergence ofdrglb-
space methods for solving linear systems of equations,

Az = b, (1.1)
or eigenvalue problems
Au = \u. (1.2)

Here, A is a given matrix of sizéV x N, possibly complex. These are projection methods
onto Krylov subspaces

K (A, v) = span {v, Av, - ’Am—lv} 7

generated by and A, wherev € CV is a given initial vector.

A wide variety of iterative methods fall within the Krylov bspace framework. This
paper focuses on two methods for non-Hermitian matrix moist Arnoldi's method15],
which computes eigenvalues and eigenvectorgpfind the generalized minimal residual
method (GMRES) 14], which solves linear systems of equations. GMRES extractap-
proximate solution:™ from the affine subspac€® +K,,, (A, (), wherer(®) = p— Az
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is the initial residual anad(®) € C" is a given initial approximate solution of (1), by requir-
ing that this approximation yields a minimum residual nofithe question of estimating the
convergence rate of iterative methods of this type hasvedenuch attention in the past and
is still an active area of research. Researchers have taeredt paths to provide answers
to the question, which is a very hard one in the non-norma.cas

Numerous papers deal with this issue by deriving upper betmdthe residual norm,
which reveal some intrinsic links between the convergemopgrties and the spectral infor-
mation available ford. The standard technique in most of these wotkS[ 5, 6, 8, 15, 16]
is based on a polynomial approach. More precisely, the letivben residual vectors and
polynomials inspired a search for bounds on the residuahribat are derived from analytic
properties of some normalized associated polynomialsradifins defined on the complex
plane. In recent years, a different approach taking a palglbraic point of view was advo-
cated for studying the convergence of the GMRES method. apipsoach, discussed initially
by Sadok 7] (see also 18]) and Ipsen 7], and followed by Zavorin, O’Leary and Elman
[20], and Liesen and Tichyl[q], is distinct from that based on approximation theory. Reda
theoretical residual bounds have been established, by xglcertain classes of matrices,
in trying to explain the obscure behavior of this method, amtigular the stagnation phe-
nomenon. Nevertheless, a great number of open questio@srem

Exploiting results shown in1[g], we have recently presented ifi] [an alternative way
to analyze the convergence of the GMRES and Arnoldi methmzadsed on an expression for
the residual norm in terms of determinants of Krylov masicAn appealing feature of this
viewpoint is that it allows us to thoroughly analyze conarge for normal matrices using
results from constrained convex optimization. Our appnga®vides an upper bound for
the residual norm, at any step, which can be expressed asglagbrof relative eigenvalue
differences.

The purpose of the present work is to show the connectiondeithese two approaches:
the min-max polynomial approximation viewpoint and the stosined convex optimization
viewpoint. Specifically, we establish that the Karush-Kdhutker (KKT) optimality con-
ditions derived from the convex maximization problem arghmmatically equivalent to the
properties that characterize the best polynomial appration on a finite set of points.

The paper is organized as follows. Sectibsets the notation and states the main result
which will be key to showing the connection between the apipnation theory viewpoint and
convex optimization. In the same section is a useful lemmasefapplication to the GMRES
and Arnoldi cases leads to the introduction of the optintratiewpoint. Section8 and4
begin with brief reviews of the two Krylov methods under ddesation and then derive
upper bounds for GMRES and for Arnoldi algorithms respetyiv Results concerning the
characterization of the polynomials of best approximatinfiinite point sets are discussed in
Section5 and they are then applied to our situation. Secfi@utlines the proof of the main
result by examining the KKT optimality conditions derivediin the convex maximization
problem and establishes the equivalence of the two formouniat Finally, a few concluding
remarks are made in Secti@gn

2. Preliminaries and statement of the main result. Throughoutthe paper itis assumed
that the matrix under consideration, namelyis normal. In addition, all results are under
the assumption that exact arithmetic is used. The Euclidtgamorm onC" and the matrix
norm induced by it will be denoted by||. The identity matrix of ordern (respectively
N) is denoted by, (respectivelyl). We usee; to denote théth column of the identity of
appropriate order.

Let A € CV*N be a complex matrix with spectrua{A) = {\1, A2, ..., Ax}. Sinced
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is normal, there exists a unitary mattixsuch that
A=UAU",

where A = diag(\1, \2,..., An). The superscriptsT” and “H” indicate the transpose
and the conjugate transpose respectively. The diagonaixméth diagonal entries;, i =
1,...,m will be denoted by

Dﬁ :diag(611627"'7ﬁm)- (21)

The Krylov matrix whose columns ar€®, Ar© ... A™=1+0) js denoted byK,,.
Polynomials which are closely related to Krylov subspaciligplay an important role in our
analysis. We denote the set of all polynomials of degree rceedingm by P,, and the
set of polynomials of,,, with value one atv by ]P’Sif). Recall that for any € P,, we have
p(A) = p(UAU") = Up(A)U".

For any vectom = [u1, pia, ..., ", we denote by, (u) the rectangular Vander-
monde matrix:

N
U el

Vin(p) = 1. . e (2.2)
Lo ooyt

For example we will denote by, (\) the matrix of sizeV x m whose entry(i, j) is )™,
wherel(, Ao, ..., Ay are the eigenvalues of.

We will also need a notation for a specific row of a matrix of them (2.2). We define
the vector function

sm(w)=1[1 w ... wmfl}H. (2.3)

Note that theth row of the Vandermonde matrig ) is s,,, (11;)*.
Finally, for a complex number = pe*?, Z = pe~" denotes the complex conjugate:of
|z| = p its modulus, andgn(z) = z/|z] its sign.

2.1. Main result. The result to be presented next will be used in the conversganal-
ysis of both GMRES and the Arnoldi method. For this reasos &tated in general terms
without reference to a specific algorithm. We denoteMyy the standard simplex @& :

AM:{'}/ERM:'yanndeT'yzl},

wheree = (1,1,...,1)7 € R™. The common notationy > 0 means that; > 0 for
i=1,...,M. Letw, pi,...,un be (M + 1) distinct complex numbers, and an integer
such thatn + 1 < M. Define the following function ofy:

1
F, () = - . 2.4
<) = O T W DoV () 5w (@) (4)

Then, we can state the following.
THEOREM2.1.LetAy; C Ay be the domain of definition @, ,. Then the supremum

of F,,, ., overA,, is reached and we have

2
min  max [p(u;)] ] = max F, (7). (2.5)
peple) j=1,....M YEA M
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The above theorem will be helpful in linking two approachemss based on approxima-
tion theory and the other on optimization. It shows in effinet the min-max problem is
equivalent to a convex optimization problem.

The proof of this theorem is based on the Karush-Kuhn-Tu@€m) conditions applied
to the maximization problem stated above. From these KKTditmms, we will derive two
linear systems which appear in the characterization of thgnpmial of best approximation.

2.2. A'lemma on the projection error. Next, we state a known lemma which will be
key in establishing some relations between various resiiliss lemma gives a simple ex-
pression for the projection error, i.e., the differencenssn a given vector and its orthogonal
projection onto a subspace.

LEMMA 2.2. Let X be an arbitrary subspace with a basis represented by theixatr
and letc ¢ X. Let’P be the orthogonal projector ont&. Then

1
T . b)
e C~ley

(I =P)e|)* = (2.6)

where

C— e HB
~ |Bfc¢ BHEB|-
Proof. The proof, given in], is reproduced here for completeness. Given an arbitrary
vectorc € CV, observe that

(I —=P)e||? = (I —P)I —P)c=cH(I-P)c=ctec—cHPc
with P = B(B¥ B)~!BH. From this it follows that
(I =P)|?=ce—cHBBYB)'Bec. (2.7)

The right-hand side ofX7) is simply the Schur complement of the (1,1) entry(hfwhich is
the inverse of the (1,1) entry ¢f—'. O

The expressionZ(6) can also be derived from basic identities satisfied by lsqsares
residuals, as was first shown ih9. This was later formulated explicitly and proved 9] [
by exploiting properties of the Moore-Penrose generalineerse.

3. Convergence analysis for GMRES for normal matrices.The idea of the GMRES
algorithm for solving linear systems is to project the pesblonto the Krylov subspace of
dimensionn < N. The GMRES algorithm starts with an initial gues® for the solution of
(1.1) and seeks thenth approximate solution™ in the affine subspace® + K, (A, r(?)
satisfying the residual norm minimization property

b — Az(™)|| = )Hb—AuH =  min )||7’(0) — Az|. (3.1)

min
u€x (0 +1C,, (A,r(0) 2EK 1 (A,r(0)

As can be readily seen, this approximation is of the farfft) = 2 + p* | (A)r(©),
wherep*, | € P,,_;. Therefore, the residual™ has the polynomial representatiofi®) =
(I — Ap:,_1(A))r(®, and the problem3 1) translates to

I = min [[p(A)r*]. (3.2)
pE]P(O)

m
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Characteristic properties of GMRES are that the normi®f is a non-increasing function of
m and that it terminates im steps ifr(") = 0 andr(™~1 = 0. Moreover, we have(™ =+ 0

if and only if dim(/C,,,1 1 (A, 7(?))) = m + 1. Therefore, while analyzing the convergence
of GMRES, we will assume that the Krylov matriX,,,+1 is of rankm + 1. Before we turn

to bounds for analyzing convergence, we will explore two sviy study the convergence
rate: using so-called optimal polynomials and using thespkedecomposition of Krylov
matrices.

3.1. Analysis based on the best uniform approximation.The contribution of the ini-
tial residual in 8.2) is usually simplified using the inequalityp(A)r© || < ||p(A)]/||=©].
Then the issue becomes one of finding an upper bounbfot) || for all p € P 1t follows
that an estimate of the relative Euclidean residual niprfi#) || /||+(*)|| is associated with the
so-called ideal GMRES polynomial of a matrix probleminpewmm lp(A)]]. If we expand

r() in the eigenbasis®) = U« then

(A0 = [UpATH O = [Up(A)al] = [p(A)al] < o] max_|p(r)].

EERER}

which then shows that

(m) (0) i
[l <l Hpglﬂ;& max [PO]

3.2. Analysis based on convex optimizationNext, an alternative viewpoint for ana-
lyzing residual norms will be formulated. This alternatigkeveloped in1, 18], uses as a
primary indicator the(1,1) entry of the inverse of(/! K;, whereK; is the Krylov matrix
with [ columns associated with the GMRES method.

Itis assumed thatink (K, ;1) = m+ 1. Settinge = (?) andB = AK,, in Lemma2.2
yields the following expression for the residual norff):

1

Hr(m)HQZ T IZi 1
€1 (Km+1Km+1)_ €1

(3.3)

Assume that(°) has the eigen-expansioff) = Ua. A little calculation shows (see
[20]) that we can writel{,,, 11 aSK,,,+1 = U Dy Vig1 () (Spectral factorization ok, 4 1).
We refer to 2.1) and @.2) for the definitions ofD,, andV,,,1(\). Thus, sinceA is normal
(UH U =1),weobtaink ! | K1 = ||of|*VE 1 (N)Dg Vg1 (A) whereB; = [a;]?/||erf|* =
|2 /]9 ||2. We therefore can rewrit&(3) as follows:

™2 1
[r @2 e (VH (N DaVimsar (V) er

(3.4)

Note that3 € A . Thus, an optimal bound fdjr-(™ |2 /[»(®)||2 can be obtained by choosing
B € Ay to maximize the right-hand side 03.4). In fact, thanks to Theorera.1, the two
bounds given in this section coincide. Indeed, substigulih = N, ;1; = A; andw = 0 in
(2.5 yields

2
1
max — = max Fy, o(f) = (min max |p(/\)|> .
PEAN (e (VAL (N DaVinia (V) o) dedn pep® d=1, N

We end this section by stating the following assertion. &éf) be the set of indiceg
such thap3; # 0. If rank(K,,11) = m+1 (||»"™)]|| # 0) then clearly the cardinality 6&(3)
is at leastn + 1.
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4. Outline of the convergence analysis for Arnoldi’'s method Arnoldi’s method ap-
proximates solutions of the eigenvalue problén®(by computing an approximate eigenpair
(Am) (™)) obtained from the Galerkin condition

7™ € K (A, v1),
and (AT — XMgtm) Aly) =0fori=0,...,m— 1.

Let P,, be the orthogonal projector onto the Krylov subspkgg(A4, v1), and let(\, «) be
an exact eigenpair of. In [15], the following result was shown to analyze the convergence
of the process in terms of the projection erfiar— P,,,u|| of a given eigenvectar from the
subspacéC,,, (A, v1).

THEOREM4.1. LetA4,, = P,,,AP,, and lety,,, = [|Pp(A — AI)(I — Pp,)||. Then the
residual norms of the pairs, P,,u and \, u for the linear operator4,,, satisfy, respectively

[(Am = AD)Prmu) || < v [(I = P )ull,
[(Am = ADull < VAP +2, (T = Pm)ull.

This theorem establishes that the convergence of the Armathod can be analyzed by
estimating||(I — Py, )ul|. Note thaty,, < ||A]|. The result shows that under the condition
that the projected problem is not too ill-conditioned, theiill be an approximate eigenpair
close to the exact one whélii — P,,,)u|| is small.

4.1. Analysis based on (uniform) approximation theory. The result just discussed
above shows how the convergence analysis of the Arnoldiodetan be stated in terms of the
projection errot| (I — P,,,)u| between the exact eigenvectoand the Krylov subspace. The
usual technique to estimate this projection error assuhaggltis diagonalizable and expands
the initial vectorv; in the eigenbasis ag = Zjil ajuj. \We examine the convergence of a
given eigenvalue which is indexed by 1; i.e., we considerthe first column ol/. Adapting
Lemma 6.2 from 15 stated for diagonalizable matrices to the special situatif normal
matrices gives the following theorem.

THEOREM4.2. Let A be normal @ = UAUH, UHU = I) and letv; = Z;V:l aju; =
Ua; then

N |2
Zj:Q |a.7| e(m)

(I = Pm)ur | < 1 (4.1)

| |
(m) _ _
wheree; ' = perlr;glp] j:HQl.,é.l.:fN [p(A;)]-
The right-hand side ofi(1) may exceed one, but we know tHdf — P,,,)u1|| < 1 since

P, is an orthogonal projector andi; || = 1. The new bound provided next for the left part
of (4.1) does not exceed one. This result is based on optimizatenryh

4.2. Analysis based on convex optimizationLet L,,,; € CVN*("+1) pe the matrix
with columnsayug, v, Av, ..., Am Ly, Lemma2.2with B = [v1, Avy,..., A™ 1 v;] and
¢ = aquy yields
1

-1
e{(L1Hn+1Lm+1) €1

(I = Pm)arus||* =

)

where it is assumed thdt,,; is of full rank so thatLﬁHLmH is nonsingular. As with
the Krylov matrix, we can writd.,,, 1 @SLy,+1 = U Do W1 With Wi, 11 = [e1, Vi (M)].
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Thus, in the normal cas&/(’ U = I), we have

2
I =P P e _ L “2)

ef (Zv(nvz—)l (ﬁ)) el

[l

whereZ(") (8) = WH | DgW,, 41 is in Cm D x0m+1) and 8, = (|a;|/|la|)®. Another
formulauon of|| (I — P, )ua] is given next. Definitions o¥,,()), s,,, and other quantities
may be found in Sectiof.

COROLLARY 4.3.If the matrix functionZ,(nVZ)l(ﬁ) is nonsingular with3; > 0, then

w) -1 B i -

of (Z000) o1 =5 +en(d)
whereﬁ = (B2,...,8n)T and the functionp,, is independent ofy;. More precisely, we
have

1
I(I = Pum) wa||® = :
1+ 61‘/7771(6)

where

inwhichV,,, = V;,(A), wherel = [As, A3, -+, An]7.
Proof. We write the matr|><Z,(n+)1 (B) in the partitioned form

(W) - 061 ﬂng(/\l)
Za (B) = [ﬁlsm()\l) VH(X) Dng(/\)] '

First, using the matrix inversion in block form and then amj the Sherman-Morrison-
Woodbury formula to thé1, 1) block, see, e.g.2[1], leads to:

-1

I (Z003) e = E + 511 0) (VA (V) DV (V) = Brsm () s5(A)) " sim(A)-
N _ [57[31()\1)] H B N H
ote thatV,,,(\) = v and V' (A) DgVin(A) = D21 Bi Sm(Xi) sm(Ni)™7,
hence "
Therefore,

F(20500) " @1 = 5+ ST DTin) (),

Applying the relation 4.2) results in
1

I—Pp)u|? = ————=. O
II( Jut| 14 Brem(B)
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Next, we state a bound fdf(I — P,,) u1| which slightly improves the one given in
Theoremid.2

THEOREM4.4.1f m < N, ||[(I — P;) u1|| # 0forj € {1,...,m} and the matrix4 is
normal then

Hallef")
(I = Pm) us]| < <1,
VIR (™2 + a2
wherea = (o, ..., an)T.
Proof. First observe that
Brom(B) = lasf om (Jaof ... Jan]?)
|a1| |z | lan|? |041|
— 5 —5em(7),
& || [l lal* ) lla H
wherey = (71,...,7v_1) With v; = |ai11|2/||a]|2. Itis easy to see thaf € An_;.

Invoking Corollary4.3, we obtain
1

(I = Pr) ua]|” < loa® .
L+ e minex,, #m(7)

Using Theoren?.1with M = N — 1, u; = A\j11 andw = \; leads to

I = Pr) wi? < e !
1+ —‘Oille (elm)

and this completes the prodf.

5. Characterization of the polynomial of best approximation. To characterize poly-
nomials of best uniform approximation, we will follow theatment of Lorentzl[1, Chap. 2].
Our main goal is to derive two linear systems which char@methe optimal polynomial.
These systems are fundamental in establishing the linktivéloptimization approach to be
covered in the next section.

5.1. General context.We begin this section with some additional notation. C&%)
denote the space of complex or real continuous functionseamgact subset of K (R or
C). If g € C(S), then the uniform norm of is ||g|| . = max.cs |g(2)|. We set

£(9,9) ={z:19(2)l =ll9lc .z € S}
AsetU = {¢1,1,...,9,} fromC(S) is a Chebyshev system if it satisfies the Haar condi-
tion, i.e., if each polynomial
D= a1¥1 + a4+ ...+ amPm,

with the coefficients:; not all equal to zero, has at mdst — 1) distinct zeros or. The
m-dimensional spac& spanned by such & is called a Chebyshev space. We can verify
that U is a Chebyshev system if and only if for any distinct pointsz; € S the following
determinant is nonzero:

Yi(z1) -0 Yi(zm)
det(v;(2:)) == | St
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Let f € C(S9), f ¢ E. We say thaty* € E is a best approximation t¢ from E if
If —a*ll. <IIf —pll¥p € E. In other words,

If = "l = minmax|f(2) — p(2)].

Ouir first result exploits the following well-known charaggation of the best uniform ap-
proximation [L1]. An elegant characterization of best approximationss$e given in [L3].

THEOREM 5.1. A polynomialg™ is a polynomial of best approximation o € C(S)
fromE if and only if there exist extremal points, i.es; pointszy, 22, ..., 2. € E(f —¢*, 9),
andr positive scalars3;, i = 1,---,r, such thaty";_, 8, = 1, withr < 2m + 1 in the
complex case and < m + 1 in the real case, which satisfy the equations:

DBl (E) = (@) () = 0,5 =1,...,m. (5.1)
=1

It is important to make two remarks about this result. Fiitstan be applied to char-
acterize the best uniform approximation over any finite stibsof S, with at leastm + 1
points. Second, the uniqueness of the polynomial of bestappation is guaranteed i
is a Chebyshev spacél, Chap. 2, p. 26]. Moreover, we have= m + 1if S C R and
m+1<r<2m+41if S C C. This will be the case because we will deal with polynomials
inP,,.

The above result can be applied to our finite min-max appration problem:
minpepﬁ;ﬂ max,=1,. m |p(u;)|- Thisis the goal of the next section.

5.2. Application to the min-max problem. Let o denote the set of the complex num-
bersuy,...,uy and IetQﬁfj)(m < M) denote the set of all polynomials of degree not
exceedingn with value zero ab. Let (+;)}72, be the set of polynomials @ﬁfj) defined by

¥;(2) = 27 — w’. Our problem corresponds to takirfg= 1 andE = Q). This yields:

min max = min max|l — = —a* )
i, a2 p(n)] iz, max 1 — q(p)| = [If - ¢"ll

According to the remarks made following TheorBr, the polynomial of best approximation
qr € Qﬁ,‘f) for f = 1 (with respect tar) exists and is unique.

The following corollary, which gives an equivalent formtiten of the relation$.1), can
now be stated. This corollary will lead to auxiliary resdttsm which the maximum and the
polynomial of best approximation can be characterized.

COROLLARY 5.2. The polynomial*(z) = ajv1(2) + adie(2) + ... + aX,bm(2) is
the best approximation polynomial for the functigfz) = 1 on o from Qﬁfj) if and only
if there existr extremal points, i.es pointspy, po, ..., ur € E(f — ¢*,S), andr positive
scalarsf;, i = 1,--- ,r, suchthaty,_; 6; = 1, with~ < 2m + 1 in the complex case and
r < m+ 1in the real case, satisfying

m—+1
Yt =g =l =1, (5.2)
j=2 Vo
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* CL; . * 1 m~+1 s 1
witho* = || f — ||00,t7+1 6—*,]:1,...,m,andt1:6—*—z t*w/~! and
Zﬁlél =6, (5.3)
Zﬂzel I_w) =0, j=1,...,m; (5.4)

wheres; = sgn(1 — ¢*(u))-

Proof. Leté* = ||f — q*HiO. Theny; € E(f — ¢*,5) is equivalent td1 — ¢* ()| =
|f—q*|l, = Vé*. Without loss of generality, we can assume thextremal points are the
r first items ofo. According to the above definition af, the polynomialy* satisfies the
following interpolation conditions:

1—q" () = Vorg forl =1,.. (5.5)

Settingt; = 1/6* — Y75 tiwi =t andt?,, = —a/6*,j = 1,...,m, we obtain §.2).
Equation 6.5 shows tha@l:1 Gieri () = 0,7 = 1,...,mis arestatement ob(1).
We then have

Zﬁzazq(uz) =0 forall polynomialsy € Q!“). (5.6)
=1

Furthermore, from%.5) we have the relatioy/s5* 3, = Gigif(w) —BiEg (), L=1,...,r
To see thad_;_, 3, = 1is equivalent to%.3), it suffices to sum the terms in this relation and
apply the conjugate o6(6). O

As a remark, we may transform the interpolation conditién§)(to m,, (x;) = ¢; for all
j=1,...,r, with m,,(2) = (1 — ¢*(2))/V/4*. Thenr,, can be written in the form of the
Lagrange interpolation formula

m+1 m—+1
Tm(2) = > " (2), with 15"V(z) = H M

Note thatl§.m“) (z) is thejth Lagrange interpolating polynomial of degreeassociated with
{p1, ..., ftm+1}. Finally, recalling thatr,, (w) = 1/+/6*, we obtain

m—+1

m+1 1
Z el (w _\/?' (5.7)
A consequence of this is that:
1
min max[p(o)| = |f = 'l = V5" = .
rer > el w)

J=1

6. Proof of the main result. In this section, we will show that

max Fp, ,(8) = (egm)(w))g,

BEANM
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whereF,, ., () is defined in .4) and

" (w) = min max_[p()]. (6.1)

The proof will be based on applying the Karush-Kuhn-Tuclkd{T) optimality conditions
to our convex maximization problem. We begin by establigtire following lemma which
shows a few important properties of the functibp ,. Since there is no ambiguity, we will
simplify notation by writingV;,,+1 for V,,+1 (1) in the remainder of this section.
LEMMA 6.1. LetﬁM C Ay be the domain of definition of the functids, ., in (2.4).
Then the following properties hold: B
1. F, . is a concave function defined on the convex‘sgt

2. I, ., is differentiable aty € EM and we have

0F o o ) )
3—@_(5) = — (Fnw(B)? |l Vinsat|”,
wheret = [t1,t2,...,tym1]" is such that/ X, DsVi, 1t = s34 (w). Moreover,
we have
M
E:ﬂf——;ﬁ@<:Fhw0%- (6.2)
i=1 9P

Proof. We will begin by proving the first property. Letbe a real positive scalar. Since
D,3 =1 Dg, then

1
Frw (7’5) =
' San+1 (w)(T(VTnH+1DﬁVm+1))_13m+1 (w)
Thus F,, ., is homogeneous of degrée Let 3,3 € EM and0 < r < 1. Itis easy to
see thats + (1 — r)3’ € Ap. We now taker = s,,41(w), G1 = VanHDmeH and
Gy = VJ;’HD(l_T)ﬁ/VmH, in the following version of Bergstrom’s inequality givem|i12,
p. 227]:

=rFn(0).

_1 _ _
(a:H (Gh + Gg)fl a:) > (xHGflx) ! + (a:HGglzc) ! ,

whereG,; and G- are positive definite Hermitian matrices. Then from the hgereity of
F,, ., it follows that

Hence,F,, ., is concave.

Next we establish the second part. Letus define 1(8) = Vi, 1 DgVipqr € CHLmFL

_ —1
We haveZy ((8) = Zm1(B) and Frnw(B) = [sh1(w)Z5 41 (8)sme1(w)]  for
B8 € Apr. Clearly, F, ., is differentiable a3 € Ayy.
By using the derivative of the inverse of the matrix functiare have

0z (3 B O Zm B
a0 _yn 9220 ),
It follows that
0Z,,\1(B)

Sgﬂ (W)Tsmﬂ (w) = —tHVrfﬂeie;fFVmﬂt,
1
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wheret is such thatZ,,, ;1 (8)t = s,,+1(w). As a consequence,

07, 1(B)
H m+1
OF Sm+1(w0) 55— sm+1(w) tHVH TV, 1t
o5, A= -

_ 2 2°
(5g+1 (W)Zmil (B)sm+1 (W)) (5g+1 (W)Zm+1 (B)sm+1 (W))
We can write more succinctly
OF
9P

The equality 6.2) follows from a simple algebraic manipulation. Indeed, ve@d

M OF,
Zﬁl Faﬁ(ﬁ) _ E tH +1 ﬁlez )Vm+1t
i=1 v

= (Fm,w(ﬁ)) (tHV +1D5Vm+1 t) Fm,w(ﬁ)' 0

With the lemma proved, we now proceed with the proof of thetbm. Let us consider
the characterization of the solution of the convex maximirizeproblemmaxﬁezM Fry ()
by using the standard KKT conditions. We begin by definingftimetionsg; (3) = —3; and
g(B) = e'3 — 1. Thusp € Ay means thay(3) = 0 andg;(3) < 0. So the Lagrangian
function is formulated as

(ﬁ) = (Fm,w(ﬁ))2 |6?Vm+1t|2'

(ﬁ 6 77) m w - 59 Z Thgz

wheres € R andn = (1,...,717) € RM. Note that the functiong, g; are convex (affine
functions) and by Lemma@.1, the objective function- F;,, is also convex. It follows that this
maximization problem can be viewed as a constrained congémization problem. Thus
according to the KKT conditiongl], if F;,, .,(3) has a local maximizes* in A, then there
exist Lagrange multiplier§*, n* = (ny,...,n;,) suchtha{g*, 6*,n*), satisfy the following
conditions:

. 0L, )

@ a5, —(B*, 6%, n*)=0,forj=1,..., M;

(i) g(B*) =0and(g;(3*) <0Oandp; >0forallj=1,..., M),

(i) njg;(B*)=0forallj=1,..., M,

As3*isin A, we have at leash+ 1 components of* which are nonzero. Thus, there
existm + &, (k > 1) components ofs* which we labelsy, 33, ..., 55, ., for simplicity,
suchthat3; # Oforallj =1,...,m+x. The complementarlty cond|t|0n (iii), yieldg = 0
forall j = 1 ,m+ K andnj >0forallj=m+x+1,..., M. Hence the condition (i)
can be re- expressed as

)= 0" forj=1,...,m+k, and
aﬁj — 7 (67) J

OF o . (6.3)
a5, (B*)=0"—n; forj=m+w+1,....,M.

Again by using the formula o%(ﬁ*) given in the lemma, the relations ii.) become
j

)

Fno (32 |e] Vinat'[ = 6 for j=1,...m+n, (6.9)
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and
Foo(B)? [FVirt*|" = 6" = for j=m+r+1,...,M. (6.5)
Note thatt* is such that
VA DgViiat™ = spmp1(w). (6.6)

Now by observing tha; = O forall j =m +x+1,..., M, Z’”*" B; = 1, and by using
the first part of 6.3), equation §.2) of the lemma shows thdfm, (ﬁ*) = 0*. The remaining
part of the proof is devoted to establishing the same formglaen in the theorem which
characterize the polynomial of best approximation. In vig\(6.4), we then have

1t” —EJ\/_ forallj=1,...,m+ k. (6.7)

Here we have written; = ¢'% in the complex case and = +1 in the real case.

-1

Combining st () (Vi Dy Vini1) " sma1(@)| = Fuu(8) with (6.6), we
obtains/!,,(w)t* = 1/6*. On the other hand, the optimal solutigfisand the numbers;
can be derived fromg(.6). Indeed, usingq.6) and 6.7), we have

S?Dﬁ*v

* * 1
m1t” = B3] =
Therefore, by applyind/ , we havezm+“ Bre; = v/6* and Zm“”" el =

Voo = Z;’”“ Bre;@! forl = 1,...,m. Hence, we find thaf """ 3%, (ul — ) =0
forl =0,...,m. The relations§. 2) (5 4 and 6.3 in CoroIIary5 2are aII sat|sf|ed with
f =1,z = puj, ¢¥j(2) = 27 —wl andr = m + . It follows that the Lagrange mul-
tiplier 0* is unique and is the same as in the previous section. As a goesee we have
§* = Frw(6%) = |1 — ¢*|°, and .9 is established.

7. Concluding remarks. For normal matrices, we have established the equivalence of
the approximation theory approach and the optimizatiomagugh to solving a min-max prob-
lem that arises in convergence studies of the GMRES and dirn@thods. Our work reveals
a strong connection between the two points of view. Becafifeed convenient properties,
the KKT conditions allow us to completely characterize tbsidual bounds at each step for
both methods; and the KKT conditions give more precise mition about the extremal
points than approximation theory. We also point out the irtgpme of the form of the KKT
conditions. Only the non-active paf.f) is needed to prove equivalence of the approxima-
tion theory and optimization approaches; while for the GNIRfEethod, for example, we
infer from the active partd.5) that

forallj=1,...,m+ k.

= 8 = Fro(87)2 X Vit (V| > 0 forj = m+ k+1,..., M,

so that
1
T * .
e Vet Mt | < —= forj=m+x+1,..., M.
‘ j +1( ) 5 J
This shows that the extremal points can be characterized by
1 T 3 .
ﬁ:|eiVm+1 t‘—lgegiw‘e Vit ( )t| fori=1,...,m+ k.

The connections established in this paper provide new hitsimto the different ways in
which residual bounds can be derived. We hope that the deveot of the optimization
approach will pave the way for extensions beyond the casemfal matrices.
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