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ON THE MINIMIZATION OF A TIKHONOV FUNCTIONAL WITH A
NON-CONVEX SPARSITY CONSTRAINT *

RONNY RAMLAU T AND CLEMENS A. ZARZER

Abstract. In this paper we present a numerical algorithm for the optitromaof a Tikhonov functional with
an ¢,-sparsity constraints angd < 1. Recently, it was proven that the minimization of this funotbprovides
a regularization method. We show that the idea used to othesettheoretical results can also be utilized in a
numerical approach. In particular, we exploit the techniqti¢ransforming the Tikhonov functional to a more
viable one. In this regard, we consider a surrogate funatiapproach and show that this technique can be applied
straightforwardly. It is proven that at least a critical poof the transformed functional is obtained, which directly
translates to the original functional. For a special casis, shown that a gradient based algorithm can be used to
reconstruct the global minimizer of the transformed and thgimal functional, respectively. Moreover, we apply
the developed method to a deconvolution problem and a paraidettification problem in the field of physical
chemistry, and we provide numerical evidence for the thezakteésults and the desired sparsity promoting features
of this method.
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1. Introduction. In this paper we consider a Tikhonov type regularizationhoétfor
solving a (generally nonlinear) ill-posed operator equrati

(1.1) Flx)=y

from noisy measurementg with ||y° — y|| < §. Throughout the paper we assume ti#at
maps between sequence spaces, i.e.,

F:D(F)C L, — L.

Please note that operator equations between suitableabépéinnction spaces such a8,
Sobolev and Besov spaces, i.e.,

F:D(F)C X =Y,

can be transformed to a sequence space setting by usinghblswtsis or frames fdp(F)
andR(F). Assume that we are given some preassigned frgdg$yca, i1 » (A; are count-
able index sets) fob(F) c X, R(F) C Y with the associated frame operat@tsand 5.
Then the operataF := ngz‘Tl* maps between sequence spaces.

We are particularly interested gparsereconstructions, i.e., the reconstruction of se-
guences with only few nonzero elements. To this end, we wantihimize the Tikhonov

functional
Jap:ily = R

|F@@)— |5 +alzll, = e D),

(1.2) T
400 else,
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wherea > 0,0 < p < 1,and

2l =D lzel?

k

is the (quasi-)norm of,,. The main aim of our paper is the development of an iterative
algorithm for the minimization of.2), which is a non-trivial task due to the non-convexity
of the quasi-norm and the nonlinearity &t

The reconstruction of the sparsest solution of an undemé@ted system has already
a long history, in particular in signal processing and maeently in compressive sensing.
Usually the problem is formulated as

(1.3) Z = argmin ||z||1,
y=>dx

wherey € R™ is given and® € R"" is a rank deficient matrixng < n); see [L9, 20].
Note that here the minimization of tlfg-norm is used for the reconstruction of the sparsest
solution of the equatio®x: = y. Indeed, under certain assumptions on the mdiriik can be
shown that if there is a sparse solutioh,3j really recovers it9, 10, 17, 18]. Moreover, Gri-
bonval and Nielsen28] showed that for certain special cases, the minimizatiofi & also
recoverd,-minimizers with0 < p < 1. In this sense it seems that nothing is gained by con-
sidering arv,,-minimization with0 < p < 1 instead of arf;-minimization, or equivalently,
using an¢,-penalty with0 < p < 1in (1.2). However, we have to keep in mind that we are
considering a different setting than the paper cited ab&ust of all, we are working in an
infinite-dimensional setting, whereas the above mentichésla finite-dimensional matrix.
Additionally, properties that guarantee the above citedlis such as the so-called Restricted
Isometry Property introduced by Candes and Talp 10] or the Null Space Propertyl B, 16]

are not likely to hold even for linear infinite-dimensioniégosed problems, where, e.g., the
eigenvalues of the operator converge to zero, not to speakrdinear operators. Recently,
numerical evidence from a nonlinear parameter identificagiroblem for chemical reaction
systems has indicated that npenalty in (L.2) fails to reconstruct a desired sparse parame-
ter there, whereas stronggy-penalties with) < p < 1 achieve sparse reconstructioR§]f

In the mentioned paper, the intention of the authors wasabenstruction of reduced chemi-
cal networks (represented by sparse parameter) from chemaasurements. Therefore, we
conclude that the use of the stronggpenalties might be necessary in infinite-dimensional
ill-posed problems if one wants a sparse reconstructionpalticular, algorithms for the
minimization of (L.2) are needed.

There has been an increased interest in the investigatithe dfikhonov functional with
sparsity constraints. First results on this matter werseared by Daubechies, Defriese, and
De Mol [15]. The authors were in particular interested in solvingdineperator equations.
As a constraint inX.2), they used a Besov semi-norm, which can be equivalentlyessed
as a weighted,-norm of the wavelet coefficients of the functions wijth> 1. In particular,
that paper focuses on the analysis of a surrogate functag@loach for the minimization
of (1.2 with p > 1. It was shown that the proposed iterative method convergearts
a minimizer of the Tikhonov functional under consideratigdditionally, the authors pro-
posed a rule for the choice of the regularization parambggrguarantees the convergence of
the minimizerz?, of the Tikhonov functional to the solution as the data efraonverges to
zero. Subsequently, many results on the regularizatiopapties of the Tikhonov functional
with sparsity constraints and> 1 as well as on its minimization were published. 39[40],
the surrogate functional approach for the minimizatiorhefTikhonov functional was gener-
alized to nonlinear operator equations anddg, 41] to multi-channel data, whereas if, B]
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a conditional gradient method and 29 a semi-smooth Newton method were proposed for
the minimization. Further results on the topic of minimiaatand the respective algorithms
can be found in3, 6, 14]. The regularization properties with respect to differegologies
and parameter choice rules were consideredtih 31, 37, 38, 40, 41]. Please note again
that the above cited results only consider the gase 1. For the case < 1, a first regu-
larization result for some types of linear operators wasegmed in 81]. Recently in R4]
and @5], the authors obtained general results on the regulasizgtioperties of the Tikhonov
functional with a nonlinear operator afid< p < 1. Concerning the minimization ofL.(2)
with 0 < p < 1, to our knowledge no results are available in the infiniteehsional setting.
In the finite-dimensional setting, Daubechies et &f] presented an iteratively re-weighted
least squares method for the solution ©f3 that achieved local superlinear convergence.
However, these results do not carry over to the minimizatidt.2), as the assumptions made
in [1€] (e.qg., finite dimension, Null Space Property) do not holdgeneral inverse problems.
Other closely related results for the finite-dimensionalecean be found in3{3, 34]. For a
more general overview on sparse recovery, we refetp [

In this paper we present two algorithms for the minimizatiii1.2) which are founded
on the surrogate functional algorithrhg, 37, 39, 40] and the TIGRA algorithm 35, 36].
Based on a technique presented4f][and on methods initially developed i87], the func-
tional (1.2) is nonlinearly transformed by an operatbf, , to a new Tikhonov functional,
now with an¢,-norm as penalty antl < ¢ < 2. Due to the nonlinear transformation, the
new Tikhonov functional involves a nonlinear operator eif¢he original problem is linear.
Provided that the operatdt fulfills some properties, it is shown that the surrogate fiomal
approach at least reconstructs a critical point of the foameed functional. Moreover, the
minimizers of the original and the transformed functiona eonnected by the transforma-
tion \V, 4, and thus we can obtain a minimizer for the original funcaiotfror the special case
of ¢ = 2, we show that the TIGRA algorithm reconstructs a global mirer if the solution
fulfills a smoothness condition. For the caBe= Z, whereZ denotes the identity, we show
that the smoothness condition is always fulfilled for spal@tions, whereas faF = A
with a linear operatos, the finite basis injectivity (FBI) property is needed adxfiglly.

The paper is organized as follows: in Sect®mve recall some results fromtf] and
introduce the transformation operataf, ,. Section3 is concerned with some analytical
properties ofV,, ,, whereas Sectio# investigates the operatdf o N, ,. In Section5 we
use the surrogate functional approach for the minimizatidhe transformed functional, and
in Section6 we introduce the TIGRA method for the reconstruction of aglaminimizer.
Finally in Section7, we present numerical results for the reconstruction ohatfan from its
convolution data and present an application from physieahdstry with a highly nonlinear
operator. Both examples confirm our analytical findings ampsrt the proposed enhanced
sparsity promoting feature of the considered regulacratizchnique.

Whenever it is appropriate, we omit the subscripts for nosaguences, dual pairings,
and so on. If not denoted otherwise, we consider the paaticudtions in terms of the Hilbert
spacel, and the respective topolody||,. Furthermore, we would like to mention that the
subscriptk shall indicate the individual components of an element cdguence. The sub-
scriptsi andn are used for sequences of elements in the respective spédsgraomponents,
e.g.,.z, = {zn 1 }ren. Whenever referring to an entire sequence, we{usé¢o denote the
component-wise view. lterates in terms of the considergdriahms are denoted by super-
script! andn.

2. Atransformation of the Tikhonov functional. In [45] it was shown thatX.2) pro-
vides a regularization method under classical assumptiorise operator. The key idea was
to transform the Tikhonov type functional by means of a sppsition operator into a stan-
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dard formulation. Below we give a brief summary on some tsspitesented in4pb] and
consequently show additional properties of the transftomaperator.
DEFINITION 2.1. We denote by, , the function given by

Mpg: R — R
a
r v sign(r) [rl?,

for0<p<landl <g¢g<2.
DEFINITION 2.2. We denote by, , the superposition operator given by

Npg i {np,q(xk)}keNv

wherez € 0,0 <p <1,andl < ¢ <2.

PrRoOPOSITION2.3.Forall 0 < p < 1,1 < ¢ < 2,z € {4, and/N,, 4 as in Definition2.2,
it holds that\V,, ,(z) € ¢,, and the operatonV,, , : ¢, — ¢, is bounded, continuous, and
bijective.

Using the concatenation operator

g . fq — 62
z — FolN,q(x),

one obtains the following two equivalent minimization plerbs.
PROBLEM 2.4. Lety° be an approximation of the right-hand side (f.1) with noise-
levels, ||y — y°|| < 6, and leta > 0. Minimize

|F(zs) = |+ allel? 2 € D(F),
+00 else,

(2.1) Jap = {

subject toxs € ¢, for0 < p < 1.
PROBLEM 2.5. Lety’ be an approximation of the right-hand side @f.1) with noise-
levels, ||y — »°|| < 4, and leter > 0. Determiner, = A, 4(x), wherez minimizes

2.2) Jua = {ng ~y[5+allel; € D),
+00 else,
subjecttor € {,and0 <p <1,1<¢ < 2.
PROPOSITION2.6. Problem2.4and Problen2.5are equivalent.
The paper 45] provides classical results on the existence of minimizstability, and
convergence for the particular approach considered harg Tikkhonov regularization. These
results are obtained via the weak (sequential) continditiie@transformation operator.

3. Properties of the operator\,, ,. Let us start with an analysis of the operatdy .
The following proposition was given irlp]. We restate the proof as it is used afterward.

PrROPOSITION3.1. The operatotV,, , : ¢, — {, is weakly (sequentially) continuous
for0<p<landl<gq<2,i.e.,

L 14
Tn = T = Npg(Tn) = Np,q(@).
Here X denotes the weak convergence with respect to the sgace

Proof. We set = ¢/p+1 and observe that > 2. A sequence it is weakly convergent
if and only if the coefficients converge and the sequence imted in the norm. Thus we
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conclude from the weak convergencesgfthat| z,||, < C andz,, , — x;. Asr > g, we
have a continuous embedding®finto /4, i.e.,

[znllr < [lznlly < C,
which shows that also
Ty — T
holds. The operataiV,, ,(x))x = sgn(zx)|zx|"" is the derivative of the function
fla)=r=" iy,
or, in other words\, ,(x) is theduality mappingon ¢, with respect to the weight function
p(t)=t"""

for more details on duality mappings we refer1@]. Now it is a well known result that every
duality mapping or?,. is weakly (sequentially) continuous; see, e.@2, [Proposition 4.14].
Thus we obtain

Ly Ly,
Ty = = Np g(2,) = N, g(2).

Again, ash\,, 4(z,,) is weakly convergent, we haveV), ,(z,)}r — {Npq(x)}i. Forp <1
andg > 1, it holds thatg < ¢?/p, and thus we havéz|| 2/, < [z[|,. It follows that

||Np>q(xn)||g = Z |Zn,k

k

2 2 2 2
a’/p — ”anZJZ < a2 v < oa/P,

i.e., Npq(xy) is also uniformly bounded with respect to thenorm and thus also weakly
convergent. 0

In the following proposition we show that the same resultdealith respect to the
weak/,-convergence.

ProPOSITION3.2. The operatotV,, , : {2 — (5 is weakly (sequentially) continuous
with respect tds for0 < p < landl < g < 2,i.e,,

T By Np.q(2) & Npq().

Proof. First of all, we have for: € ¢5 with 2¢/p > 2

NG g (@)I13 =D o277 = [|a]522 < [l]|3%7 < oo,
k

i.e., N, q(z) € Uy for z € (5. Setting again = ¢/p + 1, the remainder of the proof follows
along the lines of the previous one with ||, replaced by - | 2. a

Next we want to investigate the&ehet derivative al,, ,. We need the following lemma
in advance.

LEMMA 3.3. The mapr — sgn(z) |z|*, 2 € R, is Holder continuous with exponent
for o € (0,1]. Moreover, we have locally far > 1 and globally fora: € (0, 1]:

(3.1) lsen(z) |z* — sgn(y) Jy|*] < &z —y|”,

where = min(«, 1).
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Proof. As the problem is symmetric with respectt@ndy, we may assume without loss
of generality thatz| > |y| and|y| > 0 as @.1) immediately holds foyy = 0. Lety € R
such thaty|y| = |z|. Fory € [1,c0) anda € (0, 1], we have

(3.2) (-1 <(y-1%

which can be obtained by comparing the derivative&8f— 1) and(~y — 1) for v > 1 and
by the fact that we have equality for= 1. Moreover, we have foy € [0, c0) anda € (0, 1]

(3.3) (v*+1) <2(y+1)“.

Since it is crucial that the constant in the Inequaly3( is independent of, we now give a
proof of the factor 2 there. The ratio

(v +1)
(v + D)=

is monotonously increasing for € (0,1] and monotonously decreasing fore (1, ),
which can be easily seen from its derivative. Hence, the mari is attained ay = 1 and
given by2'—<, which yields

('7 + 1) S 21—@ S 2.
(y+1)*

Consequently, we can conclude in the case of > 0 (i.e.,sgn(x) = sgn(y)) that
|sgn(z)|z|* —sen(y)ly|*| = *yl* — lyI*[ = 1(+* = Dly|*|
@2 al, |« o
< (v =1D)%yl* = [z =",
and forz - y < 0 we have

Isgn(2)|z|* —sgn(y)ly[*| = v |y* + [yl = [(v* + Dyl
3.3 ol 1 o
< 2|{(v+ D)%yl = 2]z —y|”.

Inthe case of > 1, (3.1) holds with3 = 1, which can be proven by the mean value theorem.
Fora > 1, the functionf : x — sgn(z)|z|* is differentiable and its derivative is bounded
on any intervall. Hence, 8.1) holds for|f’(¢)| < k,& € I, proving the local Lipschitz
continuity. a

REMARK 3.4. In the following, Lemm&.3is used to uniformly estimate the remainder
of a Taylor series. As shown in the proof, this immediatelidador o € (0, 1]. In the case of
the Lipschitz estimate, this is valid only locally. Howewer all sequences in Propositidrd
are bounded and we are only interested in a local estimateiylas.3can be applied directly.

PROPOSITION3.5. The Fiechet derivative oV, , : £, — £, 0 <p<1,1 < g <2is
given by the sequence

4q —
/\[Aq(g;)h = {p|xk|(q p)/p . hk}

keN
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Proof. Letw := min (% -1, 1) > 0. The derivative ofy, ,(t) = [t|%/? sgn(t) is given
by 1, (1) = £[t|=7)/7 and we define

Mpg(t+7) = Np,g(t) — 1y ()T := (¢, 7),
where the remainder(t, 7) can be expressed as

t+7 o
r(t,7) = / gu(t+7'fs)sgn(5)|s\%_2 ds
t

p p

In the considered ranges pfandg, the functionn, , is not twice differentiable. On this
account, we derive the following estimate using the meanevdieorem

t+ _
/ 14 p(t—i—T—s)sgn(s)|s|%72 ds
t p

p
q t+7 t+7 q
[(t+7—s)|s|‘1/p_1} —|—/ ~|t|9/P=1 ds
p t t p

— ’gT (mq/p—l _ |t|q/p—1>

with £ € (¢,t + 7) and by Lemma&.3with a« = ¢/p — 1, wherex is independent of; see
Remark3.4. Hence, we may write folth|| = ||{hx }|| sufficiently small

(CY)
< |,
p

|‘Np,q(x+h) _Np,q(x) _N/ th = |{r(xw, hx }”q Z‘ (w1, hi)|?
< ’“1) o [0+
- zk: ( D el
q
< (;) ma ({hal™)) 3 il
k

Hence, we conclude th:ﬁl{r(:rk,hk)}n /||, — 0for ||a]|, — 0 and obtain the formula
for the derivative\ , (z)h = {n), ,(zx) hk} O

REMARK 3.6. Note that the result of ProposmGrE also holds in the case of the opera-
tor N, , : {2 — (2, as one can immediately see from the proof.

LEMMA 3.7.The operator/\/’ (x) is self-adjoint with respect té,.

Proof. We have(\) (z)h,2) = L3 x| P/ Phyzy, = (h, N (2)2). 0

Please note that the&rhet derivative of the operatdf, , and |ts adjoint can be under-
stood as (infinite-dimensional) diagonal matrices, that is

Npg(®) = diag({q|xk|(q—[))/p} ) 7
| P keN

and\, ,(x)h is then a matrix-vector multiplication.

4. Properties of the concatenation operatog. The convergence of the surrogate func-
tional approach, which will be applied to the transformekhdinov functional 2.2), relies
mainly on some mapping properties of the opergot F o N, ,. In the following, we as-
sume that the operatdt is Fréechet differentiable and, 7’ fulfill the following conditions.
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Let0 < p <1,y € ¢y and letz,, x € ¢, andz,, — = with respect to the weak topology
on/s. Moreover, for any bounded s@tC D(F) there exists & > 0 such that the following
conditions hold:

(4.2) F(xy,) — F(x) forn — oo,
4.2) F'(z,)y — F'(z)*y forn — oo,
(4.3) |F'(z) — F'(2")||, < Lz — 2’|, for x, 2’ € Q.

Convergence and weak convergencedri), (4.2) have to be understood with respect
to /5. The main goal of this section is to show that the concatenaiperatol§ is Frechet
differentiable and that this operator also fulfills the citiods given above. At first we obtain
the following proposition.

PROPOSITION4.1. Let F : ¢, — {5 be strongly continuous with respectég i.e.,

T g = F(xn) &F(x).

ThenF o N, is also strongly continuous with respectég If F : ¢/, — (5 is strongly
continuous with respect 6, thenF o NV, , is also strongly continuous with respectfto

Proof. If z,, % x, then by Propositior3.1 alsoN,, 4(z,,) A Ny (), and due to the
strong continuity ofF it follows that F (N, 4(z,)) — F (N, ¢(x)). The second part of the
proposition follows in the same way by Propositi®2. a

By the chain rule we immediately obtain the following result

LEMMA 4.2.LetF : ¢, — {5 be Fréchet differentiable. Then
(4.4) (FoNpg)'(2) = F'(Npg(x)) - Nj (),

where the multiplication has to be understood as a matrixdpod. The adjoint (with respect
to ¢5) of the Fiéchet derivative is given by

(4.5) (FoNpg) (@) =N 4(2) - F'(Npq(@))".

Proof. Equation §.4) is simply the chain rule. For the adjoint of theé€het derivative
we obtain

(F o Npa) ())u, 2) = (F' (Npg(2)) - Np () - u, 2)

= Npa(@) - u, F'(Npg(2))" - 2)
= (U, Ny g (@) - F' (Np.g(2))"2),

asN; () is self-adjoint. 0

We further need the following result.

LEMMA 4.3. LetB : ¢, — {, be a diagonal linear operator (an infinite-dimensional
diagonal matrix) with diagonal elemenis= {b; }ren. Then

1Blleg—e, < [1bllg-

Proof. The assertion follows from

ll=llG<1

q>=

1BIIZ, e, = |\ sll‘}zp [|Bx||l = sup by - |7 < Z lbg|?. O
@ k k
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Hence, we may identify the operatdf),  (z,,) with the sequence of its diagonal elements
and vice versa. Now we can verify the first required property.
PROPOSITION4.4. Letxz,, — x with respect to/s, z € ¢, and letq and p be such
thatq > 2p. Assume that
(4.6) (F'(zn)) 2 = (F'(2))" 2
holds with respect té, for any weakly convergent sequengge— xz. Then we have as well
((FONp,q)/(xn))* z = ((]:ONp,q)/(x))* 2,

with respect td/s.

Proof. Asz,, & x, we have in particulat,, , — x, for afixedk. The sequencﬁ/};q(xn)
is given element-wise by

D w|@ PP Ly @)/p,
p
and thus the coefficients of; ,(,,) converge to the coefficients &f)  (x). In order to show

weak convergence of the sequences, it remains to shof4hat ;. |(4~7)/7} stays uniformly
bounded: we have

° 2
NG (@n)ll3 = (i) S (lensl@P)"

k
As ¢ > 2p and||z||,. < ||z||s for s < r, we conclude with- = 2(q — p)/p > 2

2 2

q T q T
@.7) WalelE = (2) leall < (2) lenl <,

p p
because weakly convergent sequences are uniformly bouitied we obtain

N, (zn) = N ().
With the same arguments, we find for a fixed
N, (@n)z = N ().

p,q
The convergence of this sequence holds also in the strorsg sé&wor this, it is sufficient to
show thatlim,, .« [N, ,(zn)z]| = [N} ,(x)z] holds. Asz,, is weakly convergent, it is also

uniformly bounded, i.e.||x [, < C. Thus the components of this sequence are uniformly
bounded|x, ;| < C, yielding |z, |2(@~P)/P . ;2 < C?a=P)/P;2 We observe that

2 2 2
q 2(¢—p) q ~ 2(a—p) q ~ 2(a—p)
(p) Z A (p) C Zz,% = (p) C™ 7 |23 < .
k

k

Therefore, by the dominated convergence theorem, we carch@nge limit and summation,
ie.,

2
o G oot = i (3) S a0
k

n—oo p

2
_ <q> S tim [ AP 22
p k
2 2
q - q
—(2) ShaPerr 2= (1) 145, (a)elB
k

p
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and thus
¢
(4.8) N, (xn)z == N (2)z.

We further conclude that

1 (F o Np,g)' (2 n)) — (FoNpg)(2))" 2ll2

= [Ny (@n)F Npq(z0)"2 = N o (@) F (Npq(2))" 22
< H p,q( )F,(NP Q(T")) Np,q(‘rn)f/(prq(x))*ZHQ
D,
+ ”Nz;,q(xnﬂ:/(/\/’p,q( x))*z N;/),q( )J’”'(/\/nq(fﬂ))*lez’
D»
and by Propositior3.2 we obtain
(4.9) Np,q(@n) A Np,q().

Hence, the two terms can be estimated as follows:

Dy <IN g(@n)lla | F'Nop,q(wn))"2 = F'(Np,g(2))"2ll2

., #9649,

and thereforedD; — 0. For D, we obtain withz := F'(N,, 4(x))*z

- 4.
Dy = IV (20) — N, (2)3], £2 0,

which concludes the proof. O
In the final step of this section we show the Lipschitz continaf the derivative.
PrROPOSITION4.5. Assume thaf’(z) is (locally) Lipschitz continuous with constaht
Then(F o N, ) () is locally Lipschitz forp < 1 and1 < ¢ < 2 such thatp < gq.
Proof. The functionf(t) = |¢|* with s > 1 is locally Lipschitz continuous, i.e., we have
on a bounded intervak, b]:
(4.10) If(t) — f(D)| < s max |7|*7 |t —1].

T€|a,

Assumer € B,(xo), then||z|ls < ||z — zo|l2 + [|zoll2 < p + ||z0||2 and therefore

sup [lzfl2 < p+ [[zoll2 =: 5.
z€B,(0)

We have that := (¢ — p)/p > 1, and|t|* is locally Lipschitz according to410. N} ()
is a diagonal matrix, thus we obtain with Leme&@for x, z € B,(x¢)

? 2
I p7q( ) — Né,q( n* = (q) Z<|xk|(q*p)/p_‘g}k|(qu)/p)
k

p

4.1
19 (q) (q P o 2p>/p> lek—wkl

p p

2 2
< <q) <qp/3(q2p)/p> |z — 2|3
p p



ETNA
Kent State University
http://etna.math.kent.edu

486 R. RAMLAU AND C. A. ZARZER

With the same arguments, we show th4t, is Lipschitz,
- q (g N
IV (2) = Nopg (@)l < ];p(q PP — .

The assertion now follows from

17 (Npq ()N g () = F'(Np g (2))N; 4 (D)
< (F Npg (@) = F'(Npg () Ny g ()]
+ F Npa () (N g () = N o (2)) |
< LI Np,g(®) = Npq (D) [N, ()]
+IF N g @G o (2) = Ny, (@)
< L|jz - 2],

with

2
L= L g I ()| 2 5004 7o) (£) Lo,
Combining the results of Lemn¥a2 and Propositiond.1, 4.4, and4.5, we obtain
PrROPOSITION4.6.Let0 < p < 1 and choosd < ¢ < 2 suchthatp < ¢. Letx,, — =
with respect to the topology ofy andy € ¢,. Assume that the operatdf : (o — /5 iS
Fréchet differentiable and fulfills conditioifé.1)<4.3). ThenG = F o N, , is also Fiechet
differentiable and we have that for any bounded(2et D(F), there exists arL > 0 such
that

(4.11) G(xn) — G(x) forn — oo,
(4.12) G'(zn)"y — G (2)"y for n — oo,
(4.13) |G’ (z) — g’(x/)H2 < L|z-2'|, for z, 2’ € Q.

Proof. Proposition4.1yields @.11). According to Lemmat.2, G is differentiable. By
the hypothesig > 2p, the conditions of Propositiof.4 and Propositiort.5 hold and thus
also ¢.12 and @.13), respectively. a

5. Minimization by surrogate functionals. In order to compute a minimizer of the
Tikhonov functional {.2), we can either use algorithms that minimiZeZj directly, or al-
ternatively, we can try to minimize2(1). It turns out that the transformed functional with
an/,-norm andy > 1 as penalty can be minimized more effectively by the propasexher
standard algorithms. The main drawback of the transformiadtfonal is that, due to the
transformation, we have to deal with a nonlinear operatenef/the original operatof is
linear.

Awell investigated algorithm for the minimization of thekfionov functional with au,,-
penalty that works for all < ¢ < 2 is the minimization via surrogate functionals. The
method was introduced by Daubechies, Defrise, and De WE}Ifpr penalties withg > 1
and linear operatorg. Later on, the method was generalized 37,[39, 40] to nonlinear
operatorg; = F o N, ,. The method works as follows: for a given iterate, we consider
the surrogate functional

. ly* = G(@)* + el
(5.1)  Jo(w,a") = +Cllw — 2[5 = 1G(z) - G5
+00 else,

x € D(G),
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and determine the new iterate as

(5.2) 2" = argmin J* (z, ™).

The constant” in the definition of the surrogate functional has to be chdaege enough;
for more details seed[/, 39. Now it turns out that the functionaf;(x,a:") can be easily
minimized by means of a fixed point iteration. For fixed, the functional is minimized by
the limit of the fixed point iteration

(5.3) it = @;1 (égl(x"’l)* (y‘s — Q(JJ")) + a:”) )

wherez™? = 2™ andz" ! = lim;_o, 2™!. Forq > 1, the map®, is defined component-
wise for an element in a sequence space as

(I)q(x) = CI)q({:c}k) = {(I)q(xk)}k»

- B
D, (x) = xp + Tq|xk|q ! sgn(z).

Thus, in order to compute the new iterate! ™!, we have to solve the equation

(54) CDq ({xn,l-i-l}k) _ {ég/(xn,l)* (y6 _ g(xn)) _’_xn}

keN

for eachk € N. It has been shown that the fixed point iteration convergetdounique
minimizer of the surrogate functionaﬁ;(az,m") provided the constanf’ is chosen large
enough and the operator fulfills the requirements)(4.3); for full details we refer the
reader to 7, 39]. Moreover, it has also been shown that the outer iteratto?) converges
at least to a critical point of the Tikhonov functional

Jog(T) = ly° = G(@)|3 +ellzlly = € D(9),
o +00 else,

provided that the operatdr fulfills the conditions 4.11)—(4.13.
Based on the results of Secti@gnwe can now formulate our main result.
THEOREMD5.1. Let F : /5 — /> be a weakly (sequentially) closed operator fulfilling
the conditiong4.1)—(4.3), and choose > 1 such thap < ¢, with0 < p < 1. Then the
operatorG(z) = F o N, , is Fréchet differentiable and fulfills the conditio 11)—(4.13.
The iteratese,, computed by the surrogate functional algoritliin2) converge at least
to a critical point of the functional

ly® = G(@)[5 +allzlli e D(G),
400 else.

(5.5) Jog(z) = {

If the limit of the iterationz?, := lim,, .., 2™ is a global (local) minimizer of(5.5),
thenz? , := N, 4(2) is a global (local) minimizer of

1y = F(zo)|5 + allast xs € D(F),
+00 else.

(5.6) Jap(xs) = {
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Proof. According to Propositiod.6, the operatog fulfills the properties that are suffi-
cient for the convergence of the iterates to a critical pofrthe Tikhonov functional §.5);
see B7, Proposition 4.7]. lfz® is a global minimizer of §.5), then, according to Propo-
sition 2.6, # , is a minimizer of (.2). Let z), be local minimizer. Then there exists a
neighborhood’, (z?,) such that

Ve Ue(ad) s |l = 6@, +alel > |lv’ G (@), + o ll22]I;-

Let M := {z, : N, }(zs) € Ue (22,)} andz? , := N4 (#2,), then we can derive that

»q
Vo, € M el = F)lly, +allell > v = F (o)l +alledall-

Since\,,, and\/,; are continuous, there exists a neighborhdodaround the solution of
the original functional{ , such that/. (x5 ) C M. 0

Theoremb5.1is based on the transformed functional. Whenever a globaiaal Imin-
imizer is reconstructed, the result can be directly intetgut in terms of the original func-
tional (5.6). As it can be seen from the proof, this can be generalizedatmrary points.
Assuming that the limit of the iteration is no saddle poimty atationary point of the trans-
formed functional is also a stationary point &6f).

Concerning the iterative schem®§), the question arises which impact the introduced
transformation operator has. Below we discuss these sffacthe light of the shrinkage
operatorq);l. Let = denote the current inner iteraté™" and s the fixed current outer

iteratez("), then one iteration step of the above scheme is given by
(1 *
0 (50 @ (-6 +5)

= 0, (GNP W) = F Na(s)) + 5

67 = (M0) (67 M) (0 = F W) + 45,015 )

In (5.7), the transformation operator occurs several times. Ostamte isF (N, 4(s)). Bear-
ing in mind that we apply the iterative scheme on the tramséat functional %.5) and that
consequently € ¢,, the role of\,, , is to maps to the domain ofF, which is defined with
respect to/,,. The same observation applies to the teff\,, ,(x))".

The next term which is influenced by the transformation ofperia the iteration $.7)
is Nl;q(x)*ls. The additive term can be interpreted as an offset for thalsige operation
and restricts large changes in each iteration. Note thatténim arises due to the stabilizing
term in the surrogate functional having exactly the purpafggenalizing large steps. How-
ever, in our approach we apply the surrogate technique atnghsformed problenb(5) and
thus penalize the step size with respect to the transforroedtifies. Hence, the respective
term in the update formul&(3) is independent of the transformation operator, whichdead
to the term\” _(z)~!s in the above formulatiorg(7), where we singled out the linear oper-
ator\} (z). Accordingly, we have that the entire argument of the shmjmkoperato1I>;1 is
scaled byV ,(x) leading to the map — ®_* (V] (x)t). This can be regarded as the main
impact of the transformation strategy on the iterativegshodding algorithm. In that regard,
we are interested in fixed points with respectia.e.,

(5.8) t—a* where z* =& " (N (%)),
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which corresponds to the fixed point iteration ing).

Figure 5.1 shows the value of the fixed point equatioh = <I>;1 (N,;q(;z:*)t) in de-
pendence of. The solid line refers to the case pf= 0.9 and the dashed one to the case
of p = 0.8. In both caseq is chosen to bé.2. We observe a behavior of the m&p8) close

=Dy, (N/, (z*) t)

A !
/
2 /
a K
/
1
o 1
1
1
" . . L I B
L3y —a —la la @ Sa o
I 2% : 2
1
—a
1
1
/
/ —2a b
/
/
’

FIGURES.1.One-dimensional outline of the relation between the fixéadtpd the mape — <I>q‘1 (./\/’Igﬁq(:c)t)
and the value of for p = 0.9 (solid line),p = 0.8 (dashed line), ang = 1.2. A smaller value op leads to a
pronounced hard thresholding and an increased range ofstioling. Moreover the slope outside the range of
thresholding is increased.

to that of the so-called hard- or firm thresholding. Moreotee plot in Figures.1shows that

for an increasing value gf, the map %.8) approaches the standard thresholding function; see
also Figures.2. On the other hand, decreasing valueg tdad to a more pronounced thresh-
olding and particularly to a discontinuous separation leetwwalues of which are clipped
and which are increased by trend, i.e., are subject to hagdhblding.

z* = o4 (N] ,(z*)t)
A

200+

al

—3a 2« - o 2«

—2a

—3al

FIGURE 5.2. One-dimensional outline of the m&p.8) for p = 0.95 (¢ = 1.2) and a larger scale of-values
(compared to the previous plots). The map exhibits a behainular to the thresholding function.

Note that the thresholding as represented by our naf) €rucially depends on the
respective value of the current iterate. In particular, ithplication of the superposition
operator allows for an increased or decreased (i.e., agdpénge of thresholding depending
on the magnitude of the current iteratg(denoted byz(™! in (5.3). Figure5.3 displays
this scenario for the case pf= 0.8 andg = 1.2. Letz{ denote the initial guess for the
fixed point map, which is the current iterate of the outer |dap, z(™ in (5.3). The dotted
line in Figure5.3 shows the case aof) = 10, the dashed line the case gf = 0.1, and the
solid line the choice ofj; = 0.05. Note that for all previous plots on that matter we always
chosex{ = 1 to ensure comparable results. The increase of the rangeeshibiding for
decreasing values aof™ leads to a strong promotion of zero values and thus to prasiyma
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3ot
200 4

[eR S

FIGURE 5.3. One-dimensional outline of the m@p.8) for p = 0.8 andq = 1.2 for different initial valuest
for the fixed point iteration (dotted line:f; = 10, dashed linex§; = 0.1, solid line: z{, = 0.05). For decreasing
values of the initial values the range of thresholding igéased.

sparse solutions.

We conclude that the transformation operator acts as arigelapaling of the shrinkage
operator depending on the respective values of the cumaet iterates. The basic effect of
this scaling is that the fixed point map.) exhibits a behavior similar to hard thresholding,
where smaller values gfenhance this effect. Moreover, the values of the currerstiés are
crucial for the range of thresholding and lead to an adaj@reavior. In particular, thresh-
olding is enhanced for small and reduced for large. This matches the idea of promoting
sparse solutions by penalizing small components incrghsend hardly penalizing large
components.

6. A global minimization strategy for the transformed Tikhonov functional: the
caseq = 2. The minimization by surrogate functionals presented intiSe& guarantees
the reconstruction of a critical point of the transformeddtional only. If we have not found
the global minimizer of the transformed functional, thers thlso implies that we have not
reconstructed the global minimizer for the original funatal. In this section we would like
to recall an algorithm that, under some restrictions, gutaes the reconstruction of a global
minimizer. In contrast to the surrogate functional apphoaleis algorithm works in the case
of ¢ = 2 only, i.e., we are looking for a global minimizer of the standi Tikhonov functional

& 2 2
. —G(2)|]? + oz xs € D(G),
6.1) 7o ala) = {ny @) + o3 (©)
+o0 else
with G(z) = F(N, 2(x)). For the minimization of the functional, we want to use th&RIA
method B5, 36]. The main ingredient of the algorithm is a standard gradmeethod for the
minimization of 6.1), i.e., the iteration is given by

(6.2) 2" =" 4 B, (G (") (v — G(a")) — ax").

The following arguments are taken out 86, where the reader finds all the proofs and
further details. If the operatd} is twice Fiechet differentiable, its first derivative is Lipschitz
continuous, and a solutiori of G(z) = y fulfills the smoothness condition

(6.3) ot =G (") *w,

then it has been shown thdk {) is locally convex around a global minimizef,. If an initial
guesse within the area of convexity is known, then the scaling paetemn3,, can be chosen
such that all iterates stay within the area of convexity ahd— 22 asn — oo. However,
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the area of convexity shrinks to zerodf — 0, i.e., a very good initial guess for smaller

is needed. For an arbitrary initial gues$, this problem can be overcome by choosing a
monotonically decreasing sequenge> a1 > --- > «,, = a With sufficiently largeay and

a small step size; 1 /«;, and then iterate as follows:

Input: 2%, ag, -,
Iterate: Fori=1,---.,n

o Ifi>1,seta® =2 .

e Minimize J,, »(z) by the gradient method(2) and initial valuer.
End

We wish to remark that the iteratively regularized Landweleration, introduced by
Scherzer43], is closely related to TIGRA. Its iteration is similar t6.9) but requires the
use of a summable sequeneg (instead of a fixedy). In contrast to TIGRA, the iteratively
regularized Landweber iteration aims at the solution of mlinear equation and not on the
minimization of a Tikhonov functional. Additionally, théeratively regularized Landweber
iteration requires more restrictive conditions on the im@dr operator.

In a numerical realization, the iteratio6.p) has to be stopped after finitely many steps.
Therefore the final iterate is taken as starting value fornt@mization of the Tikhonov
functional with the next regularization parameter. As nmred above, this procedure recon-
structs a global minimizer of,, , if the operatorG is twice Féchet differentiable, its first
derivative is Lipschitz continuous, anfl.g) holds [6]. We will verify these conditions for
two important cases, namely whéhis the identity (i.e., the problem of data denoising) and
whenF is a linear operatotF = A.

PROPOSITION6.1. The operatotV,, »(z), with0 < p < 1, is twice continuously differ-
entiable and therefore also the operatdiV,, » (=) with a continuous and linead.

Proof. The proof is completely analogous to the one of Proposii&considering the
fact that% > 2. Using the Taylor expansion of the functigps(t) = |¢|?/? sgn(t)

1
Mp,2(t+T) = 1p2(t) — 1y, ()7 — 577;',2(15)72 =r(t,7),
with
22—p _
U//p,Z(t) _ <p?) Sgn(t)|t|2(1 10)/207

one obtains the following representation of the remainder

t+7

122—-—p2-2

r(t,T):/ 5oLt —9)%s|P P ds.
t p D p

Again by the mean value theorem and using Lenihdawith o = % — 2, we obtain

t+7
122—p2—-2 :
/ P2 Pl 47— s)2s|7 3 ds
t

2p p D
122 — t+r 199 _
= {p(t+r—s)2|s|i2} +/ *7p(t+7—8)|5|%72d8
2p p . ¢ PP
22—p _ 1 _
2222 (04 7 - sl - s )\
P P 2
GY _22—p, .,
R— | ‘ +2
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where¢ € (t,t + 7), w := min (% -2, 1) > 0. One may notice that the scaling factiof2
requires a redefinition of in Lemma3.3leading tok. Eventually, we conclude that

[N 2 (@ + B)h = N 5 (2)h = Ny o (@) (B, B) |, / 1Rl — O for [|All, — 0
analogously to the proof of Propositi@mb. Thus we have
Npa(@)(h, h) = {ny o (wr)hih }y -

The twice differentiability ofAN,, »(x) follows from the linearity ofA. 0

Now let us turn to the source conditiof. ).

PROPOSITIONG.2. Let F = Z. Thenz! € ¢, fulfills the source condition6.3) if and
only if it is sparse, i.e., it has only finitely many nonzerefticients.

Proof. AsZ = Z* in {5, we haveF’ (N, »(z"))* = Z, and it follows from ¢.5) that

(FNp2(2)))" = N o ().
Therefore, the source conditiof.B) reads coefficient-wise as
21al P py, — of
or

2 _
wyy = 5sgn<x£>|xz|<2p 2/,

for z;, # 0. Forz;, = 0, we can setv;, = 0, t0o. Aswy, = € £, and2p — 2 < 0, this can
only hold if T has only a finite number of nonzero elements. 0O

The case ofF = A is a little bit more complicated. In particular, we requihe toper-
ator A to fulfill the finite basis injectivity (FBI) property which &s introduced by Bredies
and LorenzT]. Let 7 be a finite index set, and l¢t7 be the number of elements ih. We
say thatu € ¢5(7) if and only if up, = 0 for all k € N\ 7. The FBI property states that
wheneven, v € ¢5(7) with Au = Aw, it follows thatu = v. This is equivalent to

AMQ(T)U =0=u=0,

whereA|,, 7 is the restriction ofd to /5 (7). For simplicity we setd ., (1) = Ar.

PROPOSITIONG.3. Assume that! is sparseZ = {k : :cL # 0}, and thatd : 5 — 45
is bounded. 1t4 has the FBI property, thea' fulfills the source conditio6.3).

Proof. Asz' is sparse7 is finite. Byz7 we denote the (finite) vector that contains only
those elements af with indices in7 . Becaused is considered being an operator betwégn
we haved* = AT and A% = AT. Due to the sparse structure:of, we observe

' o(h) s by — €o(T)

p,2
and therefore also
AN;,z(CUT) = ATN;Q,Q(CUT)
(AN;/),Q(QUT))* = ;;,2(5{)“4? = N;’Q(xT)Ag,

where we use the fact thaf’ , (1) is self-adjoint.
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With F = A, (6.3 reads as
! T
at =N ,(a") Afw.

The operatonV) , (<)~ is well defined or/y(T'), and sincel»(T) = D(A7) = R(A7),
we obtain

ALy = ;72@1)719;[.

Now we have by the FBI property/ (A7) = {0} and therefore

0(T) = N(A7)" = R(A7) = R(AF).
Asdim(ly(7)) = #7T < oo, R(AL) = (5(T) and therefore the generalized inverse/df
exists and is bounded. We finally obtain

w=(AF) N (ah) et

and
T _
lwllz < I (A7) 2N o (D) " lallzl2. O

Please note that a similar result can be obtained for twicgirnoously differentiable
nonlinear operator if we additionally assume the&’ (N, »(«")) admits the FBI condition.
Propositions.1-6.3 show that the TIGRA algorithm can in principle be appliedtte mini-
mization of the transformed Tikhonov functional for theeas= 2 and reconstructs a global
minimizer. The surrogate functional approach can also Ipdiexpto the case < 2. This is
in particular important for the numerical realization, as show in the following section.

7. Numerical results. In this section we present some numerical experiments fera d
convolution problem and a parameter identification probiera mathematical model from
physical chemistry. Considering the proposed non-stahalaproach, we are particularly in-
terested in the impacts of the transformation operator emtimerical realization and the
sparsity promoting features of the proposed algorithm.

Beforehand, we address some key points regarding the natheniplementation of the
proposed iterative thresholding algorithm. As this apphoa based on a Tikhonov-type reg-
ularization method, the first crucial issue is the choicehef tegularization parameter. To
our knowledge there are currently no particular parameteice rules available explicitly
addressing Tikhonov-type methods with non-conggxjuasi-norms. However, for the sub-
sequent examples, we design the problems such that we keaalition in advance in order
to be able to assess the quality of the reconstruction asawéh sparsity compared to the true
solution. Hence, this also allows to accurately deterntiea¢gularization parameter. Taking
advantage of that fact which we observe for all subsequemenigal examples that the dis-
crepancy principle (cf.1]) provides rather good estimates of the regularizatioapaterc,
we determiney such that

a(s.y") = sup {a >0 o2~ /)|, <6},

wherez? is the regularized solution and> 1.
The next subject we address is the choice of the surrogattarad’ in (5.1). As dis-
cussed in37], the value ofC is crucial for the convergence of the algorithm and has to be
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chosen sufficiently large. However, a large valueoihcreases the weight on the stabiliza-
tion term ||z — s||§ in (5.1) and hence decreases the speed of convergence. We propose to
use a simple heuristic in order to determine the valué'ofWe take advantage of the fact
that if C' is chosen too small, the iteration rapidly diverges, whiah be easily detected. In
particular, we propose to test the monotone decrease ofithegsite functional and chooég
large enough such that the iteration still exhibits the ntonicity. Moreover, we emphasize
thatC' does depend on the norm of the linearized oper@tavaluated at the current iterate.
Thus, particularly in the first phase of the iteration, thenmef G’ may change significantly.
This suggests to adapt the value @fafter a few steps in order to increase the speed of
convergence.

Another crucial point for the realization of the iteratifee¢sholding schemé(3) is the
solution of the nonlinear problend @) in the inner iteration, i.e., for each component of the
given right-hand side € R (see b.3)), we seek the corresponding element R such that

(7.2) z2=0,(z)=x+ %mq_lsgn(m).

For ¢ < 2 the nonlinear problem7(1) is not differentiable and it can be shown that the
Newton method fails to converge; cf3]]. Since {.1) has to be solved numerous times
(in each iteration for every component) throughout theatien, we propose to use a safe-
guarded Newton method; c#4]. The standard Newton method would fail fog close to
zero. However, the sign of the solution and the right-hand side, coincide andz, = 0
implies z;, = 0. Hence, without loss of generality, we can assugpe> 0. This allows to
effectively control the step length of the Newton updatepanticular we prevent any steps
leading to negative values.

7.1. Deconvolution in sequence spacesubsequently, we present some numerical
results on the reconstruction of a function from convolutatata. The example is taken
from [38], which we refer to for more details on the problem. We defime ¢onvolution
operatorA by

T

y(1r) = (Ax)(1) = /T(T —t)z(t)dt =: (r * z)(1),

—T

wherez, r and Au are 27-periodic functions belonging td.(£2), with Q@ = (=7, 7). In
order to obtain a numerical realization in accordance vhighyresent notation, we identify the
occurring quantities with the respective Fourier coeffitse A periodic function orf—, 7]
can be either expressed via the orthonormal bases formed by

{\/%eikt}kez or {\/12?,\}%cos(kt)7\/1%sin(kt)}k€N.

Using the Fourier convolution theorem for the exponentési® and transformation formulas
between the exponential and trigonometrical bases, werohtaequivalent linear problem
in terms of the considered real sequence spaces. Note thabdhe nonlinear superposi-
tion operator, we still have a nonlinear problem. Consetijyetine linear problem serves
two purposes. Firstly, a large part of the currently avddaparsity promoting algorithms
concerns only the case of a linear operator. In particulag e classical iterative thresh-
olding algorithm has been developed for linear problemshan regard, a comparison of the
performance is interesting. Due to the nonlinear transéion, the question arises whether
the problem is artificially complicated or whether the sieptructure of the transformation




ETNA
Kent State University
http://etna.math.kent.edu

TIKHONOV FUNCTIONAL WITH A NON-CONVEX SPARSITY CONSTRAINT 495

operator nevertheless allows for a compatible performakiée address this issue by com-
paring our/,-penalization fol0 < p < 1 with the classical iterative thresholding technique
based on thé;-norm. Another benefit of the linear problem is that the ordylinearity in
the operator arises due to the superposition operator arsdatfows us to study the effects
of the nonlinearity due to the transformation technique.teNbat concerning the gradient
computation, the nonlinear superposition operator posesadvantage as its derivative can
be computed analytically and implemented efficiently.

For the numerical implementation, we divide the interjvafr, 7] into 22 equidistant
intervals leading to a discretization of the convolutioregior as &'2 x 2'2 matrix. We
define the convolution kernelby its Fourier coefficients with

ap =0, aj= (-1 k7% b= (- k72
where

(7.2) r(t) =aj + Z ay, cos(kt) + by, sin(kt).
keN

The data for the numerical experiments were generated lmwsadparse representation
of the solutionz’ with 14 nonzero components; see TafElé. In accordance with72), we
may refer to the decomposition of as

zi(t) = ag + Z aL cos(kt) + bz sin(kt),

keN
_ T T T _ T T
whereat = (xl, .. ,12048), Ay = 049, andb’ = (x2050, o ,51:4097).
TABLE 7.1

The coefficients of the true solution™ with the 14 nonzero components are shown, where
o = <1’J{, . ,m£048), agT = $£O49, andb*’ = (x;%o, R w1097) in accordance with{7.2).

i T T T T T T T T T T

index (Ip e 7%041) 2042 | 2043 | T2044 | L2045 | L2046 | L2047 | L2048 | L2049

1 1 1 1 1 1 1
; T i i i T T T i i
index| z3050 | Ta051 | T3052 | 2053 | T2054 | L3055 | L2056 (3720577 e ,x4097)
1 1 1 1 1 1 1
value| =55 | =55 | =35 | “a6 | —35 | —a0 | %% (0,...,0)

We perturbed the exact data by a normally distributed notielwwas norm-wise (using
the £5-norm) scaled with respect to the data and the noise levgbectively. If not stated
otherwise, we use an approximate noise level of five peretative Gaussian noise.

The first numerical experiment concerns the convergeneewtl respect to the noise
level. In [45] it was shown thatX.2) provides a regularization method, and a result on rates of
convergence was given. The authors prove that under sthadanmptions, the convergence
of the accuracy error is at least of the orderaf,

As displayed in Figuré' .1, this rate is even exceeded in our numerical examples, where
observe a linear rate. This is in accordance with recenttsesn enhanced convergence rates
based on the assumption of a sparse solution26f.47]. We refer to 6] for a more detailed
discussion on this subject.

xt = x‘;HQ = O(V9).
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LogLog-Plot of Accuracy
10%

—&6— accuracy (p = 0.7 / g = 1.6)
—— accuracy (p=0.9 / g =2) P

10°F | — — — reference § - R

10—6 L L
1076 107 1072 10°

noiselevel §

FIGURE 7.1. The plot shows the numerically observed rate of convergtdee valuep = 0.9, ¢ = 2 and
forp = 0.7, ¢ = 1.6 compared to the reference rate

Figure7.1shows the rates of convergence for decreasing noise l&v€lse may notice
that the convergence slows down for very small values.oThis behavior is well known
and can be caused by local minima or too coarse accuracy. gaatsther difficulty could
be a numerical inaccuracy of the inner iteratioBs3(, which might cause a stagnation of the
iteration. In fact, the observed loss of accuracy is vernpumced if the error criteria in the
inner iteration are not chosen appropriately. This obseEmaseems comprehensible when
considering the transformation operator and the fact than&nowns are raised to a power
of ¢/p. This is also in accordance with our findings of an increasedputational effort
(a higher iteration number) and the necessity of a suffiidrigh numerical precision for
decreasingly smaller values pf These requirements are met by an efficient implementation
with stringent error criteria in all internal routines oeiiations, respectively. For the inner
iteration, we control the absolute error per coefficient

max [{z™ T — 2™} = 0(1071),

whereas the outer iteration is stopped after a sufficientergence with respect to the data
error and pointwise changes of the parameters is obtained

|y® - g(ﬂ“)”j =0(107%) and max [{a" T — 2"} | = 0(107°).

Despite the stringent error criterion, the inner loop ulsuednverges within 2 to 10 itera-
tions. The number of outer iterations strongly depends emdbpective settings and chosen
parameters.

Figure7.2 shows the exact data curve (without noise) and the obtaashstructions
of the data for various values pfandq = 2 and approximatelyy% Gaussian noise. The
right-hand axis refers to the difference of these curve&;inis plotted below. For increasing
values ofp, the data fit improves. Correspondingly, the number of namzeefficients in the
reconstructed Fourier coefficients increases as well.pFer0.4, we reconstruct nonzero
coefficients, forp = 0.5 the obtain solution consists @fnonzero components, for= 0.7
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p=0.4/q=2 (7 coefficients) p=0.5/q9=2 (7 coefficients)
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FIGURE 7.2. The exact data of the deconvolution problem and the obtasiradlated data from the recon-
structions forp = {0.4,0.5,0.7,0.9} are plotted. Below, the difference between the (noise ttet) curve and the
simulated data from the reconstruction is given (see rigaxig).

we find 10 nonzero coefficients, and fgr = 0.9 the solution had2 nonzero coefficients,
compared ta4 nonzero entries in the true solutiafi. The decreasing number of nonzero
coefficients indicates an increased promotion of sparskiceat vectors for smaller values
of p. This is especially worth mentioning since alreadygoe 0.9, the number of nonzero
coefficients is underestimated. Furthermore, one may hatefe zero components of these
solutions are really zero with respect to the machine pi@ti@bout1 0~ 1¢). Only in the so-
lution for p = 0.9, ¢ = 2, several “outliers” in the order dfo—>-10~1° are found. Increasing
the error criteria further would provide a remedy.

Additionally, we find that the proposed regularization neetls sensitive with respect to
the choice of the regularization parametemhich we account for by using fine grids of val-
ues forar (0.510-1:2:--1), Moreover, we would like to emphasize that all the obtainedzero
coefficients are within the support of the true solution Only forp = 0.9 andgq = 2, some
of the very small outliers addressed above lie outside tippat of the original solution.
Eventually, we obtain good data fits for all valuespcdindg, even in those cases where the
reconstructed solution consists onlydofonzero components comparedi tbcoefficients in
the true solution.

Figure7.3shows the progress of the iteration routine in the cage-6f0.7 andq = 2.
Due to the high number of unknown coefficient®)¥7), we consider the progress of the
iterates for a sub sample of the coefficients only. Aft&i0 iterations, all coefficients greater
than10~¢ lie within the indices2032 to 2068. The coefficients depicted in the first row are
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iteration # 1500 iteration # 15000
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FIGURE 7.3. The six charts show the progress of the support for the imatl 500, 15000, 73500, 75000,
78000, and84000 in the above test example fpr= 0.4 andg = 2. Only normalized values of coefficients greater
than10~6 are plotted. Moreover the coefficients of the original coisfitsz! are highlighted. Bars of the current
iterate are additionally scaled with respect to the intediage iterate after1500 for the first row (iteration1500
and 15000) and with respect to the intermediate iterate af8€1000 iterations for the remaining plots for better
visualization.

normalized with respect to the iterate aftén0 iterations, i.e., the iterate, 5 is taken as a
reference and the subsequent iterates are scaled witlctéspgsog. As some coefficients
become very small, we “re-normalize” the values of the coigffits of the iterate afte¥000
iterations for the remaining four plots. We observe thatghpport of the final iterate is
contained in the support of the true solution. Moreoverjtidé/zidual coefficients outside the
support decrease monotonously.

We now address the choice of as it directly affects the algorithm. 18§ it was
shown that the solution td(4) can be calculated analytically fgr= 2. Consequently, the
computational effort is reduced significantly at the exgeofsnumerical artifacts in the case
of ¢ = 2. Figure7.4 shows the number of (nonzero) entries above a certain thickgin
the cases of = 1.1,1.4, andg = 2. As one expects from the theory (cf. Secti@r$), the
choice ofg € (1, 2) has no effect on the solution. In particular, no small noozetries occur.
Forq = 2, structurally the same solution is obtained, however, duitoerical artifacts there
is an increasing number of small coefficients with respec¢héothresholds ot0—1, 102,
1077, 1072, and 10~ !, These effects can be controlled by stringent error catasihich
were relaxed by a factor dfo—2 for the results in Figur@.4. Eventually, one can conclude
that the choice off = 2 reduces the computational effort but requires more strihgeror
criteria if small artifacts should be prevented.
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FIGURE 7.4. The bar charts show the number of (nonzero) entries above ttmesh-
olds10-2,10~4,10~7,10~ 9 and10— 1, for¢g = 1.1,1.4,2 andp = 0.7.
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FIGURE 7.5.In the upper left corner the data fit obtained by thesurrogate approach is shown, similarly to
Figure 7.2. On the upper right plot thé; -reconstruction is plotted against the obtained reconstian forp = 0.9
and g = 2. Below, the reconstructed coefficients are compared torthe golution for the two cases pf = 1
andp = 0.9.

Finally we compare the classical surrogate algorithmpfes 1 with the approach pro-
posed here. In particular, we compare the results obtaored= 0.9 andg = 2 with the case
of p = 1, as they are presumably most similar. In Figidr®we show the data fit obtained
by the/;-approach and compare this with the result presented aloovhd choicep = 0.9
andg = 2. We observe that the quality of the obtained data fit is modess identical and
even slightly improved fop = 0.9. However, one may notice that the reconstructed coef-
ficient vector is sparser fgr = 0.9 than forp = 1. We observel2 nonzero elements for
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the case op = 0.9 and 13 nonzero elements fgr = 1. Moreover, although all identified
coefficients lie within the support of the true solution ir tbase op = 1, we observe that
the reconstructed coefficient with ind2@42 (most left coefficient in the lower left bar chart)
has the wrong sign compared to the true solution. Eventutdéy shown comparison and
the results presented for the casep et 0.4,0.5, andp = 0.7 (see Figurer.2) indicate an
approximation of the classicél-surrogate approach for increasipgwhich we would also
expect from the theory.

In summary, the numerical deconvolution example confirmsamalytical findings on
the utilization of the transformation operator, the statmavergence, and convergence rates.
Additionally, the fact that the reconstructed solutioresaways close to the true solution sug-
gests that the algorithm reconstructs the global mininfigérg the constructed data and thus
provides a reconstruction of good quality. Moreover, thergj sparsity promoting feature
of the considered regularization functionals and the jpieddea of exploiting the transfor-
mation operator in numerical algorithms is confirmed. Femthore, the comparison with the
classicall;-surrogate approach suggests that the proposed approadieceen as an ex-
tension of the/; -surrogate algorithm with even increased sparsity pramgdéatures. This
allows a first rough assessment of the proposed algorithmmirwihe framework of other
sparsity promoting algorithms; cf2[4, 32]. However, we would like to emphasize that these
algorithms exclusively work fop > 1 and hence are not directly comparable.

7.2. Parameter Identification for a chemical reaction systen — the chlorite-iodide
reaction. The second test example was taken from an application ingaiychemistry. We
demonstrate the advantages and capabilities of the segigggorithm for a real world prob-
lem. In [30], Kugler et al. use sparsity promoting regularization for apaater identification
problem in a chemical reaction system, the so-called dBldodide reaction. This very well
described chemical reaction network provides an attratgist example for the approach con-
sidered here. There are several motivations to enforceisparhen identifying parameters
in biological or chemical reaction systems; 1] 30]. First of all, one may address the
issue of manageable interpretations of the typically largvorks. By identifying the most
crucial parameters still explaining the observed dynantnge can obtain a reduced reaction
network in the sense of model reduction. Secondly, the oitguspecies in these networks
typically are not accessible to experimental measuremelgisce, one inevitably lacks infor-
mation and may encounter unidentifiable parameters. Thsigppromoting regularization
is of particular interest as it eliminates those uniderilégparameters. They become zero,
typically leading to zero rates or binding kinetics and feealiminate the respective reaction
terms or species from the network. This is also in accordantdeOckham's razor stating
that the minimal solution is typically the most likely onesgecially when considering model
based approaches, this provides an attractive alternatyeantify these models by means of
experimental data and reducing the probable model err¢ihe aiame time. Another applica-
tion for sparsity promoting regularization arises for bigical or chemical reaction systems if
we consider an already quantified model and want to incotp@@ditional data or different
experimentally observed dynamics. By using the given patanset as a prior in the regu-
larization term, we promote those solutions with a minimaiiver of changed parameters.
In this way, previously identified parameters are not likelghange and moreover one might
identify those mechanisms relevant for the newly obsenatd dr dynamics.

The full chemical reaction system for the chlorite-iodiéaction consists of a system
of 7 nonlinear ODEs with 22 parameters as shown below.
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d[(’:fﬂ = —k1 ClOy I + ko INCIOy — ko ClO,
w = ks HCIOy I~ + kg HCIOy HOI + ks HCIO9 HIOy — k¢ HOCLI~
— ky HOCLHIOy — kg HOCI
% = k4 HCIO3 HOI — ks HCIO5 HIOy — ky HOCI HIOy — kg HIO; I~ H
+ kgy HOI? — 2kg HIO3 — kyo HIO9 HyOTT — ko HIO,
% = k1 ClOy I~ — k3 HCIOy I~ — ky HCIOy HOI — ks HCIOy HIO,
— ko TCIO;
% = koaf Io/H — koar HOT I~ + koys I — kap, H20TH I~ 4 kg HC1O 1™
— ks HClO3 HOI + k¢ HOCLI™ 42 (ks HIO; I~ H — ks, HOI?)
+ ko HIO? — kyg HIO; HyOI' — kg THOI
% = k1 ClOs I~ + kaas In/H — kogr HOI I~ 4 ko Is — kopy HoOIT T~
— k3 HCIO I~ — kg HOCII™ — kgy HIOo I~ H + kg, HOI?
+ k1o HIO HyOIT + ko INI™ — ko T1~
d[gf] = 0.5k ClOs I~ — koay Io/H + koar HOI T~ — kayp Iy + kapy HoOIT I~
— ko T,
where

Im =TI — (Kig+TI~ +TI)/2—\/(Kis+TI~ +TI)2/4—TI-TI,
Iy=TI,— (Kig+TI" 4+ TI)/2— /(K +TI- 4+ TI)2/4—TI-TI,

HCIOy = TCIO;

(Ki4+ H)

H,OI*t *THOIL
2 (K15 + H)
HOI:THOI&
(K15 +H)'

Table7.2provides a list of the occurring species. The parameterslynbsnote reaction
rates or binding constants, which are assumed to be corfistahe experiment. For an exact
derivation and explanation of the species and parametersefer to BJ]. Eventually, the
experimental setup can be formulated by means of the showl §Btem and the algebraic
equations below.

The chlorite-iodide reaction is a so-called “chemical &loand therefore exhibits sud-
den rapid changes in the compound concentration. This salneenathematical ODE model
to be highly nonlinear and stiff and consequently incresisesomputational load. We use
the adjoint state technique for an efficient calculatiorhefgradient of the objective. Further-
more, we consider only a single data set, i.e., we assuméthaloe to be constant; cf3(].
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TABLE 7.2
The table shows the molecular formulas and names of theespecturring in the considered model of the
chlorite-iodide reaction system.

molecular formula | name
ClO, chlorine dioxide
HOC!I hypochlorous acid
HIO: iodous acid
ClO5 chlorite ion
HOI hypoiodous acid
I~ iodide ion
I iodine
HCIO2 chlorous acid
HyOI" protonated hypoiodous acid

Naturally, this is likely to reduce the number of identifialdarameters. In accordance with
the findings in BQ], we subsequently present even sparser solutions for tiggesilata set.
The data were generated based on the results presentd.iin[this way, we obtain a rea-
sonable size of the problem (i.e., identifying all param®tsy means of the time course of
the ODE species from a single experiment) with realisti@peaters and known true solution
and an added relative noise level of about five percent. laramreduce the computational
load, we first identify a parameter set by means of a stan@aregularization. The obtained
solution is then used as an initial guess. Furthermore dlign can be used for an efficient
weighting of the regularization term for all nonzero coefits of thels-solution. This is
essential, as the parameters of the chemical model vary oal@ af more thari02°. With
the exception of the second coefficient, all parametersrudeby thels-fit are nonzero and
have been used for weighting.

In the first experiment we chose the algorithmic parameiers0.7 andg = 1.2. Fig-
ure 7.6 displays the obtained reconstruction in this case, whidviges a rather good fit
particularly with regard to the occurring rapid changes.

The next Figurer.7 depicts the identified parameters, wh8reut of 17 parameters are
different from zero. Note that some parameters are rathige Javhich is to be expected
as large values are decreasingly penalized for our regatawn method. Consequently, this
solution significantly differs from the true solution congieg the magnitude of the individual
parameters. However, note that all nonzero coefficientesearcomputed solution are part of
the support of the true solution. In particular, except far parametek;s, which is zero in
our identified parameter set, the support of the computedranttue solution are identical.

In order to assess this result concerning the sparsity pinghéeatures, we compare it
with the reconstruction obtained for the case- 1 andq = 1. Figure7.8 shows the data fit,
which exhibits a similar quality as obtained in the case 0.7 andq = 1.2. Nevertheless,
the identified parameters essentially differ from the ortesve in Figure7.7.

Figure 7.9 displays the computed solution using thepenalization term. We observe
that the nonzero parameters only lie within the support efttbe solution. In fact, for the
depicted solution, the support is identical with the onéheftrue solution because the param-
eter K¢ is nonzero in this case. Hence, we observe again an enhapaesitys promoting
effect by means of the non-convex regularization methodte Ntwat for the solution shown
in Figure 7.9, the size of the parameters varies less and is closer to @ngeta the initial
guess/weights.



ETNA

Kent State University
http://etna.math.kent.edu

TIKHONOV FUNCTIONAL WITH A NON-CONVEX SPARSITY CONSTRAINT 503
x107° x1073
ClO, HOC!
1 T T T T 4 T T T T
= =
= 05f =2 /_
£ B
O n n n n 0 n
0 100 200 300 400 500 0 100 200 300 400 500
time [s] time [s]
x107° x1073
) HIO, 5 TClO;
v§ 1+ | § 0
=, ’ =
0 a _5 . . . .
0 100 200 300 400 500 0 100 200 300 400 500
time [s] time [s]
x10~4 x1073
THOI TI
2 - - - 4
j} tr j? : M
E] /=
0 0 n n T
0 100 200 300 400 500 0 100 200 300 400 500
%1073 time 3] time [s]
TI,
1 T
= = = data curves
=) — reconstructed solution
= 05k =T J
] oGl
e
(4
0 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
time [s]

FIGURE 7.6. Concentration of the ODE species obtained by sparsity ptomgaegularization withp = 0.7
andg = 1.2.
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FIGURE 7.7. Parameters identified for the chlorite-iodide reactionteys withp = 0.7 andg = 1.2 and
weighted with respect to the initial guess.

As it is also observed for the deconvolution problem, oupatgm shows a stable con-
vergence for the nonlinear problem. However, we have obsiesm increased computational
effort due to the highly nonlinear operator. In particulagal minima increase the overall
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FIGURE 7.8. Concentration of the ODE species obtained by sparsity ptomgaoegularization withp = 1
andqg = 1.
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FIGURE 7.9. Parameters identified for the chlorite-iodide reactionteys withp = 1 andq = 1.

computation time and we have found an even increased sétysitith respect to the choice
of the regularization parameter. Therefore we use a verydiitefor the different values
of o (0.910-1:2--1), The fine grid fore and the addressed stiff and nonlinear character of the
considered ODE system required an efficient ODE solver. Vakiation time of the forward



ETNA
Kent State University
http://etna.math.kent.edu

TIKHONOV FUNCTIONAL WITH A NON-CONVEX SPARSITY CONSTRAINT 505

operator and the computation time of the gradient stronghedded on the respective param-
eter set and the current iterate. To reduce the computatien e used the CVODES ODE
solver library from SUNDIALS. Usually the evaluation of tf@ward operator takes a few
milliseconds up to some seconds, whereas the computati@nftir the gradient is typically
slightly increased and lies between some milliseconds arad several seconds. The use of
the SUNDIALS package decreases the computation time abiotyt percent. Moreover, one
may note that only non-negative values for the concentratidhe species and the parameter
values are realistic and acceptable. However due to nualariifacts, negative values might
occur during the ODE integration. We control this by stringabsolute error tolerances for
the solver as suggest by the developers of the solver library

In summary, we can conclude that the proposed algorithmigesva reasonable ex-
tension of the surrogate approach for non-convex sparsityipting regularization terms in
sequence spaces. It was successfully applied to the ddationgroblem leading to a linear
operator equation, as well as to the parameter identificgitroblem with a highly nonlin-
ear operator. In both cases, a strong sparsity promotirtgriesvas observed. Moreover,
we showed that the technique of the transformation opepattantially allows to transform
the/,,-regularization problem fgs < 1 to a generat,-problem withg > 1. This is especially
of interest as numerous techniques figiregularization withy > 1 exist, which can then be
utilized. In particular, methods which have already beemwshto have sparsity promoting
features (e.g.;-regularization) provide attractive iterative schemelse Transformation op-
erator technique then would act as a sparsity enhancing Roeymur future work, we plan to
investigate those possibilities and analyze the impadietriansformation operator.

Acknowledgments. R. Ramlau acknowledges support of this work by the FWF Grants
P19496-N18 and P20237-N14. C. A. Zarzer thanks H. W. Enghi®support and supervi-
sion and P. Kigler for his support and many fruitful discussions. C. Atz&a acknowledges
support by the WWTF Grant MA07-030.

REFERENCES

[1] S. W. ANZENGRUBER AND R. RAMLAU, Morozov's discrepancy principle for Tikhonov-type fuootls
with nonlinear operatorsinverse Problems, 26 (2010), 025001 (17 pages).

[2] A.BECK AND M. TEBOULLE, A fast iterative shrinkage-thresholding algorithm forder inverse problems
SIAM J. Imaging Sci., 2 (2009), pp. 183-202.

[3] J. BECT, L. BLANC-FERAUD, G. AUBERT, AND A. CHAMBOLLE, A [!-unified variational framework for
image restorationin Computer Vision—ECCV 2004, Proceedings of the 8th Eumap8onference on
Computer Vision, Prague, T. Pajdla, J. Matas, eds., LectotesNn Computer Science, 3024, Springer,
Berlin, 2004, pp. 1-13.

[4] J. M. BIouCAS-DIAS AND M. A. T. FIGUEIREDO, A new TwIST: two-step iterative shrinkage/thresholding
algorithms for image restoratigdEEE Trans. Image Process., 16 (2007), pp. 2992-3004.

[5] T.BONESKY, K. BREDIES, D. A. LORENZ, AND P. MAASS, A generalized conditional gradient method for
nonlinear operator equations with sparsity constrajritserse Problems, 23 (2007), pp. 2041-2058.

[6] K. BREDIES AND D. A. LORENZ, Iterated hard shrinkage for minimization problems with ity con-
straints SIAM J. Sci. Comput., 30 (2008), pp. 657—683.

[7] , Linear convergence of iterative soft-tresholdidgFourier Anal. Appl., 14 (2008), pp. 813—-837.

[8] K.BREDIES, D. LORENZ AND P. MAASS, A generalized conditional gradient method and its conmectd
an iterative shrinkage metho@omput. Optim. Appl., 42 (2009), pp. 173-193.

[9] E. CANDES, J. ROMBERG, AND T. TAO, Stable signal recovery from incomplete and inaccurate meas
ments Comm. Pure Appl. Math, 59 (2006), pp. 1207-1223.

[10] E. CanDEs AND T. TAao, Decoding by linear programminglEEE Trans. Inform. Theory, 51 (2005),
pp. 4203-4215.

, Near-optimal signal recovery from random projections: wersal encoding strategies®EEE Trans.
Inform. Theory, 52 (2006), pp. 5406-5425.

[12] 1. ClorANESCU, Geometry of Banach spaces, Duality Mappings and Nonlineablems Kluwer, Dor-
drecht, 1990.

[11]



ETNA
Kent State University
http://etna.math.kent.edu

506 R. RAMLAU AND C. A. ZARZER

[13] A. CoHEN, W. DAHMEN, AND R. DEVORE, Compressed sensing and bésierm approximationJ. Amer.
Math. Soc., 22 (2009), pp. 211-231.

[14] P. L. ComBETTES AND V. R. WAJS, Signal recovery by proximal forward-backward splittifdultiscale
Model. Simul., 4 (2005), pp. 1168-1200.

[15] I. DAUBECHIES, M. DEFRISE AND C. DE MoL, An iterative thresholding algorithm for linear inverse
problems with a sparsity constraiffomm. Pure Appl. Math., 57 (2004), pp. 1413-1457.

[16] I. DAUBECHIES, R. DEVORE, M. FORNASIER, AND S. GUNTURK, lteratively reweighted least squares
minimization for sparse recover€omm. Pure Appl. Math., 63 (2010), pp. 1-38.

[17] D. DoNoHO, Compressed sensindEEE Trans. Inform. Theory, 52 (2006), pp. 1289-1306.

[18] , High-dimensional centrally symmetric polytypes with héigrliness proportional to dimensipbis-
crete Comput. Geom., 35 (2006), pp. 617—652.

[19] D. DONOHO AND P. STARK, Uncertainty principles and signal recoverglAM J. Appl. Math., 49 (1989),
pp. 906-931.

[20] D. DONOHO AND J. TANNER, Sparse nonnegative solutions of underdetermined lineaatons by linear
programming Proc. Natl. Acad. Sci. USA, 102 (2005), pp. 9446-9451.

[21] H. W. ENGL, C. FLAMM, P. KUGLER, J. LU, S. MULLER, AND P. SCHUSTER Inverse problems in systems
biology, Inverse Problems, 25 (2009), 123014 (51 pages).

[22] H. W. ENGL AND G. LANDL, Convergence rates for maximum entropy regularizgti8tAM J. Numer.
Anal., 30 (1993), pp. 1509-1536.

[23] M. FORNASIER R. RAMLAU, AND G. TESCHKE, The application of joint sparsity and total variation mini-
mization algorithms to a real-life art restoration problesdv. Comput. Math., 31 (2009), pp. 157-184.

[24] M. GRASMAIR, Well-posedness and convergence rates for sparse regati@mizwith sublinearl? penalty
term, Inverse Probl. Imaging, 3 (2009), pp. 383-387.

[25] , Non-convex sparse regularisatioh Math. Anal. Appl., 365 (2010), pp. 19-28.

[26] M. GRASMAIR, M. HALTMEIER, AND O. SCHERZER Sparse regularization witf penalty term Inverse
Problems, 24 (2008), 055020 (13 pages).

, Necessary and sufficient conditions for linear convergesfag -regularization Comm. Pure Appl.
Math., 64 (2011), pp. 161-182.

[28] R. GRIBONVAL AND M. NIELSEN, Highly sparse representations from dictionaries are ueiqnd indepen-
dent of the sparseness measukppl. Comput. Harmon. Anal., 22 (2007), pp. 335-355.

[29] R. GRIESSE ANDD. LORENZ A semismooth Newton method for Tikhonov functionals wisis#y con-
straints Inverse Problems, 24 (2008), 035007 (19 pages).

[30] P. KUGLER, E. GAUBITZER, AND S. MULLER, Parameter identification for chemical reaction systemsgsi
sparsity enforcing regularization: a case study for theoché—iodide reactionJ. Phys. Chem. A, 113
(2009), pp. 2775-2785.

[31] D. A. LoRENZ Convergence rates and source conditions for Tikhonov eqation with sparsity con-
straints J. Inverse Ill-Posed Probl., 16 (2008), pp. 463—-478.

[32] I. Loris, M. BERTERQ, C. DE MoL, R. ZANELLA, AND L. ZANNI, Accelerating gradient projection
methods fol; -constrained signal recovery by steplength selectionsd@pl. Comput. Harmon. Anal.,
27 (2009), pp. 247-254.

[33] M. NikoLovA, Markovian reconstruction in computed imaging and Fourignthesis in Proceedings of
the 2004 International Conference on Image Processing 1892;-94, IEEE Conference Proceedings,
pp. 690—694.

[34] R. PvTLAK, Conjugate Gradient Algorithms in Nonconvex Optimizati®pringer, Berlin, 2009.

[35] R. RamLAU, A steepest descent algorithm for the global minimizatiothefTikhonov functionallnverse
Problems, 18 (2002), pp. 381-405.

(27]

[36] , TIGRA—an iterative algorithm for regularizing nonlinedi-posed problemdnverse Problems, 19
(2003), pp. 433-467.
[37] , Regularization properties of Tikhonov regularizationwéparsity constraintsElectron. Trans. Nu-

mer. Anal., 30 (2008), pp. 54—74.
http://etna.nts. kent. edu/ vol . 30. 2008/ pp54- 74. di r

[38] R. RamLAU AND E. RESMERITA, Convergence rates for regularization with sparsity coastts Electron.
Trans. Numer. Anal., 37 (2010), pp. 87-104.
http://etna.nts. kent. edu/ vol . 37. 2010/ pp87- 104. di r

[39] R. RaMLAU AND G. TESCHKE, Tikhonov replacement functionals for iteratively solvimanlinear operator
equationsInverse Problems, 21 (2005), pp. 1571-1592.

[40] , A Tikhonov-based projection iteration for nonlinear ilbged problems with sparsity constraints
Numer. Math., 104 (2006), pp. 177-203.

[41] , An iterative algorithm for nonlinear inverse problems wjitint sparsity constraints in vector-valued
regimes and an application to color image inpaintinigverse Problems, 23 (2007), pp. 1851-1870.

[42] , Sparse recovery in inverse problents Theoretical Foundations and Numerical Methods for Spars

Recovery, M. Fornasier, ed., Radon Series on ComputationbAaplied Mathematics 9, De Gruyter,


http://etna.mcs.kent.edu/vol.30.2008/pp54-74.dir
http://etna.mcs.kent.edu/vol.37.2010/pp87-104.dir

ETNA
Kent State University
http://etna.math.kent.edu

TIKHONOV FUNCTIONAL WITH A NON-CONVEX SPARSITY CONSTRAINT 507

Berlin, 2010, pp. 201-262.

[43] O. ScHERzZER A modified Landweber iteration for solving parameter estioraproblems Appl. Math.
Optim., 38 (1998), pp. 45-68.

[44] S. WRIGHT, R. NowAK, AND M. FIGUEIREDO, Sparse reconstruction by separable approximati®EE
Trans. Signal Process., 57 (2009), pp. 2479-2493.

[45] C. A. ZARZER, On Tikhonov regularization with non-convex sparsity coaists, Inverse Problems, 25
(2009), 025006 (13 pages).

[46] C. A. ZARZER, Sparsity Enforcing Regularization on tifg-Scale Withp < 1, Ph.D. Thesis, Industrial
Mathematics Institute, Johannes Kepler University LinZ,20



