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ANALYSIS OF SOME KRYLOV SUBSPACE METHODS FOR NORMAL
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Abstract. Krylov subspace methods are strongly related to polynomialspaces and their convergence analysis
can often be naturally derived from approximation theory. Analyses of this type lead to discrete min-max approxi-
mation problems over the spectrum of the matrix, from which upper bounds on the relative Euclidean residual norm
are derived. A second approach to analyzing the convergencerate of the GMRES method or the Arnoldi iteration,
uses as a primary indicator the (1,1) entry of the inverse ofKH

mKm whereKm is the Krylov matrix, i.e., the matrix
whose column vectors are the firstm vectors of the Krylov sequence. This viewpoint allows us to provide, among
other things, a convergence analysis for normal matrices using constrained convex optimization. The goal of this
paper is to explore the relationships between these two approaches. Specifically, we show that for normal matrices,
the Karush-Kuhn-Tucker (KKT) optimality conditions derived from the convex maximization problem are identical
to the properties that characterize the polynomial of best approximation on a finite set of points. Therefore, these two
approaches are mathematically equivalent. In developing tools to prove our main result, we will give an improved
upper bound on the distances of a given eigenvector from Krylov spaces.

Key words. Krylov subspaces, polynomials of best approximation, min-max problem, interpolation, convex
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1. Introduction. This paper is concerned with the study of convergence of Krylov sub-
space methods for solving linear systems of equations,

Ax = b, (1.1)

or eigenvalue problems

Au = λu. (1.2)

Here,A is a given matrix of sizeN × N , possibly complex. These are projection methods
onto Krylov subspaces

Km(A, v) = span
{
v,Av, · · · , Am−1v

}
,

generated byv andA, wherev ∈ CN is a given initial vector.
A wide variety of iterative methods fall within the Krylov subspace framework. This

paper focuses on two methods for non-Hermitian matrix problems: Arnoldi’s method [15],
which computes eigenvalues and eigenvectors ofA; and the generalized minimal residual
method (GMRES) [14], which solves linear systems of equations. GMRES extractsan ap-
proximate solutionx(m) from the affine subspacex(0)+Km(A, r(0)), wherer(0) = b−Ax(0)
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§L.M.P.A, Université du Littoral, 50 rue F. Buisson BP699, F-62228 Calais Cedex, France.E-mail:
sadok@lmpa.univ-littoral.fr.

17



ETNA
Kent State University 
etna@mcs.kent.edu

18 M. BELLALIJ, Y. SAAD AND H. SADOK

is the initial residual andx(0) ∈ CN is a given initial approximate solution of (1.1), by requir-
ing that this approximation yields a minimum residual norm.The question of estimating the
convergence rate of iterative methods of this type has received much attention in the past and
is still an active area of research. Researchers have taken different paths to provide answers
to the question, which is a very hard one in the non-normal case.

Numerous papers deal with this issue by deriving upper bounds for the residual norm,
which reveal some intrinsic links between the convergence properties and the spectral infor-
mation available forA. The standard technique in most of these works [2, 3, 5, 6, 8, 15, 16]
is based on a polynomial approach. More precisely, the link between residual vectors and
polynomials inspired a search for bounds on the residual norm that are derived from analytic
properties of some normalized associated polynomials as functions defined on the complex
plane. In recent years, a different approach taking a purelyalgebraic point of view was advo-
cated for studying the convergence of the GMRES method. Thisapproach, discussed initially
by Sadok [17] (see also [18]) and Ipsen [7], and followed by Zavorin, O’Leary and Elman
[20], and Liesen and Tichy [10], is distinct from that based on approximation theory. Related
theoretical residual bounds have been established, by exploring certain classes of matrices,
in trying to explain the obscure behavior of this method, in particular the stagnation phe-
nomenon. Nevertheless, a great number of open questions remain.

Exploiting results shown in [18], we have recently presented in [1] an alternative way
to analyze the convergence of the GMRES and Arnoldi methods,based on an expression for
the residual norm in terms of determinants of Krylov matrices. An appealing feature of this
viewpoint is that it allows us to thoroughly analyze convergence for normal matrices using
results from constrained convex optimization. Our approach provides an upper bound for
the residual norm, at any step, which can be expressed as a product of relative eigenvalue
differences.

The purpose of the present work is to show the connection between these two approaches:
the min-max polynomial approximation viewpoint and the constrained convex optimization
viewpoint. Specifically, we establish that the Karush-Kuhn-Tucker (KKT) optimality con-
ditions derived from the convex maximization problem are mathematically equivalent to the
properties that characterize the best polynomial approximation on a finite set of points.

The paper is organized as follows. Section2 sets the notation and states the main result
which will be key to showing the connection between the approximation theory viewpoint and
convex optimization. In the same section is a useful lemma whose application to the GMRES
and Arnoldi cases leads to the introduction of the optimization viewpoint. Sections3 and4
begin with brief reviews of the two Krylov methods under consideration and then derive
upper bounds for GMRES and for Arnoldi algorithms respectively. Results concerning the
characterization of the polynomials of best approximationon finite point sets are discussed in
Section5 and they are then applied to our situation. Section6 outlines the proof of the main
result by examining the KKT optimality conditions derived from the convex maximization
problem and establishes the equivalence of the two formulations. Finally, a few concluding
remarks are made in Section7.

2. Preliminaries and statement of the main result.Throughout the paper it is assumed
that the matrix under consideration, namelyA, is normal. In addition, all results are under
the assumption that exact arithmetic is used. The Euclideantwo-norm onCN and the matrix
norm induced by it will be denoted by‖·‖. The identity matrix of orderm (respectively
N ) is denoted byIm (respectivelyI). We useei to denote theith column of the identity of
appropriate order.

LetA ∈ CN×N be a complex matrix with spectrumσ(A) = {λ1, λ2, . . . , λN}. SinceA
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is normal, there exists a unitary matrixU such that

A = UΛUH ,

whereΛ = diag(λ1, λ2, . . . , λN ). The superscripts “T ” and “H” indicate the transpose
and the conjugate transpose respectively. The diagonal matrix with diagonal entriesβi, i =
1, . . . ,m will be denoted by

Dβ = diag(β1, β2, . . . , βm). (2.1)

The Krylov matrix whose columns arer(0), A r(0), . . . , Am−1 r(0) is denoted byKm.
Polynomials which are closely related to Krylov subspaces will play an important role in our
analysis. We denote the set of all polynomials of degree not exceedingm by Pm and the
set of polynomials ofPm with value one atω by P

(ω)
m . Recall that for anyp ∈ Pm we have

p(A) = p(UΛUH) = Up(Λ)UH .
For any vectorµ = [µ1, µ2, . . . , µM ]T , we denote byVm(µ) the rectangular Vander-

monde matrix:

Vm(µ) =




1 µ1 · · · µm−1
1

1 µ2 · · · µm−1
2

...
... · · ·

...
1 µM · · · µm−1

M


 . (2.2)

For example we will denote byVm(λ) the matrix of sizeN ×m whose entry(i, j) is λj−1
i ,

whereλ1, λ2, . . . , λN are the eigenvalues ofA.
We will also need a notation for a specific row of a matrix of theform (2.2). We define

the vector function

sm(ω) =
[
1 ω . . . ωm−1

]H
. (2.3)

Note that theith row of the Vandermonde matrix (2.2) is sm(µi)
H .

Finally, for a complex numberz = ρeıθ, z = ρe−ıθ denotes the complex conjugate ofz,
|z| = ρ its modulus, andsgn(z) = z/|z| its sign.

2.1. Main result. The result to be presented next will be used in the convergence anal-
ysis of both GMRES and the Arnoldi method. For this reason it is stated in general terms
without reference to a specific algorithm. We denote by∆M the standard simplex ofRM :

∆M =
{
γ ∈ RM : γ ≥ 0 andeTγ = 1

}
,

wheree = (1, 1, . . . , 1)T ∈ RM . The common notationγ ≥ 0 means thatγi ≥ 0 for
i = 1, . . . ,M . Let ω, µ1, . . . , µM be(M + 1) distinct complex numbers, andm an integer
such thatm+ 1 < M . Define the following function ofγ:

Fm,ω(γ) =
1

sH
m+1(ω) (Vm+1(µ)HDγVm+1(µ))

−1
sm+1(ω)

. (2.4)

Then, we can state the following.
THEOREM2.1. Let∆̃M ⊂ ∆M be the domain of definition ofFm,ω. Then the supremum

ofFm,ω over∆̃m is reached and we have

(
min

p∈P
(ω)
m

max
j=1,...,M

|p(µj)|
)2

= max
γ∈e∆M

Fm,ω(γ). (2.5)
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The above theorem will be helpful in linking two approaches,one based on approxima-
tion theory and the other on optimization. It shows in effectthat the min-max problem is
equivalent to a convex optimization problem.

The proof of this theorem is based on the Karush-Kuhn-Tucker(KKT) conditions applied
to the maximization problem stated above. From these KKT conditions, we will derive two
linear systems which appear in the characterization of the polynomial of best approximation.

2.2. A lemma on the projection error. Next, we state a known lemma which will be
key in establishing some relations between various results. This lemma gives a simple ex-
pression for the projection error, i.e., the difference between a given vector and its orthogonal
projection onto a subspace.

LEMMA 2.2. LetX be an arbitrary subspace with a basis represented by the matrix B
and letc /∈ X . LetP be the orthogonal projector ontoX . Then

‖(I − P)c‖2 =
1

eT
1 C

−1e1
, (2.6)

where

C =

[
cHc cHB
BHc BHB

]
.

Proof. The proof, given in [1], is reproduced here for completeness. Given an arbitrary
vectorc ∈ CN , observe that

‖(I − P)c‖2 = cH(I − P)(I − P)c = cH(I − P)c = cHc− cHPc

with P = B(BHB)−1BH . From this it follows that

‖(I − P)c‖2 = cHc− cHB(BHB)−1BHc. (2.7)

The right-hand side of (2.7) is simply the Schur complement of the (1,1) entry ofC, which is
the inverse of the (1,1) entry ofC−1.

The expression (2.6) can also be derived from basic identities satisfied by leastsquares
residuals, as was first shown in [19]. This was later formulated explicitly and proved in [9]
by exploiting properties of the Moore-Penrose generalizedinverse.

3. Convergence analysis for GMRES for normal matrices.The idea of the GMRES
algorithm for solving linear systems is to project the problem onto the Krylov subspace of
dimensionm ≤ N . The GMRES algorithm starts with an initial guessx(0) for the solution of
(1.1) and seeks themth approximate solutionx(m) in the affine subspacex(0) +Km(A, r(0))
satisfying the residual norm minimization property

‖b−Ax(m)‖ = min
u∈x(0)+Km(A,r(0))

‖b−Au‖ = min
z∈Km(A,r(0))

‖r(0) −Az‖. (3.1)

As can be readily seen, this approximation is of the formx(m) = x(0) + p∗m−1(A)r(0),
wherep∗m−1 ∈ Pm−1. Therefore, the residualr(m) has the polynomial representationr(m) =

(I −Ap∗m−1(A))r(0), and the problem (3.1) translates to

‖r(m)‖ = min
p∈P

(0)
m

‖p(A)r(0)‖. (3.2)
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Characteristic properties of GMRES are that the norm ofr(m) is a non-increasing function of
m and that it terminates inm steps ifr(m) = 0 andr(m−1) 6= 0. Moreover, we haver(m) 6= 0
if and only if dim(Km+1(A, r

(0))) = m + 1. Therefore, while analyzing the convergence
of GMRES, we will assume that the Krylov matrixKm+1 is of rankm+ 1. Before we turn
to bounds for analyzing convergence, we will explore two ways to study the convergence
rate: using so-called optimal polynomials and using the spectral decomposition of Krylov
matrices.

3.1. Analysis based on the best uniform approximation.The contribution of the ini-
tial residual in (3.2) is usually simplified using the inequality‖p(A)r(0)‖ ≤ ‖p(A)‖‖r(0)‖.
Then the issue becomes one of finding an upper bound for‖p(A)‖ for all p ∈ P

(0)
m . It follows

that an estimate of the relative Euclidean residual norm‖r(m)‖/‖r(0)‖ is associated with the
so-called ideal GMRES polynomial of a matrix problem:min

p∈P
(0)
m

‖p(A)‖. If we expand

r(0) in the eigenbasisr(0) = Uα then

‖p(A)r(0)‖ = ‖Up(Λ)UHr(0)‖ = ‖Up(Λ)α‖ = ‖p(Λ)α‖ ≤ ‖α‖ max
i=1,...,N

|p(λi)|,

which then shows that

‖r(m)‖ ≤ ‖r(0)‖ min
p∈P

(0)
m

max
λ∈σ(A)

|p(λ)| .

3.2. Analysis based on convex optimization.Next, an alternative viewpoint for ana-
lyzing residual norms will be formulated. This alternative, developed in [1, 18], uses as a
primary indicator the(1, 1) entry of the inverse ofKH

l Kl, whereKl is the Krylov matrix
with l columns associated with the GMRES method.

It is assumed thatrank(Km+1) = m+1. Settingc = r(0) andB = AKm in Lemma2.2
yields the following expression for the residual normr(m):

‖r(m)‖2 =
1

eT
1 (KH

m+1Km+1)−1 e1
. (3.3)

Assume thatr(0) has the eigen-expansionr(0) = Uα. A little calculation shows (see
[20]) that we can writeKm+1 asKm+1 = U Dα Vm+1(λ) (spectral factorization ofKm+1).
We refer to (2.1) and (2.2) for the definitions ofDα andVm+1(λ). Thus, sinceA is normal
(UH U = I), we obtainKH

m+1Km+1 = ‖α‖2V H
m+1(λ)DβVm+1(λ) whereβi = |αi|2/‖α‖2 =

|αi|2/‖r(0)‖2. We therefore can rewrite (3.3) as follows:

‖r(m)‖2

‖r(0)‖2
=

1

eT
1

(
V H

m+1(λ)DβVm+1(λ)
)−1

e1
. (3.4)

Note thatβ ∈ ∆̃N . Thus, an optimal bound for‖r(m)‖2/‖r(0)‖2 can be obtained by choosing
β ∈ ∆̃N to maximize the right-hand side of (3.4). In fact, thanks to Theorem2.1, the two
bounds given in this section coincide. Indeed, substitutingM = N , µj = λj andω = 0 in
(2.5) yields

max
β∈∆N

1(
eT
1

(
V H

m+1(λ)DβVm+1(λ)
)−1

e1

) = max
β∈e∆N

Fm,0(β) =

(
min

p∈P
(0)
m

max
j=1,...,N

|p(λj)|
)2

.

We end this section by stating the following assertion. Letℑ(β) be the set of indicesj
such thatβj 6= 0. If rank(Km+1) = m+1 (‖r(m)‖ 6= 0) then clearly the cardinality ofℑ(β)
is at leastm+ 1.
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4. Outline of the convergence analysis for Arnoldi’s method. Arnoldi’s method ap-
proximates solutions of the eigenvalue problem (1.2) by computing an approximate eigenpair
(λ̃(m), ũ(m)) obtained from the Galerkin condition

ũ(m) ∈ Km(A, v1),

and (Aũ(m) − λ̃(m)ũ(m), Aiv1) = 0 for i = 0, . . . ,m− 1.

Let Pm be the orthogonal projector onto the Krylov subspaceKm(A, v1), and let(λ, u) be
an exact eigenpair ofA. In [15], the following result was shown to analyze the convergence
of the process in terms of the projection error‖u− Pmu‖ of a given eigenvectoru from the
subspaceKm(A, v1).

THEOREM 4.1. LetAm = PmAPm and letγm = ‖Pm(A − λI)(I − Pm)‖. Then the
residual norms of the pairsλ,Pmu andλ, u for the linear operatorAm satisfy, respectively

‖(Am − λI)Pmu)‖ ≤ γm‖(I − Pm)u‖,
‖(Am − λI)u‖ ≤

√
|λ|2 + γ2

m‖(I − Pm)u‖.

This theorem establishes that the convergence of the Arnoldi method can be analyzed by
estimating‖(I − Pm)u‖. Note thatγm ≤ ‖A‖. The result shows that under the condition
that the projected problem is not too ill-conditioned, there will be an approximate eigenpair
close to the exact one when‖(I − Pm)u‖ is small.

4.1. Analysis based on (uniform) approximation theory. The result just discussed
above shows how the convergence analysis of the Arnoldi method can be stated in terms of the
projection error‖(I −Pm)u‖ between the exact eigenvectoru and the Krylov subspace. The
usual technique to estimate this projection error assumes thatA is diagonalizable and expands
the initial vectorv1 in the eigenbasis asv1 =

∑N
j=1 αjuj. We examine the convergence of a

given eigenvalue which is indexed by 1; i.e., we consideru1, the first column ofU . Adapting
Lemma 6.2 from [15] stated for diagonalizable matrices to the special situation of normal
matrices gives the following theorem.

THEOREM 4.2. LetA be normal (A = UΛUH , UHU = I) and letv1 =
∑N

j=1 αjuj =
Uα; then

‖(I − Pm)u1‖ ≤

√∑N
j=2 |αj |2

|α1|
ǫ
(m)
1 , (4.1)

whereǫ(m)
1 = min

p∈P
(λ1)

m−1

max
j=2,...,N

|p(λj)|.

The right-hand side of (4.1) may exceed one, but we know that‖(I − Pm)u1‖ ≤ 1 since
Pm is an orthogonal projector and‖u1‖ = 1. The new bound provided next for the left part
of (4.1) does not exceed one. This result is based on optimization theory.

4.2. Analysis based on convex optimization.Let Lm+1 ∈ CN×(m+1) be the matrix
with columnsα1u1, v, A v, . . . , A

m−1 v. Lemma2.2with B = [v1, A v1, . . . , A
m−1 v1] and

c = α1u1 yields

‖(I − Pm)α1u1‖2
=

1

eT
1 (LH

m+1Lm+1)
−1
e1
,

where it is assumed thatLm+1 is of full rank so thatLH
m+1Lm+1 is nonsingular. As with

the Krylov matrix, we can writeLm+1 asLm+1 = U DαWm+1 with Wm+1 ≡ [e1, Vm(λ)].
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Thus, in the normal case (UH U = I), we have

‖(I − Pm)u1‖2 |α1|2

‖α‖2 =
1

eT
1

(
Z

(W )
m+1(β)

)−1

e1

, (4.2)

whereZ(W )
m+1(β) ≡ WH

m+1DβWm+1 is in C(m+1)×(m+1) andβi = (|αi|/‖α‖)2. Another
formulation of‖(I − Pm)u1‖ is given next. Definitions ofVm(λ), sm, and other quantities
may be found in Section2.

COROLLARY 4.3. If the matrix functionZ(W )
m+1(β) is nonsingular withβ1 > 0, then

eT
1

(
Z

(W )
m+1(β)

)−1

e1 =
1

β1
+ ϕm(β̃),

whereβ̃ = (β2, . . . , βN )T and the functionϕm is independent ofβ1. More precisely, we
have

‖(I − Pm) u1‖2 =
1

1 + β1ϕm(β̃)
,

where

ϕm(β̃) = sH
m(λ1)

(
Ṽ H

m Deβ
Ṽm

)−1

sm(λ1),

in whichṼm = Vm(λ̃), whereλ̃ = [λ2, λ3, · · · , λN ]T .

Proof. We write the matrixZ(W )
m+1(β) in the partitioned form

Z
(W )
m+1(β) =

[
β1 β1s

H
m(λ1)

β1sm(λ1) V H
m (λ)DβVm(λ)

]
.

First, using the matrix inversion in block form and then applying the Sherman-Morrison-
Woodbury formula to the(1, 1) block, see, e.g., [21], leads to:

eT
1

(
Z

(W )
m+1(β)

)−1

e1 =
1

β1
+ sH

m(λ1)
(
V H

m (λ)DβVm(λ) − β1sm(λ1) s
H
m(λ1)

)−1
sm(λ1).

Note thatVm(λ) =

[
sH

m(λ1)

Ṽm

]
and V H

m (λ)DβVm(λ) =
∑N

i=1 βi sm(λi) sm(λi)
H ,

hence

V H
m (λ)DβVm(λ) − β1sm(λ1) s

H
m(λ1) =

N∑

i=2

βi sm(λi) sm(λi)
H = Ṽ H

m Deβ
Ṽm.

Therefore,

eT
1

(
Z

(W )
m+1(β)

)−1

e1 =
1

β1
+ sH

m(λ1)(Ṽ
H
m Deβ

Ṽm)−1sm(λ1).

Applying the relation (4.2) results in

‖(I − Pm)u1‖2 =
1

1 + β1ϕm(β̃)
.
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Next, we state a bound for‖(I − Pm)u1‖ which slightly improves the one given in
Theorem4.2.

THEOREM 4.4. If m < N , ‖(I − Pj) u1‖ 6= 0 for j ∈ {1, . . . ,m} and the matrixA is
normal then

‖(I − Pm) u1‖ ≤ ‖α̃‖ ǫ(m)
1√

‖α̃‖2 (ǫ
(m)
1 )2 + |α1|2

≤ 1,

whereα̃ = (α2, . . . , αN )T .
Proof. First observe that

β1ϕm(β̃) = |α1|2 ϕm

(
|α2|2 , . . . , |αN |2

)

=
|α1|2

‖α̃‖2ϕm

(
|α2|2

‖α̃‖2 , . . . ,
|αN |2

‖α̃‖2

)
=

|α1|2

‖α̃‖2ϕm(γ),

whereγ = (γ1, . . . , γN−1) with γi = |αi+1|2/‖α̃‖2. It is easy to see thatγ ∈ ∆̃N−1.
Invoking Corollary4.3, we obtain

‖(I − Pm) u1‖2 ≤ 1

1 + |α1|
2

‖eα‖2 min
γ∈e∆N−1

ϕm(γ)
.

Using Theorem2.1with M = N − 1, µj = λj+1 andω = λ1 leads to

‖(I − Pm) u1‖2 ≤ 1

1 + |α1|
2

‖eα‖2

(
ǫ
(m)
1

)−2 ≤ 1,

and this completes the proof.

5. Characterization of the polynomial of best approximation. To characterize poly-
nomials of best uniform approximation, we will follow the treatment of Lorentz [11, Chap. 2].
Our main goal is to derive two linear systems which characterize the optimal polynomial.
These systems are fundamental in establishing the link withthe optimization approach to be
covered in the next section.

5.1. General context.We begin this section with some additional notation. LetC(S)
denote the space of complex or real continuous functions on acompact subsetS of K (R or
C). If g ∈ C(S), then the uniform norm ofg is ‖g‖∞ = maxz∈S |g(z)|. We set

E(g, S) ≡ {z : |g(z)| = ‖g‖∞ , z ∈ S} .

A setΨ = {ψ1, ψ2, . . . , ψm} from C(S) is a Chebyshev system if it satisfies the Haar condi-
tion, i.e., if each polynomial

p = a1ψ1 + a2ψ2 + . . .+ amψm,

with the coefficientsai not all equal to zero, has at most(m − 1) distinct zeros onS. The
m-dimensional spaceE spanned by such aΨ is called a Chebyshev space. We can verify
thatΨ is a Chebyshev system if and only if for anym distinct pointszi ∈ S the following
determinant is nonzero:

det(ψj(zi)) :=

∣∣∣∣∣∣∣

ψ1(z1) · · · ψ1(zm)
... · · ·

...
ψm(z1) · · · ψm(zm)

∣∣∣∣∣∣∣
.



ETNA
Kent State University 
etna@mcs.kent.edu

KRYLOV METHODS FOR NORMAL MATRICES 25

Let f ∈ C(S), f /∈ E. We say thatq∗ ∈ E is a best approximation tof from E if
‖f − q∗‖∞ ≤ ‖f − p‖∞ , ∀p ∈ E. In other words,

‖f − q∗‖∞ = min
p∈E

max
z∈S

|f(z)− p(z)| .

Our first result exploits the following well-known characterization of the best uniform ap-
proximation [11]. An elegant characterization of best approximations is also given in [13].

THEOREM 5.1. A polynomialq∗ is a polynomial of best approximation tof ∈ C(S)
fromE if and only if there existr extremal points, i.e.,r pointsz1, z2, . . . , zr ∈ E(f − q∗, S),
and r positive scalarsβi, i = 1, · · · , r, such that

∑r
l=1 βl = 1, with r ≤ 2m + 1 in the

complex case andr ≤ m+ 1 in the real case, which satisfy the equations:

r∑

l=1

βl [f(zl) − q∗(zl)]ψj(zl) = 0, j = 1, . . . ,m. (5.1)

It is important to make two remarks about this result. First,it can be applied to char-
acterize the best uniform approximation over any finite subset σ of S, with at leastm + 1
points. Second, the uniqueness of the polynomial of best approximation is guaranteed ifE
is a Chebyshev space [11, Chap. 2, p. 26]. Moreover, we haver = m + 1 if S ⊂ R and
m+ 1 ≤ r ≤ 2m+ 1 if S ⊂ C. This will be the case because we will deal with polynomials
in Pm.

The above result can be applied to our finite min-max approximation problem:
min

p∈P
(ω)
m

maxj=1,...,M |p(µj)|. This is the goal of the next section.

5.2. Application to the min-max problem. Let σ denote the set of the complex num-
bersµ1, . . . , µM and letQ(ω)

m (m < M) denote the set of all polynomials of degree not

exceedingm with value zero atω. Let (ψj)
m
j=1 be the set of polynomials ofQ(ω)

m defined by

ψj(z) = zj − ωj . Our problem corresponds to takingf ≡ 1 andE = Q
(ω)
m . This yields:

min
p∈P

(ω)
m

max
µ∈σ

|p(µ)| = min
q∈Q

(ω)
m

max
µ∈σ

|1 − q(µ)| ≡ ‖f − q∗‖∞ .

According to the remarks made following Theorem5.1, the polynomial of best approximation
q∗ ∈ Q

(ω)
m for f ≡ 1 (with respect toσ) exists and is unique.

The following corollary, which gives an equivalent formulation of the relation (5.1), can
now be stated. This corollary will lead to auxiliary resultsfrom which the maximum and the
polynomial of best approximation can be characterized.

COROLLARY 5.2. The polynomialq∗(z) = a∗1ψ1(z) + a∗2ψ2(z) + . . . + a∗mψm(z) is

the best approximation polynomial for the functionf(z) = 1 on σ from Q
(ω)
m if and only

if there existr extremal points, i.e.,r pointsµ1, µ2, . . . , µr ∈ E(f − q∗, S), andr positive
scalarsβi, i = 1, · · · , r, such that

∑r
l=1 βl = 1, with r ≤ 2m+ 1 in the complex case and

r ≤ m+ 1 in the real case, satisfying

t∗1 +

m+1∑

j=2

t∗jµ
j−1
l = εl

1√
δ∗
, l = 1, . . . , r; (5.2)
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with δ∗ = ‖f − q∗‖2
∞, t∗j+1 = −

a∗j
δ∗

, j = 1, . . . ,m, andt∗1 =
1

δ∗
−∑m+1

j=2 t∗jω
j−1 and

r∑

l=1

βlεl =
√
δ∗, (5.3)

r∑

l=1

βlεl(µ
j
l − ωj) = 0, j = 1, . . . ,m; (5.4)

whereεl = sgn(1 − q∗(µl)).
Proof. Let δ∗ = ‖f − q∗‖2

∞. Thenµl ∈ E(f − q∗, S) is equivalent to|1 − q∗(µl)| =

‖f − q∗‖∞ =
√
δ∗. Without loss of generality, we can assume ther extremal points are the

r first items ofσ. According to the above definition ofεl, the polynomialq∗ satisfies the
following interpolation conditions:

1 − q∗(µl) =
√
δ∗εl for l = 1, . . . , r. (5.5)

Settingt∗1 = 1/δ∗ −∑m+1
j=2 t∗jω

j−1 andt∗j+1 = −a∗j/δ∗, j = 1, . . . ,m, we obtain (5.2).

Equation (5.5) shows that
∑r

l=1 βlεlψj(µl) = 0, j = 1, . . . ,m is a restatement of (5.1).
We then have

r∑

l=1

βlεlq(µl) = 0 for all polynomialsq ∈ Q(ω)
m . (5.6)

Furthermore, from (5.5) we have the relation
√
δ∗βl = βlεlf(µl)−βlεlq

∗(µl), l = 1, . . . , r.
To see that

∑r
l=1 βl = 1 is equivalent to (5.3), it suffices to sum the terms in this relation and

apply the conjugate of (5.6).
As a remark, we may transform the interpolation conditions (5.5) to πm(µj) = εj for all

j = 1, . . . , r, with πm(z) = (1 − q∗(z))/
√
δ∗. Thenπm can be written in the form of the

Lagrange interpolation formula

πm(z) =

m+1∑

j=1

εjl
(m+1)
j (z), with l

(m+1)
j (z) =

m+1∏

k=1,k 6=j

z − µk

µj − µk

.

Note thatl(m+1)
j (z) is thejth Lagrange interpolating polynomial of degreem associated with

{µ1, . . . , µm+1}. Finally, recalling thatπm(ω) = 1/
√
δ∗, we obtain

m+1∑

j=1

εj l
(m+1)
j (ω) =

1√
δ∗
. (5.7)

A consequence of this is that:

min
p∈P

(ω)
m

max
µ∈σ

|p(µ)| = ‖f − q∗‖∞ =
√
δ∗ =

1
m+1∑
j=1

εjl
(m+1)
j (ω)

.

6. Proof of the main result. In this section, we will show that

max
β∈e∆M

Fm,ω(β) =
(
ǫ
(m)
1 (ω)

)2

,
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whereFm,ω(β) is defined in (2.4) and

ǫ
(m)
1 (ω) = min

p∈P
(ω)
m

max
j=1,...,M

|p(µj)| . (6.1)

The proof will be based on applying the Karush-Kuhn-Tucker (KKT) optimality conditions
to our convex maximization problem. We begin by establishing the following lemma which
shows a few important properties of the functionFm,ω. Since there is no ambiguity, we will
simplify notation by writingVm+1 for Vm+1(µ) in the remainder of this section.

LEMMA 6.1. Let ∆̃M ⊂ ∆M be the domain of definition of the functionFm,ω in (2.4).
Then the following properties hold:

1. Fm,ω is a concave function defined on the convex set∆̃M .
2. Fm,ω is differentiable atβ ∈ ∆̃M and we have

∂Fm,ω

∂βj

(β) = − (Fm,ω(β))
2 ∣∣eT

j Vm+1t
∣∣2 ,

wheret = [t1, t2, . . . , tm+1]
T is such thatV H

m+1DβVm+1t = sm+1(ω). Moreover,
we have

M∑

i=1

βi

∂Fm,ω(β)

∂βi

= Fm,ω(β). (6.2)

Proof. We will begin by proving the first property. Letr be a real positive scalar. Since
Drβ = rDβ , then

Fm,ω(rβ) =
1

sH
m+1(ω)(r(V H

m+1DβVm+1))−1sm+1(ω)
= r Fm,ω(β).

ThusFm,ω is homogeneous of degree1. Let β, β′ ∈ ∆̃M and0 ≤ r ≤ 1. It is easy to
see thatrβ + (1 − r)β′ ∈ ∆̃M . We now takex = sm+1(ω), G1 = V H

m+1DrβVm+1 and
G2 = V H

m+1D(1−r)β′Vm+1, in the following version of Bergstrom’s inequality given in [12,
p. 227]:

(
xH (G1 +G2)

−1
x
)−1

≥
(
xHG−1

1 x
)−1

+
(
xHG−1

2 x
)−1

,

whereG1 andG2 are positive definite Hermitian matrices. Then from the homogeneity of
Fm,ω it follows that

Fm,ω(rβ + (1 − r)β′) ≥ r Fm,ω(β) + (1 − r)Fm,ω(β′).

Hence,Fm,ω is concave.
Next we establish the second part. Let us defineZm+1(β) = V H

m+1DβVm+1 ∈ Cm+1,m+1.

We haveZH
m+1(β) = Zm+1(β) and Fm,ω(β) =

[
sH

m+1(ω)Z−1
m+1(β)sm+1(ω)

]−1
for

β ∈ ∆̃M . Clearly,Fm,ω is differentiable atβ ∈ ∆̃M .
By using the derivative of the inverse of the matrix function, we have

∂Z−1
m+1(β)

∂βi

= −Z−1
m+1(β)

∂Zm+1(β)

∂βi

Z−1
m+1(β).

It follows that

sH
m+1(ω)

∂Z−1
m+1(β)

∂βi

sm+1(ω) = −tHV H
m+1eie

T
i Vm+1t,
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wheret is such thatZm+1(β)t = sm+1(ω). As a consequence,

∂Fm,ω

∂βi

(β) = −
sH

m+1(ω)
∂Z−1

m+1(β)

∂βi

sm+1(ω)

(
sH

m+1(ω)Z−1
m+1(β)sm+1(ω)

)2 =
tHV H

m+1eie
T
i Vm+1t

(
sH

m+1(ω)Z−1
m+1(β)sm+1(ω)

)2 .

We can write more succinctly

∂Fm,ω

∂βi

(β) = (Fm,ω(β))
2 |eT

i Vm+1t|2.

The equality (6.2) follows from a simple algebraic manipulation. Indeed, we have

M∑

i=1

βi

∂Fm,ω(β)

∂βi

= (Fm,ω(β))
2

M∑

i=1

tHV H
m+1(βieie

T
i )Vm+1 t

= (Fm,ω(β))
2 (
tHV H

m+1DβVm+1 t
)

= Fm,ω(β).

With the lemma proved, we now proceed with the proof of the theorem. Let us consider
the characterization of the solution of the convex maximization problemmax

β∈e∆M
Fm,ω(β)

by using the standard KKT conditions. We begin by defining thefunctionsgi(β) = −βi and
g(β) = eTβ − 1. Thusβ ∈ ∆M means thatg(β) = 0 andgi(β) ≤ 0. So the Lagrangian
function is formulated as

Lm(β, δ, η) = Fm,ω(β) − δg(β) −
M∑

i=1

ηigi(β),

whereδ ∈ R andη = (η1, . . . , ηM ) ∈ RM . Note that the functionsg, gi are convex (affine
functions) and by Lemma6.1, the objective function−Fm is also convex. It follows that this
maximization problem can be viewed as a constrained convex optimization problem. Thus
according to the KKT conditions [4], if Fm,ω(β) has a local maximizerβ∗ in ∆̃M then there
exist Lagrange multipliersδ∗, η∗ = (η∗1 , . . . , η

∗
M ) such that(β∗, δ∗, η∗), satisfy the following

conditions:

(i)
∂Lm

∂βj

(β∗, δ∗, η∗) = 0, for j = 1, . . . ,M ;

(ii) g(β∗) = 0 and(gj(β
∗) ≤ 0 andη∗j ≥ 0 for all j = 1, . . . ,M);

(iii) η∗j gj(β
∗) = 0 for all j = 1, . . . ,M .

Asβ∗ is in ∆̃M , we have at leastm+1 components ofβ∗ which are nonzero. Thus, there
existm + κ, (κ ≥ 1) components ofβ∗ which we labelβ∗

1 , β
∗
2 , . . . , β

∗
m+κ, for simplicity,

such thatβ∗
j 6= 0 for all j = 1, . . . ,m+κ. The complementarity condition (iii), yieldsη∗j = 0

for all j = 1, . . . ,m+ κ andη∗j > 0 for all j = m+ κ+ 1, . . . ,M . Hence the condition (i)
can be re-expressed as






∂Fm,ω

∂βj

(β∗) = δ∗ for j = 1, . . . ,m+ κ, and

∂Fm,ω

∂βj

(β∗) = δ∗ − η∗j for j = m+ κ+ 1, . . . ,M.
(6.3)

Again by using the formula of
∂Fm,ω

∂βj

(β∗) given in the lemma, the relations in (6.3) become

Fm,ω(β∗)2
∣∣eT

j Vm+1t
∗
∣∣2 = δ∗ for j = 1, . . . ,m+ κ, (6.4)
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and

Fm,ω(β∗)2
∣∣eT

j Vm+1t
∗
∣∣2 = δ∗ − η∗j for j = m+ κ+ 1, . . . ,M. (6.5)

Note thatt∗ is such that

V H
m+1Dβ∗Vm+1t

∗ = sm+1(ω). (6.6)

Now by observing thatβ∗
j = 0 for all j = m+ κ+ 1, . . . ,M ,

∑m+κ
j=1 β∗

j = 1, and by using
the first part of (6.3), equation (6.2) of the lemma shows thatFm,ω(β∗) = δ∗. The remaining
part of the proof is devoted to establishing the same formulas given in the theorem which
characterize the polynomial of best approximation. In viewof (6.4), we then have

eT
j Vm+1t

∗ = εj

1√
δ∗

for all j = 1, . . . ,m+ κ. (6.7)

Here we have writtenεj = eιθj in the complex case andεj = ±1 in the real case.

Combining
[
sH

m+1(ω)
(
V H

m+1Dβ∗Vm+1

)−1
sm+1(ω)

]−1

= Fm,ω(β∗) with (6.6), we

obtainsH
m+1(ω) t∗ = 1/δ∗. On the other hand, the optimal solutionsβ∗

j and the numbersεj

can be derived from (6.6). Indeed, using (6.6) and (6.7), we have

eT
j Dβ∗Vm+1t

∗ = β∗
j εj

1√
δ∗

for all j = 1, . . . ,m+ κ.

Therefore, by applyingV H
m+1 we have

∑m+κ
j=1 β∗

j εj =
√
δ∗ and

∑m+κ
j=1 β∗

j εjµ
l
j =√

δ∗ωl =
∑m+κ

j=1 β∗
j εjω

l for l = 1, . . . ,m. Hence, we find that
∑m+κ

j=1 β∗
j εj(µl

j − ωl) = 0
for l = 0, . . . ,m. The relations (5.2), (5.4) and (5.3) in Corollary5.2 are all satisfied, with
f ≡ 1, zj = µj , ψj(z) = zj − ωj andr = m + κ. It follows that the Lagrange mul-
tiplier δ∗ is unique and is the same as in the previous section. As a consequence we have
δ∗ = Fm,ω(β∗) = ‖1− q∗‖2

∞ and (2.5) is established.

7. Concluding remarks. For normal matrices, we have established the equivalence of
the approximation theory approach and the optimization approach to solving a min-max prob-
lem that arises in convergence studies of the GMRES and Arnoldi methods. Our work reveals
a strong connection between the two points of view. Because of their convenient properties,
the KKT conditions allow us to completely characterize the residual bounds at each step for
both methods; and the KKT conditions give more precise information about the extremal
points than approximation theory. We also point out the importance of the form of the KKT
conditions. Only the non-active part (6.4) is needed to prove equivalence of the approxima-
tion theory and optimization approaches; while for the GMRES method, for example, we
infer from the active part (6.5) that

η∗j = δ∗ − Fm,ω(β∗)2
∣∣eT

j Vm+1(λ)t
∗
∣∣2 > 0 for j = m+ κ+ 1, . . . ,M,

so that
∣∣eT

j Vm+1(λ)t
∗
∣∣ < 1√

δ∗
for j = m+ κ+ 1, . . . ,M.

This shows that the extremal points can be characterized by

1√
δ∗

=
∣∣eT

i Vm+1(λ)t
∗
∣∣ = max

1≤j≤M

∣∣eT
j Vm+1(λ)t

∗
∣∣ for i = 1, . . . ,m+ κ.

The connections established in this paper provide new insights into the different ways in
which residual bounds can be derived. We hope that the development of the optimization
approach will pave the way for extensions beyond the case of normal matrices.



ETNA
Kent State University 
etna@mcs.kent.edu

30 M. BELLALIJ, Y. SAAD AND H. SADOK

Acknowledgment. We would like to thank the anonymous referees and the editor for
their valuable comments and suggestions.

REFERENCES

[1] M. B ELLALIJ , Y. SAAD , AND H. SADOK, On the convergence of the Arnoldi process for eigenvalue prob-
lems, Technical Report UMSI-2007-12, Minnesota SupercomputerInstitute, University of Minnesota,
Minneapolis, MN, 2007.

[2] M. E IERMANN AND O. G. ERNST, Geometric aspects of the theory of Krylov subspace methods, Acta Nu-
mer., 10 (2001), pp. 251–312.

[3] M. E IERMANN , O. G. ERNST, AND O. SCHNEIDER, Analysis of acceleration strategies for restarted minimal
residual methods, J. Comput. Appl. Math., 123 (2000), pp. 345–357.

[4] R. FLETCHER, Practical Methods of Optimization, 2nd Edition, Wiley, Chichester, 1987.
[5] A. GREENBAUM AND L. GURVITS, Max-min properties of matrix factor norms, SIAM J. Sci. Comput., 15

(1994), pp. 348–358.
[6] A. GREENBAUM, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.
[7] I. C. F. IPSEN, Expressions and bounds for the GMRES residuals, BIT, 40 (2000), pp. 524–535.
[8] W. JOUBERT, A robust GMRES-based adaptive polynomial preconditioningalgorithm for nonsymmetric

linear systems, SIAM J. Sci. Comput., 15 (1994), pp. 427–439.
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