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COMPUTING exp(−τA)b WITH LAGUERRE POLYNOMIALS ∗

BERNARD N. SHEEHAN†, YOUSEF SAAD‡, AND ROGER B. SIDJE§

Abstract. This paper discusses a method based on Laguerre polynomials combined with a Filtered Conjugate
Residual (FCR) framework to compute the product of the exponential of a matrix by a vector. The method implicitly
uses an expansion of the exponential function in a series of orthogonal Laguerre polynomials, much like existing
methods based on Chebyshev polynomials do. Owing to the fact that orthogonal polynomials satisfy a three-term
recurrence, what these series expansion methods offer over other approaches such as Krylov subspace methods lies
in the elimination of inner products and the economy in storagesince there is no need to compute and keep a set
of basis vectors. Compared with Chebyshev polynomials that are orthogonal within a restricted interval and need
estimates of the outermost eigenvalues, Laguerre polynomialsoffer the added feature that they are orthogonal on the
half real line, alleviating therefore the need to estimate eigenvalues.

Key words. Conjugate residual, filtered conjugate residual, polynomial filtering, exponential propagation, or-
thogonal polynomials
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1. Introduction. The problem of calculating expressions of the formexp(−τA)b, where
A ∈ R

n×n is a non-negative definite matrix andb ∈ R
n an arbitrary vector, occurs frequently

in applications. The problem is equivalent, for example, tothat of finding the solution to the
system of ordinary differential equations

(1.1) ẏ = −Ay, y(0) = b

at timeτ . Equation (1.1), in turn, arises out of finite difference or finite element discretiza-
tions of thermal problems (A symmetric) or convection-diffusion and vibration problems (A
non-symmetric). Similarly, verystiff systems of the form (1.1) arise in predicting the time
evolution of electrical circuits. Another occurrence of (1.1) is in computing the transient
solution of Markov chains [22].

The calculation of a matrix exponential times a vector can bea treacherous task; see [17]
for a survey of potential difficulties. Many methods have been proposed [4, 6, 9, 10, 14, 16].
For very large, sparse matrices, perhaps the preferred method [7, 8, 11–13, 18, 21] is to use
the Lanczos or Arnold procedure to obtain a matrixVm ∈ R

n×m whose columns span the
Krylov subspacespan{b,Ab, · · · ,Am−1b}, and then to write

(1.2) exp(−τA)b ≈ Vm exp(−τHm)βe1,

whereHm is the tridiagonal or Hessenberg matrix resulting from the Lanczos or Arnoldi
process andβ = ‖b‖2. SinceHm will normally be much smaller thanA, dense matrix
methods such as Padé approximations toexp(t) can be used to evaluateexp(−τHm).

Bergamaschi et al. have reported experiments that use expansions of the exponential
function in Chebyshev polynomials [2, 3]. The paper convincingly argued that Chebyshev-
based methods can give the same accuracy as Krylov techniques using the same polynomial
degree, but that they can be much less expensive as they require no inner products. The fact
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that this technique appears to be competitive with (1.2) prompted us to ask whether other
choices of orthogonal polynomials might be used to good effect.

This work was initially motivated by an intriguing question. The use of Chebyshev poly-
nomials requires some prior knowledge of an interval[a, b] which contains the spectrum of the
matrix [2, 3]. In contrast, polynomials that are orthogonal on the half real line (e.g., Laguerre)
or the whole line (Hermite) would normally require no bounds. This is an important practi-
cal advantage. For example, one can ask the question:Is it possible to employ a Laguerre
series expansion to obtain an inexpensive exponential propagator which bypasses completely
both inner products and eigenvalue estimates?We will show that if used with care, La-
guerre expansions combined with a good implementation of the orthogonal expansion can be
quite effective. On the other hand, they are as inexpensive as methods based on Chebyshev
expansions and do not require accurate eigenvalue estimates. Recall that Chebyshev-based
techniques require the knowledge of an interval which is guaranteed to contain all eigenval-
ues. If the interval fails to contain all eigenvalues the technique will not work. A common
remedy is to take a large interval containing all eigenvalues, such as one provided by the
Gershgorin theorem, but often this yields poor convergence.

The techniques we examine in this paper are based on the expansion ofe−τt as a series
of Laguerre polynomials. The filtered conjugate residual-like algorithm (FCR) introduced
in [20] provides a framework for exploiting least-squares polynomials to solve problems as
diverse as regularization in graphics, information retrieval, and in electronic structure calcula-
tions. Here, we will use this framework again and show that anFCR-type algorithm can also
be usefully applied to exponential propagation. At the sametime, we also consider the same
framework applied to expansions in Chebyshev polynomials for the purpose of comparison.

2. Computing exp(−τA)b with orthogonal polynomials. It is possible to approxi-
mateexp(−τA)b by using either rational or polynomial approximations toexp(−τt). Meth-
ods based or rational approximations require solving largesparse linear systems of equations
and are not considered here. We consider methods based on approximatingexp(−τt) by a
polynomialp(t). Thus, a polynomialpm of degreem is found which approximatesexp(−τt),
andexp(−τA)b is approximated bypm(A)b. Note that the matrixpm(A) is not computed.
Instead,pm(A)b is evaluated by a series of matrix-vector multiplies usingA.

2.1. Orthogonal expansions forexp(−τt). As background to this strategy, we briefly
consider in this section how to expandexp(−τt) in series of generalized Laguerre polynomi-
als and Chebyshev polynomials.

The generalized Laguerre PolynomialsLα
n(t), n = 0, 1, 2, . . . andα > −1, are orthog-

onal with respect to the inner product

(2.1) 〈p, q〉α =

∫ ∞

0

tαe−tp(t)q(t) dt.

The expansion of the exponential functione−τt in terms of Laguerre polynomials is known
to be [15, p. 90]

(2.2) e−τt = (τ + 1)−α−1
∞
∑

n=0

(

τ

τ + 1

)n

Lα
n(t), 0 < t <∞.

By truncating the above summation to onlym terms, a polynomial of degreem will be
obtained that will approximatee−τt over some interval. It is also possible to use expansions
in Hermite polynomials, which are orthogonal on the whole real line with respect to the
weighte−t2 , but we will not consider this in this paper.
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The Chebyshev polynomialsTn(t), n = 0, 1, 2, . . . , are orthogonal over the interval
[−1, 1] with respect to the inner product

(2.3) 〈p, q〉T =

∫ +1

−1

p(t)q(t) dt√
1− t2

.

In this case, it is useful to give the expansion of the exponential that is fitted in a general inter-
val [a, b], rather than just the interval[−1, 1]. The expansion ofe−τt in terms of Chebyshev
polynomials over[a, b] is given by [1, Section 9.6]

e−τt =

∞
∑

k=0

akTk

(

t− l2
l1

)

, a < t < b with(2.4)

a0 = e−τl2I0(−τ l1), ak = 2e−τl2Ik(−τ l1), k > 1.(2.5)

Here, Ik(t) is the modified Bessel function of the first kind, andl1 = (b − a)/2 and
l2 = (a + b)/2 are the semi-width and the midpoint, respectively, of the interval over which
the approximation is desired. For further information on orthogonal polynomials, the reader
is referred to [1, 15].

2.2. Classical use of expansions in orthogonal polynomials. Standard orthogonal poly-
nomials satisfy recurrence relations of the form

(2.6) βn+1Pn+1(t) = (t− αn)Pn(t)− γnPn−1(t), n = 0, 1, . . . ,

with the convention that forn = 0 the termγ0p−1 is zero. Thus, Chebyshev polynomials (of
the first kind) satisfy the well-known recurrenceTn+1(t) = 2tTn(t)− Tn−1(t) starting with
T0(t) = 1 andT1(t) = t. Similarly, the three-term recurrence for the generalizedLaguerre
polynomials is

−(n+ 1)Lα
n+1(t) = (t− α− 2n− 1)Lα

n(t) + (n+ α)Lα
n−1(t), n = 1, 2, . . . ,

Lα
0 (t) = 1, Lα

1 (t) = 1 + α− t.

These recurrences allow one to easily generate successive members of these orthogonal
families. Assuminge−τt has the following expansion in terms of orthogonal polynomials
Pn(t) (see (2.2), and (2.4)–(2.5)),

(2.7) e−τt =
∞
∑

n=0

cnPn(t),

the following algorithm can be used to compute an approximation to exp(−τA)b:
ALGORITHM 2.1. exp(−τA)b by Orthogonal Expansions

1. p0 = P0(A)b ; p1 = P1(A)b
2. z = c0p0 + c1p1

3. Forj = 1, 2, . . . , Do:
4. pj+1 = (Apj − αjpj − γjpj−1)/βj+1

5. z = z + cj+1pj+1

6. if |cj+1| ‖pj+1‖ ≤ ǫ, break
7. EndDo

The algorithm uses (2.6) in line 4 and (2.7) in lines 2 and 5. IfA is ann×n matrix with
Nz(A) non-zeros, then Algorithm2.1 entails a computational cost of about9n + 2Nz(A)
operations per pass through the for-loop. Two vectors are needed to storepj andpj−1. These
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are exchanged to the pairpj , pj+1 in the next step, which can be carried out in a constant
number of operations by redirecting pointers rather than copying data. Another vector is
needed to perform the matrix-vector productApj and another one to store the solutionz.
This brings the total number of vectors to four.

2.3. Filtered conjugate residual-type algorithm. An alternative way of computing
exp(−τA)b using orthogonal polynomials is based on the Filtered Conjugate Residual (FCR)
algorithm presented in [20]. The algorithm parallels the usual Conjugate Residual algorithm
[19] except that constants̃αj andβj are computed using an inner product〈 , 〉w in function
space rather than by the usual vector inner product.

In order to present the Conjugate Residual method forexp(−τA)b in a way that is sim-
ilar to the Conjugate Residual method for linear systems, itis necessary to reformulate the
problem slightly. We would like to approximate a functionψ(t) by polynomials of the form
tsk(t) wheresk is a polynomial of degreek. In the usual context of linear systems,ψ(t) ≡ 1
and sk(A)b is the approximate solution (assumingx0 = 0), while b − Ask(A)b is the
residual. For the exponential function we will proceed indirectly by instead approximating
ψ(t) = 1− e−τt by a polynomial of the formtsk(k). Thus, the actual polynomial fore−τt is
ρk(t) = 1 − tsk(t), which is the usual residual polynomial in the context of linear systems.
One notable advantage of this approach compared to that of Algorithm2.1is that the approx-
imation will be exact att = 0. In other words,ρk(0) = exp(−τ · 0) = 1. This property may
or may not be important depending on the situation. For example, when solving ordinary dif-
ferential equations, this property is vital as it ensures that the underlying integration scheme
is at least first-order accurate.

Consider the (functional) inner product

〈p, q〉w =

∫ b

a

p(t)q(t)w(t) dt,

wherew(t) ≥ 0 is some weight function. This inner product induces a weightedL2-norm
‖p‖w = 〈p, p〉1/2. The goal is to find the polynomial of the formtsk(t) which is closest to
ψ(t) in the sense of thisL2 norm, i.e., such that

‖ψ − tsk(t)‖w = min
s∈Pk

‖ψ − ts(t)‖w.

The algorithm described in [20] exploits an analogy with what is known when solving
linear systems. The Conjugate Residual (CR) algorithms to minimize‖b−As(A)b‖2, is as
follows:

ALGORITHM 2.2. Conjugate Residual Algorithm
0. Computer0 := b (starts withx0 = 0), p0 := r0
2. Forj = 0, 1, . . . , until convergence Do:
3. αj := 〈rj ,Arj〉/〈Apj ,Apj〉
4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj

6. βj := 〈rj+1,Arj+1〉/〈rj ,Arj〉
7. pj+1 := rj+1 + βjpj

8. EndDo
This algorithm generates a set of vectors{Apj} which are orthogonal. Sincepj be-

longs to the Krylov subspaceKj , one can associate canonically with the sequencepj a
sequence of polynomialsπj , whereπj is of degreej. The relation betweenpj andπj is
pj = πj(A)b. The sequence of polynomials{tπj(t)} is also orthogonal with respect to
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the discrete inner product〈p, q〉b = 〈πp(A)b, πq(A)b〉, where we have denoted byπp the
polynomial associated with the vectorp in Km.

If we replace the discrete inner product〈πp, πq〉b with any inner product〈p, q〉w, we will
obtain an algorithm which formally constructs a sequence{tpj} of polynomials which are
orthogonal with respect to this inner product. The polynomial tsk(t) which is the closest to
ψ it thew-norm sense can then easily be determined:

min
s∈Pk

‖ψ − ts(t)‖w = ‖ψ − tsk(t)‖w with sk(t) =
k

∑

i=0

〈ψ, tπi〉w
〈tπi, tπi〉w

πi(t).

The filtered Conjugate Residual algorithm proposed in [20] computes the two sequence of
polynomials{πj}, {ρj} associated with the usual CR algorithm. These would normally be
the scalars and polynomials needed for the case whenψ = 1. They are indicated with a tilde
in the following algorithm. In addition, we will need to generate the above quantities which
represent the expansions coefficients of the polynomial in the basis{tπj}. These are denoted
by αj in the algorithm.

Thus, the updates toxj use a different coefficientαj than the coefficient̃αj used to
updater̃j . Inputs to the algorithm are a filter functionψ, an inner product〈p, q〉w, a matrix
A, and a vectorb:

ALGORITHM 2.3. Filtered Conjugate Residual Polynomials Algorithm
0. Computẽr0 := b−Ax0, p0 := r̃0 π0 = ρ̃0 = 1; s0 = 0
1. Computeλπ0
2. Forj = 0, 1, . . . , until convergence Do:
3. α̃j := 〈ρ̃j , λρ̃j〉w/〈λπj , λπj〉w
4. αj := 〈ψ, λπj〉w/〈λπj , λπj〉w
5. xj+1 := xj + αjpj sj+1 = sj + αjπj
6. r̃j+1 := r̃j − α̃jApj ρ̃j+1 = ρ̃j − α̃jλπj
7. βj := 〈ρ̃j+1, λρ̃j+1〉w/〈ρ̃j , λρ̃j〉w
8. pj+1 := r̃j+1 + βjpj πj+1 := ρ̃j+1 + βjπj
9. Computeλπj+1

10. EndDo
Hereπj(λ), ρ̃j(λ), andsj+1(λ) are polynomials of degreej and the vectorspj , r̃j , xj

are the corresponding sequences of vectors

pj = πj(A)r0,

r̃j = ρ̃j(A)r0,

xj+1 = x0 + sj+1(A)r0,

wherer0 = b−Ax0.
The solution vectorxj+1 computed at thejth step of Algorithm2.3 is of the form

xj+1 = x0 + sj+1(A)r0, wheresj is thejth degree polynomial:

(2.8) sj+1(t) = α0π0(t) + · · ·+ αjπj(t) .

The polynomialsπj and the auxiliary polynomials̃ρj(t) satisfy the orthogonality relations [20],

(2.9) 〈tπj(t), tπi(t)〉w = 〈tρ̃j(t), ρ̃i(t)〉w = 0 for i 6= j .

In addition, the filtered residual polynomialψ(t) − tsj(t) minimizes‖ψ − ts(t)‖w among
all polynomialss of degree≤ j − 1. Note also that ifφ = 1 − ψ, then the polynomial
ζj(t) = 1−tsj minimizes‖φ−ζj‖w among all polynomialspj(t) ∈ Pj satisfyingpj(0) = 1.
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It is worth remarking that theπj generated by Algorithm2.3 are the orthogonal poly-
nomials associated with the weightt2w(t); this result follows from (2.9). When the FCR
algorithm with Laguerre polynomialsLα

n(t) is used, for example, then theπj are the gener-
alized Laguerre polynomialsLα+2

n (t). This observation will be exploited shortly.
Note that the FCR algorithm has a cost per iteration of three vector saxpy operations

and one matrix-vector multiply. All other operations are with polynomials and these are
usually negligible. They include two polynomial saxpys (the calculation ofsj+1 on line 5
is not necessary but has been inserted for clarity), three polynomial inner-products, and one
polynomial multiply byt. If we writeψ, πj , andρ̃j using as basis the orthogonal polynomials
associated with〈 , 〉w, then we can evaluate a polynomial inner-product at a cost of2j; the
t-polynomial multiply will also incur a cost of6j (by employing the three-term recurrence
relation for the orthogonal polynomials to expresstπj+1 in the orthogonal polynomial basis).
In short, the overall cost per loop is6n+Nz(A) + 16j, j being the loop index andNz(A)
the number of non-zeros inA. To add a termination test like‖xj+1 − xj‖ < ǫ, analogous
to line 6 in Algorithm2.1, would increase the iteration cost by another2n. FCR requires
storage of4n + 3j (the four vectorsxj , r̃j , Apj , andpj , and coefficients for the three
polynomialsρ̃j , πj , tπj). Our bookkeeping suggests that Algorithm2.3 may be marginally
faster but requires marginally more memory than Algorithm2.1, providedj remains small
compared ton.

In order to use FCR to computeexp(−τA)b, let φ = exp(−τt). Then, withx0 = 0,
apply the FCR algorithm to getxj =

∑j−1
k=0 αkπk(A)b. Finally, computezj = b−Axj =

(I − Asj(A))b = ζj(A)b as an approximation forφ(A)b = exp(−τA)b. If one wants
the current estimate forexp(−τA)b at each step in the iteration, one can replace line (5) in
Algorithm 2.3by

zj+1 = zj − αApj .

If A is symmetric with eigen-decompositionA = V ΛV T , then

‖ exp(−τA)b− zj‖2 = ‖φ(A)b− ζj(A)b‖2
= ‖V (φ(Λ)− ζj(Λ)V T b‖2
≤ max

i
|φ(λi)− ζj(λi)| · ‖b‖2.

The hope is that if‖φ(t)− ζj(t)‖w is small over some interval[a, b] containing the spectrum
of A, thenmaxi |φ(ti)− ζj(ti)| will also be small, although it is hard to guarantee this since
‖ ‖w is only a least squares norm.

The simplest criterion for stopping the algorithm is to measure the difference between
two consecutive iterates, so one can stop whenever‖xk+1 −xk‖2 ≤ ‖xk‖ǫ, whereǫ is some
tolerance.

2.4. Use of modified orthogonal polynomials.As was already mentioned, an impor-
tant advantage of the procedure presented in the previous section, relative to the straightfor-
ward procedure based on orthogonal expansions presented inSection2.2, is that it matches
exactly the exponential att = 0. The FCR procedure is rather general and has been used
for ψ functions defined as very general spline functions. One may ask whether or not it is
possible to derive an algorithm that is equivalent to Algorithm 2.3, but which resembles Al-
gorithm 2.1. This can be done for the exponential function by exploitingthe remark made
earlier about the choice ofα.

In order to minimize‖ψ − tq(t)‖α over all polynomialsq of degreek, we need a se-
quence of polynomials of the specific formtpi(t) which are orthogonal with respect to the
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inner product〈 , 〉α. At this point we recall an observation made earlier:the sequence of poly-
nomials{tLα+2

i (t)} is orthogonal with respect to the inner product〈 , 〉α. This is because
for i 6= j,

〈tLα+2
i , tLα+2

j 〉α =

∫ ∞

0

tαe−tt2Lα+2
i (t)Lα+2

j (t) dt

=

∫ ∞

0

tα+2e−tLα+2
i (t)Lα+2

j (t) dt = 0.

As a result, the least-squares polynomial approximation toψ is given by

tsk(t) =

k
∑

i=0

citL
α+2
i (t) with ci =

〈ψ, tLα+2
i 〉α

〈tLα+2
i , tLα+2

i 〉α
.

The following proposition defines a recurrence relation to compute the coefficientsci.
PROPOSITION2.1. Letψ(t) = 1 − e−τt, and let the three-term recurrence of the gen-

eralized Laguerre polynomialsLα+2
i be written in the form (2.6). Defineσi = (i+ α+ 2)/i

for i > 0, σ0 = 1. Then the polynomial of degreek+1 of the formts(t) which minimizes the
norm‖ψ − ts(t)‖α among all polynomialss of degree≤ k is given by

(2.10) tsk(t) =

k
∑

i=0

ci tL
α+2
i (t),

whereci satisfies the recurrence relation

ci+1 =
1

σi+1βi+1

[

δi0 −
τ

(1 + τ)α+4
− αici −

γi
σi
ci−1

]

, i = 0, 1, . . . ,(2.11)

c0 =
1

α+ 2

[

1− 1

(1 + τ)α+2

]

,(2.12)

whereδij is the Kronecker symbol and we defineγ0c−1/σ0 ≡ 0.
Proof. The least-squares polynomial approximation toψ is given by

tsk(t) =
k

∑

i=0

citL
α+2
i (t) with ci =

c̃i
di

and

c̃i =

∫ ∞

0

tαe−tψ(t) tLα+2
i (t) dt, di =

∫ ∞

0

tαe−t(tLα+2
i (t))2dt .

Considerdi first and observe that

di =

∫ ∞

0

tα+2e−t[Lα+2
i (t)]2dt = ‖Lα+2

i (t)‖2α+2.

It is known that

‖Lα
i ‖2α =

Γ(i+ α+ 1)

i!
.

Sodi = ‖Lα+2
i (t)‖2α+2 = Γ(i+α+3)

i! .
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Next, we take up the task of calculatingc̃i:

c̃i =

∫ ∞

0

tα+1e−t[1− e−τt]Lα+2
i (t) dt(2.13)

=

∫ ∞

0

tα+2e−t 1− e−τt

t
Lα+2
i (t) dt .(2.14)

There are two possible ways to proceed from here. One is to attempt to calculate the above
integral. This can be done by successive integration by parts using the expression

Lα
i (t) = et

t−α

i!

di

dti
(

e−tti+α
)

.

Define the functionφτ (t) ≡ (1− e−τt)/t. With this, c̃i becomes

c̃i =
1

i!

∫ ∞

0

φτ (t)
di

dti
(

e−tti+α+2
)

dt .

This integral can be evaluated with a succession of integration by parts leading to results
involving successive derivatives ofφτ (t). This yields a rather complicated expression forc̃i.

An alternative is to exploit the recurrence relation for theorthogonal polynomials, which
we assume is in the form (2.6). It is more convenient to deal with the scaled quantitiesci
directly rather than the unscaled̃ci. We begin by splitting the calculation into two parts.
From (2.13), we have

ci =
1

di

∫ ∞

0

tα+1e−tLα+2
i (t) dt− 1

di

∫ ∞

0

tα+1e−(1+τ)tLα+2
i (t) dt ≡ fi − gi.

We seek to establish recurrence relations forgi andfi separately. Consider the casei = 0.
For i = 0, we haveLα+2

0 (t) = 1, so

f0 =
1

d0

∫ ∞

0

tα+1e−tdt; g0 =
1

d0

∫ ∞

0

tα+1e−(1+τ)tdt .

Using the standard definition of the Gamma function, we note that (forβ > 0),
∫ ∞

0

e−ttzdt = Γ(z + 1);

∫ ∞

0

e−βttzdt =
Γ(z + 1)

βz+1
.

Therefore, recalling thatd0 = Γ(α+ 3) = (α+ 2)Γ(α+ 2), we have

(2.15) f0 =
1

d0
Γ(α+ 2) =

1

α+ 2
; g0 =

1

d0

Γ(α+ 2)

(1 + τ)α+2
=

1

(α+ 2)(1 + τ)α+2
.

For a generali we have forfi+1,

di+1fi+1 =

∫ ∞

0

tα+1e−tLα+2
i+1 (t) dt

=
1

βi+1

∫ ∞

0

tα+1e−t
[

tLα+2
i (t)− αiL

α+2
i (t)− γiL

α+2
i−1 (t)

]

dt.

Apart from the scaling byβi+1, the first term on the right-hand side,
∫ ∞

0

tα+1e−ttLα+2
i (t) dt =

∫ ∞

0

tα+2e−tLα+2
i (t) dt,
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is either equal toΓ(α+ 3) = d0 wheni = 0, or to zero fori > 0 by the orthogonality of the
functionsLα+2

i and 1. Therefore, we have:

d1f1 =
d0 − α0d0f0

β1
, di+1fi+1 =

−αidifi − γidi−1fi−1

βi+1
for i > 0 .

As a notational convenience we defineσi = di/di−1 and note that

(2.16) σi =
Γ(i+ α+ 3)

i!

(i− 1)!

Γ(i+ α+ 2)
=
i+ α+ 2

i
.

With this, the above formulas become,

f1 =
1− α0f0
σ1β1

, fi+1 = −
αifi +

γi

σi

fi−1

σi+1βi+1
for i > 0,

which we write as a single formula by using the Kronecker symbol and settingγ0f−1 ≡ 0:

(2.17) fi+1 =
1

σi+1βi+1

[

δi,0 − αifi −
γi
σi
fi−1

]

for i ≥ 0.

We can proceed in a similar way forgi:

di+1gi+1 =

∫ ∞

0

tα+1e−(1+τ)tLα+2
i+1 (t) dt

=
1

βi+1

∫ ∞

0

tα+1e−(1+τ)t[tLα+2
i (t)− αiL

α+2
i (t)(t)− γiL

α+2
i−1 (t)]dt .

Now the (undivided) first term in the right-hand side is
∫ ∞

0

tα+2e−te−τtLα+2
i (t) dt.

Apart from a norm scaling factor, this is theith expansion coefficient of the functione−τt

in the Laguerre orthogonal sequence{Lα+2
i }, i.e., with respect to theith degree polynomial.

Specifically, from (2.2), we know that

〈e−τt, Lα+2
i 〉α+2

〈Lα+2
i , Lα+2

i 〉α+2

=
τ

τ + 1
(1 + τ)−α−3 → 〈e−τt, Lα+2

i 〉α+2 =
τdi

(1 + τ)α+4
.

Therefore,

di+1gi+1 =
1

βi+1

[

τdi
(1 + τ)α+4

− αidigi − γidi−1gi−1

]

.

Finally, dividing through bydi and rearranging terms,

(2.18) gi+1 =
1

σi+1βi+1

[

τ

(1 + τ)α+4
− αigi −

γi
σi
gi−1

]

.

It is now possible to combine (2.18), (2.17), into a single recurrence formula forci,
recalling that thatci = fi − gi:

ci+1 =
1

σi+1βi+1

[

δi0 −
τ

(1 + τ)α+4
− αici −

γi
σi
ci−1

]

, i = 0, 1, . . . ,

whereδij is the Kronecker symbol. The recurrence can be started withi = 0, with the
convention thatγ0c−1 ≡ 0. The initial valuec0 is known from (2.15):

c0 =
1

α+ 2

[

1− 1

(1 + τ)α+2

]

.

This completes the proof.
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3. Convergence and stability.

3.1. Numerical aspects.In practice, the effectiveness of the algorithms hinges on their
stability behavior and the rate at which the underlying orthogonal series expansions converge
to the exponential function. Recall at this point that the conventional reservation about the
Taylor series stems essentially from the fact that on one hand its convergence may require
summing a large number of terms, and on the other hand its sum may involve intermedi-
ate quantities of large magnitude and/or alternate sign, introducing cancellation errors and
stability issues in finite precision arithmetic. Whether theorthogonal series expansions are
numerically robust depends on how well they can withstand such drawbacks. In this section,
we use a number of figures to explore these issues. We include the Chebyshev series in the
discussion for comparison purposes. To keep the figures and the discussion simple, we set
τ = 1 in (2.2) and (2.4), and denote bypm(x) the partial sum of the series ofe−x truncated
at lengthm. In the case of the Laguerre series (withα = 0),

pm(x) =
1

2

m
∑

k=0

1

2k
Lk(x), 0 < x <∞,

while in the case of the Chebyshev series,

pm(x) =

m
∑

k=0

akTk

(

x− l2
l1

)

, a < x < b,

with l1 = (b− a)/2, l2 = (a+ b)/2, and the coefficientsak as given earlier in (2.5). We first
focus on the real case, bearing in mind that we can always scale a nonnegative definite matrix
and use a time-stepping procedure to confine the eigenvaluesto a fixed interval.
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FIG. 3.1.Coefficients and approximation error of the Chebyshev series.

To give the reader a sense of how well the Chebyshev series performs, we consider differ-
ent choices of the target interval[a, b] and plot in Figure3.1 the evolution of the coefficients
ak. It is seen that the coefficients decrease very rapidly in magnitude, and considering that
maxx∈[a,b] |Tk(x)| ≤ 1, we can expect the method to remain stable and converge rapidly for
anyx ∈ [a, b]. This is indeed what the error curves in the figure show. Theseobservations
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corroborate [3, 23]. The error curves also remind us that the target interval has to be chosen
carefully to suit the problem at hand, because the approximations degrade rapidly outside
their intended interval. Thus, in our matrix exponential context, the eigenvalues need to be
strictly inside the interval to prevent spurious effects. Increasing the degreem to take in more
terms does not expand the fit interval, but does improve the quality of fit within the target
interval. All this agrees with the theory, because the Chebyshev series is, by construction,
aimed at a (fixed) given interval. Once constructed, the series does well for any point taken in
that interval and it gets better as we use more terms in the series. But the series is not effective
outside the target interval for which it is built. Targetinga different interval requires building
another series, which is why we need an estimate of the spectral interval for the Chebyshev
approximation to be effective.
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FIG. 3.2.Laguerre polynomials and approximation error of the Laguerre series.

In the case of the Laguerre series, an immediate contrast with the Chebyshev series is
that the Laguerre polynomialsLk(x) are not bounded by unity, as can be seen on Figure3.2,
even though the coefficients of the Laguerre series are1/2k+1. We may wonder if the La-
guerre series may be susceptible to numerical difficulties.We see from the figure that this
is unlikely because the Laguerre polynomialsLk(x) do not oscillate widely with each other
in the interval[0, 20], which is an interval sufficient for practical purposes (considering the
time-stepping strategy hinted to earlier and to be further discussed shortly). Moreover, as
the figure shows, their maximum growth stays within103 in this interval, so there is no par-
ticular concern in double precision arithmetic. Regardingthe speed, we see that the rate of
convergence of the Laguerre series is less than that of the Chebyshev series, meaning that if a
prescribed accuracy is desired, it takes more terms to achieve that accuracy with the Laguerre
series. For example, comparing Figure3.2with Figure3.1, one must go up tom = 40 terms
in the Laguerre series to get a fit comparable to the Chebyshevseries withm = 15 terms for
the interval[0, 5], orm = 20 terms for the interval[0, 10]. The trade-off when computing the
matrix exponential is that the Laguerre series does not needan estimate of the bounds of the
spectrum as the Chebyshev series does.

As noted earlier, the FCR-based Laguerre series enforces the exactness of the approx-
imation atx = 0. We turn our attention now to comparing it with the classicalLaguerre
series.

In Figure3.3, we can see that both series remain very close around the origin, but as
we move away, a difference becomes manifest. The onset of thedivergence between the
two curves moves to the right as more terms are added. Slight differences can also be seen
between the maximum error curves in Figure3.2and Figure3.3. For example in the interval
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FIG. 3.3.Variation between the classical Laguerre and FCR-Laguerre, and approximation error of FCR-Laguerre.

[0, 5], we can see in the former that the maximum error curve form = 20 is slightly under
10−6, whereas in the latter it is slightly over10−6. The discrepancy is a natural consequence
of using different optimality criteria for the expansions.However, the differences are too
small to be significant in our context, and we shall use eithervariant in our experiments.
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FIG. 3.4.Approximation error of the Chebyshev series in the complex plane.

We now consider the case where the matrix involved may have complex eigenvalues.
Although the orthogonal series considered in this study areprimarily designed to approximate
the exponential of a real variable, it is worth exploring howthese series will behave if the real
variablex is replaced by a complex variablez. This will give us a sense of how the algorithms
will behave when used with nonsymmetric matrices that are barely indefinite.

In Figure 3.4 and Figure3.5, we plot the level curves of the error|e−z − pm(z)| in
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FIG. 3.5.Approximation error of the Laguerre series in the complex plane.

the complex plane usingm ∈ {15, 20} and b ∈ {5, 10} for the Chebyshev series, and
m ∈ {15, 20, 40, 50} for the Laguerre series. In the Chebyshev case in Figure3.4, where
m ∈ {15, 20}, the subplots (a) and (c) give the level curves at a finer resolution, whereas
the subplots (b) and (d) aggregate the regions where the error is under10−4 and10−5, re-
spectively. In the Laguerre case in Figure3.5, the subplots (a) and (c) usem ∈ {15, 20} and
aggregate the regions where the error is under10−4 and10−5, whereas (b) and (d) use the
higher degreesm ∈ {40, 50} and aggregate the regions under10−12 and10−13, respectively.
These contour plots allow us to contrast the two methods either from the perspective of equal
degree or accuracy. We can see that the observations made in the real case apply also in the
complex case. For the Chebyshev series, the region of good fitspreads around the target inter-
val. For the Laguerre series, it is anchored at the origin andgradually grows toward the right
as more terms are added to the expansion. In both methods, theregion only extends slightly
in the imaginary direction, or alternatively, it takes moreterms to attain a certain accuracy in
the complex case. Of note is that an accuracy of10−4 or 10−5 can be achieved by both meth-
ods in comparable regions with the same degreem = 15 orm = 20, respectively. However,
the Chebyshev series is appreciably more accurate around the real axis, as is apparent in the
subplots (a) and (c) of Figure3.4. On the whole, neither method is ideally suited for evalu-
ating the matrix exponential at a high accuracy when the matrix has eigenvalues with large
imaginary parts, unless a proper scaling is made to shrink the spectrum. This is discussed
next.

3.2. Scaling and staging.This strategy is aimed not only at improving the accuracy by
confining the spectrum to a more desirable domain for a given degree of the partial sum, but
also at avoiding numerical overflow when summing the terms ofthe series. It consists of
scaling the matrix by a number, saynstage , such that‖τA‖/nstage . b, where‖ · ‖ is some
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norm, andb is chosen to target an appropriate interval based on our discussion above. From
there, the calculation ofexp(−τA)b is broken intonstage steps as described below.

ALGORITHM 3.1. Scaled and Staged Calculation ofexp(−τA)b

1. Choosenstage such that‖τA‖/nstage . b
2. τ̂ = τ/nstage
3. Â = τ̂A
4. z0 = b

5. Fort = 1 : nstage
6. zt = exp(−Â)zt−1

7. EndFor

This algorithm simply amounts to a (constant) time-stepping strategy as typically used
when solving ordinary differential equations. Here, however, we effectivelyscalethe ma-
trix. The implication is that, first, the scalinĝτA = τA/nstage shrinks the spectrum (with
A assumed symmetric nonnegative definite) into an interval[0, b]; and second, subdividing
the calculations into thesenstage stages ensures that each stage uses an orthogonal series
approximation fore−τ̂ t that converges after relatively few terms in the partial sum.

4. Numerical results. In this section we apply the FCR approach described above to
some sample calculations ofexp(−τA)b. All the codes are implemented in MATLAB. We
run the series until two consecutive estimates satisfy‖zk+1 − zk‖2 ≤ TOL, with preset
values of the accuracy parameterTOL. We compare with a Krylov method (theexpv.m
function from the Expokit package [21]), which implements Arnoldi’s Full Orthogonalization
Method (FOM), and we set15 as the dimension of the Krylov basis. This is referred to as
Krylov(15) and it does not use the staging-and-scaling described earlier since it has its own
built-in time-stepping strategy. Keep in mind, therefore,that the variablenscale reported in
the tables has no bearing in the Krylov method. We supply the same accuracy parameterTOL
for the error control criteria there; see [21] for more details. Since the codes are implemented
in MATLAB and are not optimized for speed, exact timings are not decisive. Instead, we
report the number of matrix-vector products used. (For the purpose of the experiments, we
added a counter to that effect in Expokit’sexpv.mfunction.) We check the achieved accuracy
by reportingeLag = ‖zKry − zLag‖2 andeCheb = ‖zKry − zCheb‖2, wherezKry is the
solution computed by the Krylov method that we use as a reference, whilezCheb andzLag
are the approximations obtained by the Chebyshev and Laguerre methods respectively.

4.1. Dielectric waveguide.The matrix used here comes from the Matrix Market collec-
tion. It results from a finite difference discretization of the Helmholtz equation that governs
a dielectric channel waveguide problem, which arises in many integrated circuit applications.
The matrix in the example is of ordern = 2048 with 10, 114 non-zero elements. Its sparsity
pattern and spectrum are given in Figure4.1. The spectrum includes complex eigenvalues,
but with small imaginary parts (|Im(λ)| < 10−3). The spectrum extends slightly past the ori-
gin, suggesting we take[a, b] = [−1, 1] in the Chebyshev method. Also, takingnstage = 1 is
suitable for both the Chebyshev and Laguerre methods. Results for this example are reported
in Table4.1 with τ = 1, b = (1, · · · , 1)T andTOL ranging from10−2 to 10−6. We see in
this example that Expokit’s Krylov(15) detected that one time-step was enough to achieve the
desired accuracy. It also appears that the smallerTOL did not induce further computations
because the Krylov(15) solution was already more accurate than requested. For the orthog-
onal expansion methods, we see that Chebyshev performs quite well. Laguerre achieved the
desired accuracy, albeit with more iterations. This agreeswith our earlier analysis in Sec-
tion 3.
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FIG. 4.1.Sparsity pattern and spectrum of the Waveguide example.

Matrix-vector products (nstage = 1) Errors
Krylov(15) Laguerre Chebyshev eLag eCheb

TOL in [−1, 1]
10−2 16 16 6 3.3e-03 1.3e-03
10−3 16 19 7 3.9e-04 7.5e-05
10−4 16 22 7 4.1e-05 7.5e-05
10−5 16 26 8 3.5e-06 7.0e-06
10−6 16 30 9 3.8e-07 4.2e-07

TABLE 4.1
Results for the Waveguide example. Herenstage = 1 everywhere.
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FIG. 4.2.Sparsity pattern and spectrum of the Boeing 767 example.

4.2. Boeing 767 matrix.This is an illustrative example in [17]. It arises from modeling
a Boeing 767 aircraft with the aim of optimizing its design tosuppress flutter of the wings.
This involves a nonsmooth, nonconvex optimization method to stabilize a nonsymmetric ma-
trix A that models the aircraft at flutter condition. The resultingstabilized matrix only barely
has its spectrum lying in the negative plane. The order isn = 55 and the eigenvalue closest
to the imaginary axis hasRe(λ) = −0.0788, while the eigenvalue with largest modulus has
|λ| = 103. Figure4.2depicts the sparsity pattern and the spectrum, showing thatthis is a chal-
lenging example because it has complex eigenvalues with quite large imaginary parts. Even
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more, these eigenvalues are almost purely imaginary, thus making the problem highly oscil-
latory and difficult for polynomial methods. In addition, the matrix has‖A‖2 = 1.69 · 107
and‖A‖1 = 1.6 · 107, so that attempting to infernscale using either norm would be very
restrictive. The figure shows that a scaling value ofnscale = 160 is suitable to shrink the
spectrum to fit our orthogonal expansion methods.

SinceA is stable, we do not need to negate it. We setb = [1, · · · , 1]T and simply
computeexp(τA)b using Algorithm3.1 with, respectively,τ = 1, 0.1, 0.01 andnscale =
160, 16, 1. We target two values ofTOL, 10−3 and10−6. Results are reported in Table4.2
with nscale in parentheses. As can be expected, we observe that whenτ = 1, Chebyshev and
Laguerre struggle to cope with this pathological problem. But the table shows better results
with reduced values ofτ since they further shrink the spectrum and make the problem more
amenable to the polynomial expansion methods.

Matrix-vector products andnstage Errors
TOL = 10−3 Krylov(15) Laguerre Chebyshev eLag eCheb

τ in [0, 10]
1 944 5394(160) 2562(160) 9.4e-03 4.4e-02

0.1 144 533(16) 264(16) 2.8e-03 7.9e-03
0.01 48 34(1) 19(1) 2.7e-03 8.4e-04

TOL = 10−6

1 1552 6880(160) 3218(160) 2.0e-04 2.2e-04
0.1 224 688(16) 339(16) 1.2e-04 1.1e-04
0.01 48 43(1) 24(1) 7.1e-05 6.3e-05

TABLE 4.2
Results for the Boeing example withTOL = 10−3

, 10−6 andτ = 1, 0.1, 0.01.

4.3. 3D diffusion-convection equations.As a concluding example, we consider the
problem of exponential propagation for a discretization ofthe system

(4.1) ut = uxx + uyy − βux − γuy, (x, y) ∈ Ω.

For our test problem,A is obtained by dividing a square domainΩ into a uniform500× 500
mesh and then applying the standard 5-point diffusion-convection discretization

duij
dt

=
1

δx2

{

4ui,j −
(

1− βδx

2

)

ui+1,j −
(

1 +
βδx

2

)

ui−1,j

−
(

1− γδy

2

)

ui,j+1 −
(

1 +
γδy

2

)

ui,j−1

}

.

(4.2)

Takingβδx/2 = 0.2 andγδy/2 = 0.4 and writing the right hand side of (4.2) as a matrix
times a vectoru = ui,j yields a250, 000 × 250, 000 non-symmetricA. The b vector is
chosen as the initial shapeui,j(0) = xi(1− xi)yj(1− yj).

This matrix has‖A‖1 = 8 and its eigenvalue of largest modulus has|λ| < 8, while
its spectrum does not extend too far in the imaginary direction (|Im(λ)| < 0.5). Hence,
takingnstage = 1 is suitable, as well as keeping[a, b] = [0, 10] in the case of the Chebyshev
method as done earlier. Results for this example are reported in Table4.3, with TOL ranging
from 10−2 to 10−6. We see in the example that, owing to its automatic step size selection
mechanism, Expokit’s Krylov(15) uses two steps, which is why its number of matrix-vector
products is about twice the size of the Krylov basis (the extra products occurred there as part
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Matrix-vector products (nstage = 1) Errors
Krylov(15) Laguerre Chebyshev eLag eCheb

TOL in [0, 10]
10−2 32 20 10 5.4e-05 5.2e-03
10−3 32 24 11 4.8e-06 1.1e-03
10−4 32 28 13 4.0e-07 4.0e-05
10−5 32 31 14 6.0e-08 6.9e-06
10−6 32 35 15 4.7e-09 1.1e-06

TABLE 4.3
Results for the diffusion-convection matrixA given by (4.2). Herenstage = 1 everywhere.

of the error estimation). As in the first example, it also appears that the smallerTOL did not
induce further computations because the two-step solutionhere was already more accurate
than requested. For the orthogonal expansion methods, we see that Chebyshev performs
quite well. Laguerre achieved the desired accuracy with more iterations, as expected from
our earlier analysis in Section3. For both of the methods, choosingnstage is critical to their
efficiency. A largenstage would mean that it takes many more steps to completion than
necessary, whereas a smallernstage could mean that the actual polynomial approximation to
zt = exp(−τ̂A)zt−1 in Algorithm 3.1 turns out to be of much higher degree than optimal
for the job. An optimal choice is that which shrinks the spectrum into a reasonable domain
in a way that ultimately leads to an overall small number of matrix-vector products. This
is a problem-dependent issue reminiscent of that arising inODE solvers where one needs to
account for stiffness while attempting to use as few steps aspossible.

5. Conclusion. Matrix exponential algorithms based on approximatingexp(−τt) by a
suitable polynomialp(t) have several advantages. BecauseA only occurs in matrix-vector
products, algorithms are matrix-free and can be made independent of the data structure chosen
for A; the user can ‘own’A’s data structure, so to speak, and does not even have to explicitly
storeA as a matrix. Further, restrictingA to matrix-vector multiplies makes it easy to exploit
A’s sparsity; no fill-in occurs; and memory usage is capped atA’s storage plus a few vectors.

All these advantages accrue to Algorithm2.1 and Algorithm2.3. They accrue also,
however, to explicit integration schemes like forward Euler (FE), which solves (1.1) by time-
stepping with

(5.1) y(t+ h) = y(t)−
∫ t+h

t

Ay(τ)dτ ≈ (I − hA)y(t).

The drawback of FE and other explicit integration schemes, of course, is that the time-step
h must be taken very small whenA is stiff. In the framework of polynomial methods, FE is
based on the approximation

(5.2) e−τt ≈ (1− τt/n)
n
,

wheren is the number of time steps taken to integrate fromt = 0 to t = τ . The left hand side
of (5.2) is stable only ifh = τ/n is taken small enough that|(1− τt/n)

n| ≤ 1.
The question arises whether the more sophisticated polynomial methods we have studied

in this paper escape the stability issue faced by explicit integration methods when too large a
time-step is taken. Using orthogonal polynomials to compute exp(−τA)b can be thought of
as a semi-implicit method for integrating (1.1).

Unfortunately, as we have seen, the FCR method has the property that the number of
iterations or stages increases withτλmax , whereλmax is the eigenvalue of largest modulus.
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Even when the contribution ofe−τλmax to the final answer is entirely negligible, the presence
of a largeλmax in A’s spectrum forces FCR to iterate more. Thus, semi-implicitmethods
still suffer from the bane of stiffness.

Viewed differently, all polynomial methods require one to approximatez(t) = exp(−τt)
by a polynomial over the interval or region that contains thespectrum ofA. The larger
that region is, the more difficult it is (i.e. the higher the degree of polynomial required) to
adequately fitz(t) over that region.Stagingcan be thought of as a way to make that region
smaller by replacing each eigenvalueλi by λi/nstage .

With suitable scaling and staging, we have seen that FCRcanhandle quite stiff systems of
ODEs (large spread in eigenvalues) as well as exponentials of unsymmetric matrices. Clearly,
scaling and staging are an essential part of the FCR method.

We examined the performance of FCR with the Laguerre and Chebyshev systems of
orthogonal polynomials and compared them with the Krylov method. In theory, Chebyshev
expansions converge within an ellipse in the complex plane;Laguerre expansions, within a
parabola; and Hermite expansions, over the entire plane [5]. Because the individual terms
in the series (2.2) and (2.4) can be quite large in magnitude but alternate in sign, one may
experience significant loss of precision and even numericaloverflow as one tries to compute
such expansions with finite-precision arithmetic. However, scaling and staging allow us to
overcome these difficulties.

In our tests, we found that Chebyshev usually performed better than Laguerre, though
this requires that we be able to localize the spectrum to an interval [a, b]. Laguerre does
not have this requirement, but one still needs to make a sensible choice ofnstage for both
methods.
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