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COMPUTING APPROXIMATE (BLOCK) RATIONAL KRYLOV SUBSPACES
WITHOUT EXPLICIT INVERSION WITH EXTENSIONS TO SYMMETRIC

MATRICES ∗

THOMAS MACH†, MIROSLAV S. PRANIĆ‡, AND RAF VANDEBRIL†

Abstract. It has been shown that approximate extended Krylov subspacescan be computed, under certain
assumptions, without any explicit inversion or system solves. Instead, the vectors spanning the extended Krylov
space are retrieved in an implicit way, via unitary similaritytransformations, from an enlarged Krylov subspace. In
this paper this approach is generalized to rational Krylov subspaces, which aside from poles at infinity and zero,
also contain finite non-zero poles. Furthermore, the algorithms are generalized to deal with block rational Krylov
subspaces and techniques to exploit the symmetry when workingwith Hermitian matrices are also presented. For
each variant of the algorithm numerical experiments illustrate the power of the new approach. The experiments
involve matrix functions, Ritz-value computations, and the solutions of matrix equations.
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1. Introduction. In [17] we presented a method for computing approximate extended
Krylov subspaces generated by a matrixA and vectorv. This approach generates the vectors
A−kv, spanning the Krylov subspace, in an implicit way without any explicit inversion:A−1

or system solve:A−1v. We showed that for several applications the approximationprovides
satisfying results. Here we generalize this algorithm to rational (block) Krylov subspaces, and
we will show how to use and preserve symmetry when dealing with symmetric or Hermitian
matrices.

LetA ∈ C
n×n andv ∈ C

n. The subspace

Km(A, v) = span
{

v,Av,A2v, . . . , Am−1v
}

(1.1)

is called aKrylov subspace. Krylov subspaces are frequently used in various applications,
typically having large datasets to be analyzed, e.g., for solving symmetric sparse indefi-
nite systems [20], large unsymmetric systems [25], or Lyapunov equations [11]. Rational
Krylov subspaces were introduced by Ruhe in [21], investigated later in [22, 23, 24], and
they have been used to solve matrix equations, for instance,in the context of model or-
der reduction; see, e.g., [1, 3, 5, 7, 9] or more recently for bilinear control systems [2]. Let
σ = [σ1, σ2, . . . , σm−1], with σi ∈ (C ∪ {∞}) \Λ(A), whereΛ(A) is the set of eigenvalues
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of A. Then

Krat
m(A, v, σ) = qm−1(A)

−1Km(A, v), with qm−1(z) =

m−1
∏

j=1
σj 6=∞

(z − σj)

is called arational Krylov subspace. If we set all finite shifts of anmℓ +mr − 1 dimensional
rational Krylov subspace to0, then the subspace becomes

Kmℓ,mr
(A, v) = span

{

A−mr+1v, . . . , A−1v, v, Av,A2v, . . . , Amℓ−1v
}

,

which is called anextended Krylov subspace. Extended Krylov subspaces were investigated
first by Druskin and Knizhnerman in [4]. The advantage over rational Krylov subspaces is
that only one inverse, factorization, or preconditioner ofA (to approximately computeA−1v)
is necessary; see, e.g., [12, 13, 15]. On the other hand the additional flexibility of different
shifts in the rational Krylov case might be used to achieve the same accuracy with smaller
subspaces, but for this, one needs good shifts, which recently was investigated in [10] by
Güttel.

For every Krylov subspaceKm(A, v) of dimensionm a matrixV ∈ C
n×m with orthog-

onal columns exists, so that

span {V:,1:k} = span
{

v,Av,A2v, . . . , Ak−1v
}

∀k ≤ m,(1.2)

whereV:,1:k is MATLAB -like notation referring to the firstk columns ofV. It is well known
that theprojected counterpartH := V ∗AV of A, with V ∗ being the conjugate transpose of
V , is of Hessenberg form, i.e., all the entriesHi,j with i > j + 1 are zero [8]. Let V now
be defined analogously for a rational Krylov subspace with only finite poles,Krat

m(A, v, σ).
In [6], Fasino showed that forA Hermitian thatH = V ∗AV is of Hermitian diagonal-plus-
semiseparable form, meaning that the submatricesH1:k,k+1:n, for k = 1, . . . , n − 1, are of
rank at most 1. However, ifV spans an extended Krylov subspace of the form

span
{

v,Av,A−1v,A−2v,A−3v,A2v,A3v, . . .
}

,

thenH = V ∗AV is a matrix having diagonal blocks of Hessenberg or of inverse Hessenberg
form [28] (these blocks overlap), where a matrix is of inverse Hessenberg form1 if the rank of
H1:k,k:n is at most1 for k = 1, . . . , n− 1; at the end of Section2.1a more precise definition
of extended Hessenberg matrices is presented. In Section2 we will describe the structure of
H for rational Krylov subspaces with mixed finite and infinite poles.

The main idea of computing approximate, rational Krylov subspaces without inversion
is to start with a large Krylov subspace and then apply special similarity transformations to
H to bring the matrix into the extended Hessenberg plus diagonal form, the form one would
get if one applied a rational Krylov algorithm directly. To achieve this form no inversions or
systems solves withA or A − σiI are required. At the end we keep only a small upper left
part ofH containing the main information. We will show that under certain assumptions the
computedĤ and V̂ approximate the matricesH andV obtained directly from the rational
Krylov subspace, as we have already shown for extended Krylov subspaces in [17].

Block Krylov subspace methods are an extension of Krylov subspace methods, used, for
instance, to solve matrix equations with right-hand sides of rank larger than one; see [11,14].

1These matrices are said to be of inverse Hessenberg form, as their inverses, for nonsingular matrices, are
Hessenberg matrices.
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Instead of using only a single vectorv, one uses a set of orthogonal vectors
V = [v1, v2, . . . , vb]. The block Krylov subspace then becomes

Km(A,V) = span
{

V, AV, A2V, A3V, . . . , Am−1V
}

= span {v1, . . . , vb, Av1, . . . , Avb, . . .} .

Block Krylov subspaces can often be chosen of smaller dimension than the sum of the di-
mension of the Krylov subspacesK(A, v1), . . . ,K(A, vb), since one uses information from
K(A, vi) for, e.g., the approximation of a matrix function times a vector: f(A)vj . Block
extended and block rational Krylov subspaces can be formed by adding negative powers ofA
such asA−kV or -1

∏1
j=k,σj 6=∞(A − σjI)

−1 V. We will describe the approximation of block
rational Krylov subspaces in Section3.

If the matrixA is symmetric or Hermitian2, then the matrixH = V ∗AV inherits this
structure; thusH becomes tridiagonal. Exploiting the symmetry reduces the computational
costs of the algorithm and is discussed in Section4.

First we introduce the notation and review the essentials about rotators.

1.1. Preliminaries. Throughout the paper the following notation is used. We use capital
letters for matrices and lower case letters for (column) vectors and indices. For scalars we use
lower case Greek letters. Arbitrary entries or blocks of matrices are marked by× or by⊗.
Let Im ∈ C

m×m denote the identity matrix andei ∈ C
m stands for theith column ofIm.

We further use the following calligraphic letters:O for the big O notation,K for Krylov
subspaces,V for subspaces, andEk for the subspace spanned by the firstk columns of the
identity matrix.

The presented algorithms rely on clever manipulations of rotators. Therefore we briefly
review them.Rotatorsare equal to the identity except for a2×2 unitary block on the diagonal
of the form

[

α β

−β α

]

,

with |α|2 + |β|2 = 1. They are also known asGivensor Jacobi rotations[8]. To simplify the
notation and be able to depict the algorithms graphically, we use�

�
to depict a single rotator.

The tiny arrows point to the two rows where the2 × 2 block is positioned. If the rotator is
applied to a matrix on the right, then the arrows also point tothe two rows of the matrix that
are changed. If we have a series of rotators, e.g.,

��

��

��

��

��

,

then we call the ordering of the rotators ashapeor apattern[19].
To handle rotators efficiently we need three operations: merging, turnover, and transfer

of rotators through upper triangular matrices. Two rotators acting on the same rows can be
merged, resulting in a single rotator

� �� � = �� .

2In the remainder of this paperA symmetric means thatA equals its conjugate transpose:A = AT for
A ∈ Rn×n andA = A∗ for A ∈ Cn×n.
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Three rotations in a V-shaped sequence can be replaced by three rotations in an A-shaped
sequence (and vice versa),

� ��

�

�

� =
�

�

�

�� � .

This is called aturnover. More generally it is possible to factor an arbitrary unitary matrix
Q ∈ C

n×n into 1
2n(n − 1) rotators times a diagonal matrixDα. This diagonal matrixDα

equals the identity except for a single diagonal elementα = detQ. There are various possible
patterns for arranging these rotators and the position ofα in the diagonal ofDα. The A- and
V-pyramidal shape, graphically visualized as

Q =

××××××
××××××
××××××
××××××
××××××
××××××

=

��

�� ��

�� �� ��

�� �� �� ��

�� �� �� �� ��
α

=

�� �� �� �� �� α

�� �� �� ��

�� �� ��

�� ��

��

A-pyramidal shape V-pyramidal shape

,

where in the schemes the diagonal matrixDα is not shown, only the valueα is depicted,
having the row in which it is positioned corresponding to thediagonal position ofα in Dα.
The main focus is on the ordering of the rotators, the diagonal matrixDα does not complicate
matters significantly and is therefore omitted. If the pyramidal shape points up we call it an
A-pyramidal shape, otherwise a V-pyramidal shape. A sequence of rotators in A-pyramidal
shape can always be replaced by a sequence of rotators in V-pyramidal shape [27, Chapter 9].

Further, one cantransfer rotators throughan upper triangular matrix. Therefore one has
to apply the rotator to the upper triangular matrix, assume it is acting on rowsi andi + 1,
creating thereby an unwanted non-zero entry in position(i + 1, i) of the upper triangular
matrix. This non-zero entry can be eliminated by applying a rotator from the right, acting on
columnsi andi+1. Transferring rotators one by one, one can pass a whole pattern of rotators
through an upper triangular matrix, e.g.,

��

��

��

��

����

����

×××××××
××××××
×××××
××××
×××
××
×

=

×××××××
××××××
×××××
××××
×××
××
×

��

��

��

��

����

����

,

thereby preserving the pattern of rotations.
In this article we will use the QR decomposition extensively. Moreover, we will factor

the unitaryQ as a product of rotations. If a matrix exhibits some structure, often also the
pattern of rotations inQ’s factorization is of a particular shape.

A Hessenberg matrixH is said to beunreducedif none of the subdiagonal entries (the
elementsHi+1,i) equal zero. To shift this notion to extended Hessenberg matrices we exam-
ine their QR decompositions. The QR decomposition of a Hessenberg matrix is structured,
since the unitary matrixQ is the product ofn− 1 rotators in a descending order, e.g.,

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

×
×
×
×
×
×
×
×
×

=

��

��

��

��

��

��

��

��

��

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

.

The matrixH being unreduced corresponds thus to that all rotators are different from a di-
agonal matrix. Anextended Hessenberg matrix[26] is defined by its QR decomposition
consisting ofn − 1 rotators acting on different rows as well, but reordered in an arbitrary,
not necessarily descending, pattern; see, e.g., the left term in the right-hand side of (2.5). In
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correspondence with the Hessenberg case we call an extendedHessenberg matrixunreduced
if all rotators are non-diagonal.

2. Rational Krylov subspaces.In [17] we have shown how to compute an approximate
extended Krylov subspace. We generalize this, starting with the simplest case: the rational
Krylov subspace for an arbitrary unstructured matrix. We further discuss block Krylov sub-
spaces and the special adaptions to symmetric matrices. Themain difference to the algorithm
for extended Krylov subspaces is that finite non-zero poles are present and need to be intro-
duced. This affects the structure of the projected counterpartH = V ∗AV and the algorithm.
Further, we need an adaption of the implicit-Q-theorem [17, Theorem 3.5]; see Theorem2.1.

2.1. Structure of the projected counterpart in the rational Krylov setting. Let
σ = [σ1, σ2, . . . , σm−1], with σi ∈ (C ∪ {∞}) \ Λ(A), be the vector of poles. We have
two essentially different types of poles, finite and infinite. For the infinite poles, we add
vectorsAkv to our space and for the finite poles vectors

(

-1

∏1
j=k,σj 6=∞(A − σjI)

−1
)

v. For
σ = [∞, σ2, σ3,∞, . . . ] the rational Krylov subspace starts with

Krat
m(A, v, σ) =

{

v,Av, (A− σ2I)
−1v, (A− σ3I)

−1(A− σ2I)
−1v,A2v, . . .

}

.(2.1)

The shifts for finite poles provide additional flexibility, which is beneficial in some applica-
tions. For the infinite poles, we can also shiftA and add(A− ζk)v instead, but this provides
no additional flexibility, since the spanned space is not changed: LetKm(A, v) be a standard
Krylov subspace of dimensionm as in (1.1). Then

span {Km(A, v) ∪ span {Amv}} = span {Km(A, v) ∪ span {(A− ζkI)
mv}} .(2.2)

Let V span the rational Krylov subspace of dimensionm such that

span {V:,1:k} = Krat
k (A, v, σ) ∀k ≤ m,(2.3)

and letH = V ∗AV. The matrixH −D, whereD is a diagonal matrix with

D1,1 = 0 and Di,i =

{

σi−1, σi−1 6= ∞,

0, σi−1 = ∞,
i = 2, . . . , n− 1,(2.4)

is of extended Hessenberg structure, see [18, Section 2.2], [6]. If σi is an infinite pole, then
the(i − 1)st rotation is positioned on the left of theith rotation. If, instead,σi is finite, then
the(i− 1)st rotator is on the right of theith rotation.

For the Krylov subspace in (2.1), the matrixH has the structure
××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

×
×
×
×
×
×
×
×
×

×
×× =

��

��

��

��

��

��

��

��

��

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

+

0
0
σ2
σ3

⊗
⊗
⊗
⊗
⊗
⊗

.(2.5)

The matrixH consists of overlapping Hessenberg (first and last square) and inverse Hessen-
berg blocks (second square). For infinite poles we are free tochoose any shift as (2.2) shows.
These shifts are marked by⊗ in the scheme above. For convenience we will choose these
poles equal to the last finite one.
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2.2. Algorithm. We will now describe how to obtain the structure shown in the example
above. The algorithm consists of three steps:

• Construct a large Krylov subspaceKm+p(A, v) spanned by the columns ofV and
setH = V ∗AV.

• Transform, via unitary similarity transformations, the matrix H into the structure of
the projected counterpart corresponding to the requested rational Krylov space.

• Retain only the upper leftm×m part ofH and the firstm columns ofV.

We will now explain these steps in detail by computing the rational Krylov subspace (2.1).
The algorithm starts with a large Krylov subspaceKm+p(A, v). Let the columns ofV
spanKm+p(A, v) as in (1.2). Then the projection ofA ontoV yields a Hessenberg matrix
H = V ∗AV, that satisfies the equation

AV = V H + r
[

0 0 · · · 1
]

,(2.6)

wherer is the residual. The QR decomposition ofH is computed and theQ factor is stored in
the form ofn− 1 rotators. In caseH is not unreduced, one has found an invariant subspace,
often referred to as a lucky breakdown as the projected counterpart contains now all the
essential information and one can solve the problem withoutapproximation error; the residual
becomes zero. Solving the resulting small dense problem in case of a breakdown is typically
easy and will not be investigated here. Thus we assume thatH is unreduced; hence all rotators
in Q differ from the identity.

Let us now discuss the second bullet of the algorithm. The QR decomposition of the
Hessenberg matrixH = QR equals the left term in (2.7) and as an example we will, via
unitary similarity transformations, bring it to the shape shown in (2.5). According to dia-
gram (2.5) we keep the first two rotators but have to change the positionof the third rotator.
The third rotator is positioned on the right side of rotator two, which is wrong, thus we have
to bring this rotator (and as we will see, including all the trailing rotators) to the other side.
Therefore, we apply all rotators except the first two toR. Because of the descending ordering
of the rotators, this creates new non-zero entries in the subdiagonal ofR. We then introduce
the poleσ2: the diagonal matrixdiag [0, 0, σ2, . . . , σ2] is subtracted fromQR. These steps
are summarized in the following diagrams:

��

��

��

��

��

��

��

��

��

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

=

��

��

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
××

×
×

×
×

×
×

=

��

��

××××××××
×××××××
××××××
×××××
××××
×××
××
×

××
×

×
×
×
×
×
×
×

×
×

×
×

×
×

×

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗

+

0
0
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2

.(2.7)

The elements marked by⊗ are the ones that are changed by introducing theσ2’s on the
diagonal. In the next step we restore the upper triangular matrix by applying rotators from
the right. These rotations are then brought by a similarity transformation back to the left-hand
side. This similarity transformation preserves the structure ofD, as the same shiftσ2 appears
in all positions inD from the third one on,

��

��

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

��

��

��

��

��

��

��

+

0
0
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2

similarity
⇒

��

��

��

��

��

��

��

��

��

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

+

0
0
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2

.
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1

ǫ

0

(a) Initial h.

1

ǫ

0

(c) After 15 steps.

1

ǫ

0

(b) First step.

1

ǫ

0
p

m

(d) Selecting the first vectors.

FIG. 2.1. Log-scale plots of the residual, showing the effect of the similarity transformation and the selection
of the first vectors.

The procedure is then repeated for all subsequent poles. Theintroduction of the second finite
pole is illustrated in the following figures:

��

��

��

××××××
×××××
××××
×××
××
×

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×

××××
××
×

×
×

×
×

×
×

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗

+

0
0
σ2
σ3
σ3
σ3
σ3
σ3
σ3
σ3

similarity
⇒

��

��

��

��

��

��

��

��

��

××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×

+

0
0
σ2
σ3
σ3
σ3
σ3
σ3
σ3
σ3

.

For the infinite poles, we do not change the pattern as we started from a matrix in Hessenberg
form; we leave it like that. But, we do keep the possible non-zero shifts present on the
diagonal matrix. We could try to change them and set them to zero, but this would require
unnecessary computations and (2.2) shows that this is redundant.

These transformations bringH to the desired extended Hessenberg plus diagonal struc-
ture (2.5). But, considering (2.6) we see that the residual also gets affected, which is an
undesired side-effect. The similarity transformations that we apply toH correspond to uni-
tary matrices, which are applied from the right to (2.6). The residual matrixR is of rank 1
and initially has the following structure

R = rh = r
[

0 0 · · · 1
]

.

The first similarity transformation corresponding to a finite pole results in applying a series
of rotators toh, thereby immediately destroying the zero pattern and resulting in a rather
dense vector̃h. However, since the norm is preserved under unitary transformations, we
observe that the energy ofh gets distributed over many components inh̃; the absolute values
of the entries iñh are typically decaying from̃hn to h̃1. This is sketched in Figure2.1(a)
and2.1(b), where a logarithmic y-axis with an added point for0 is used. Theǫ stands for the
machine precision. Every time a similarity transformationlinked to a finite pole is handled
the “energy” is pushed a bit more to the left; see Figure2.1(c). Finally we retain the first part
of V , where the residual is often very small; see Figure2.1(d).

We choose an oversampling parameterp that determines how many additional vectors
we add to the standard Krylov subspace. Since we keepm vectors, we start withm+ p ones.
By applying the similarity transformations, we changeV , H, andh in (2.6). At the end, we
select the leadingm × m block ofH. The approximation is successful if the entries of the
new residual (blue dashed part in Figure2.1(d)) are sufficiently small, as in this case we have
numerically computed the projected counterpart linked to the rational Krylov space. This will
be shown by the implicit-Q-theorem in the next subsection.
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2.3. The implicit-Q-theorem. The following variant of the implicit-Q-theorem in [17]
shows that the algorithm described in the last subsection leads indeed to an approximation of
the rational Krylov subspace sought after. It is shown that there is essentially one extended
Hessenberg plus diagonal matrix with the prescribed structure, which is at the same time the
projection ofA onto the range ofV , with V e1 = v.

THEOREM 2.1. LetA be a regular3 n×n matrix,σ andσ̂ be two shift vectors, and letV
andV̂ be twon×(m+1) rectangular matrices having orthonormal columns, sharingthe first
columnV e1 = V̂ e1. LetV and V̂ consist of the firstm columns ofV and V̂ , respectively.
Consider

AV = V H + rw∗
k = V H = V

(

QR+D
)

,

AV̂ = V̂ Ĥ + r̂ŵ∗
k = V̂ Ĥ = V̂

(

Q̂R̂+ D̂
)

,

whereQ and Q̂ are decomposed into a series of rotations, denoted byGQ
i and GQ̂

i , and
ordered as imposed byσ andσ̂. Let furtherH −D andĤ − D̂ be invertible.

Then definêk as the minimum

k̂ = min
i

{

1 ≤ i ≤ n− 2 such that,GQ
i = I,GQ̂

i = I, or σi−1 6= σ̂i−1

}

,

if no suchk̂ exists, set it equal tom.
Then the first̂k columns ofV and V̂ , and the upper left̂k × k̂ blocks ofV ∗AV and

V̂ ∗AV̂ are essentially the same, meaning that there is a diagonal matrix E, with |Ei,i| = 1,
such thatV E = V̂ andE∗V ∗AV E = V̂ ∗AV̂ .

To prove this theorem the following lemma is required, whichis the rational Krylov
analog of [28, Theorem 3.7].

LEMMA 2.2. LetH be ann× n matrix, with

H = QR+D,

whereQ is unitary with a decomposition into rotations according toa shift vectorσ, R an
upper triangular matrix, andD a diagonal matrix containing the poles as in(2.4). Let further
H −D be unreduced. Then fork = 1, . . . , n− 1,

span {e1, . . . , ek} = Ek = Krat
k (H, e1, σ).

Proof. First we show as in [28, Lemma 3.6] that fork = 1, . . . , n− 2,
(a) if σk = ∞, thenHKrat

k (H, v, σ) ⊆ Krat
k+1(H, v, σ) and

(b) if σk 6= ∞, then(H − σkI)
−1Krat

k (H, v, σ) ⊆ Krat
k+1(H, v, σ).

Let

Krat
k (H, v, σ) = span

{(

1
-1

∏

j=k,σj 6=∞

(H − σjI)
−1

)

v, . . . , v, . . . ,Hqkv

}

,

with qk = |{i ≤ k|σi = ∞}|. Further letup be defined forp ≤ k − qk by

up :=

(

1
-1

∏

j=p,σj 6=∞

(H − σjI)
−1

)

v,

3Regular in this case means invertible.
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p− := argmaxi<p σi 6= ∞, andp+ := argmini>p σi 6= ∞.
If σk = ∞, thenHHqv = Hq+1v andHup = (H − σp

−

I)up + σp
−

up ∈ span
{

up
−

, up

}

.
If σk 6= ∞, then

(H − σkI)
−1Hqv = (H − σkI)

−1(H − σkI + σkI)H
q−1

= Hq−1v + σk(H − σkI)
−1Hq−1v

and

(H − σkI)
−1up = (H − σkI)

−1(H − σp+
I)(H − σp+

I)−1up.

= up+1 + (σk − σp+
)(H − σkI)

−1up+1.

Let us now prove the lemma using the same argument as in [28, Theorem 3.7], i.e., by in-
duction. The statement is obviously true fork = 1. We choose a decomposition ofH of the
form

H = GLGkGRR+D,

whereGL andGR are the rotators to the left and right ofGk respectively, the rotation acting
on rowsk andk + 1.

Suppose thatσk = ∞. Using (a) withv = ej , j ≤ k shows thatHEk ⊆ Krat
s,k(H, e1, σ).

We will now show that there is anx ∈ Ek such thatz = Hx ∈ Ek+1 ande∗k+1z 6= 0.

We setx := R−1G−1
R ek. SinceGk is not inGR andR is a regular upper triangular

matrixx ∈ Ek. The vectory := GkGRRx is in Ek+1 and sinceGk 6= I, we havee∗k+1y 6= 0.
FurtherGLy ∈ Ek+1 sinceGk+1 is not inGL because ofsk = ℓ. The vectorz defined by

z = (GLGkGRR+D)x

has the desired structure sinceD is diagonal withDk+1,k+1 = 0.
We now suppose thatσk 6= ∞. Let y ∈ span {ek, ek+1} be the solution of

Gky = ek. SinceGk 6= I we havee∗k+1y 6= 0. We further have thatGLek ∈ Ek since
sk = r. We setz := R−1G−1

R y ∈ Ek+1, with e∗k+1z 6= 0 sinceR−1 is invertible. The vector
x := (GLGkGRR+D − σkI)z is in Ek since D − σkI is a diagonal matrix with
(D−σkI)k+1,k+1 = 0. Thus, we have a pair(x, z) with z = (H−σkI)

−1x. This completes
the proof.

Proof of Theorem2.1. The proof is a partial analog of [17, Theorem 3.5]. Let us now
assume thatσ = σ̂. Let furtherK rat

n (H, e1, σ) be the Krylov matrix having as columns the
vectors iteratively constructed for generating the associated Krylov subspaceKrat

n (H, e1, σ).
Then we know from Lemma2.2thatK rat

n (H, e1, σ) is upper triangular. Since it holds that

V K rat
n (H, e1, σ) = K rat

n (V HV ∗, V e1, σ) = K rat
n (A, V e1, σ) =

K rat
n (A, V̂ e1, σ) = K rat

n (V̂ ĤV̂ ∗, V̂ e1, σ) = V̂ K rat
n (Ĥ, e1, σ),

V K rat
n (H, e1, σ) andV̂ K rat

n (Ĥ, e1, σ) are QR decompositions of the same matrix and thusV
and V̂ , andH andĤ, are essentially the same for the full-dimensional case with identical
shift vectors. By multiplication withPk̂ = [e1, . . . , ek̂] from the right, the equality can be
restricted to the first̂k columns and the upper leftk̂ × k̂ block. For the caseσ 6= σ̂ and if one
of the matrices is not unreduced, we refer to the proof of [17, Theorem 3.5].
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2.4. A numerical example. For this and all other numerical experiments in this paper,
we use MATLAB implementations of the algorithms. In the (block) rationalcases reorthogo-
nalization has been used when generating the orthogonal bases. The experiments have been
performed on an IntelR© CoreTM i5-3570 (3.40GHz). The following example is an extension
of [17, Example 6.5].

EXAMPLE 2.3. We chooseA ∈ R
200×200 to be a diagonal matrix with equidistant eigen-

values{0.01, 0.02, . . . , 2}. We used the approximate rational Krylov subspaceKrat
m(A, v, σ)

to approximatef(A)v as

f(A)v ≈ V f(H)V ∗v = V f(H)e1 ‖v‖2 ,

with the columns ofV:,1:j spanningKrat
j (A, v, σ) for all j ≤ m andH = V ∗AV. The entries

of the vectorv are normally distributed random values with mean0 and variance1. To
demonstrate the power of shifts, we choose a continuous function f[0.10,0.16] focusing on a
small part of the spectrum:

f[0.10,0.16](x) =











exp(−100 (0.10− x)), x < 0.10,

1, x ∈ [0.10, 0.16],

exp(−100 (x− 0.16)), x > 0.16.

In Figure2.2 we compare three different Krylov subspaces. The green lineshows the ac-
curacy of the approximation off[0.10,0.16](A)v with Km(A, v), the red line is based on the
approximate extended Krylov subspaceKrat

m(A, v, [0,∞, 0,∞, . . . ]), and the orange line links
toKrat

m(A, v, [0.115,∞, 0.135,∞, 0.155,∞, 0.105,∞, . . . ]) computed as an approximate ra-
tional Krylov subspace. For the latter two subspaces we use the algorithm described in Sub-
section2.2, where we have chosen the oversampling parameterp = 100. In Figure2.3 we
compare the approximate rational Krylov subspaces for different oversampling parametersp.
The approximate rational Krylov subspaces are computed from larger Krylov subspaces and
thus their accuracy cannot be better. The gray lines show theexpected accuracy based on the
large Krylov subspace.

The use of the shifts (0.115, 0.135, 0.155, 0.105) improves the accuracy significantly.
The shifts boost the convergence on the relevant interval[0.10, 0.16]. This can also be ob-
served in the plots of the Ritz values in Figure2.4. In Figure2.4(a)the Ritz values for the
standard Krylov subspace are plotted. Each column in this plot shows the Ritz value of one
type of subspace for dimensions1 to 160. Red crosses stand for Ritz values approximating
eigenvalues with an absolute error smaller than10−7.5; orange crosses indicate good approx-
imations with absolute errors between10−7.5 and10−5; the green crosses are not so good
approximations with errors between10−5 and10−2.5. The typical convergence behavior to
the extreme eigenvalues is observed.

Figure2.4(b)shows the Ritz values of the approximate rational Krylov subspaces com-
puted with our algorithm and the above mentioned shifts. Onecan clearly see that well-
chosen shifts ensure that the relevant information moves tothe first vectors. In and nearby
[0.10, 0.16], there are only tiny differences compared with Figure2.4(c), where we see the
Ritz values obtained with the exact rational Krylov subspace.

Finally, Figure2.4(d)shows the Ritz values determined with the exact extended Krylov
subspace. The Ritz values in[0.10, 0.16] approximate the eigenvalues much later than in the
previous plot and, thus, the accuracy of the approximation of f[0.10,0.16](A)v by an approx-
imate, extended Krylov subspace, red graph in Figure2.2, is not as good as for the rational
Krylov subspace, orange graph.
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FIG. 2.2.Relative error in approximatingf[0.10,0.16](A)v for m = 12, 24, 36, 48, 60, p = 100.
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FIG. 2.3.Relative error in approximatingf[0.10,0.16](A)v.

The first three plots of Figure2.4have been merged into a video4 allowing easy compar-
ison.

3. Block Krylov subspaces. Computingf(A)v1, . . . , f(A)vb simultaneously can be
done by a block Krylov subspace of the form

Km(A,V) = span
{

V, AV, A2V, A3V, . . . , Am/b−1V
}

with V = [v1, . . . , vb] .

The dimension ofKm(A,V) is m and must be an integer multiple ofb.
We will first analyze the structure of the matrixH, the projection ofA onto the Krylov

4http://etna.math.kent.edu/vol.43.2014/pp100-124.dir/rational_eq_spaced.mp4

http://etna.math.kent.edu/vol.43.2014/pp100-124.dir/rational_eq_spaced.mp4
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(d) Extended Krylov.

FIG. 2.4.Ritz value plots for equidistant eigenvalues in[0, 2]; the interval[0.10, 0.16] is marked blue.

subspaceKrat
k (A,V, σ), before we explain the necessary transformations to achieve this struc-

ture.

3.1. The structure of the projected counterpart for block Krylov subspaces.Let V
be a tall and skinny matrix containing the starting vectors,V = [v1, . . . , vb] ∈ C

n×b, where
b is the block-size. The rational Krylov subspace contains positive powers ofA, AiV, for
σi = ∞, and negative powers5,

(

-1

∏1
t=i,σt 6=∞(A− σtI)

−1
)

V, for σi 6= ∞.
Let K := K rat

n (A,V, σ) ∈ C
n×n be the Krylov matrix linked toKrat

n (A,V, σ). The
columns ofK are the vectors ofKrat

n (A,V, σ) without orthogonalization, while the columns
of V , defined as in (2.3), form an orthonormal basis of this Krylov subspace. We assume that
for all i ∈ {1, . . . , b} the smallest invariant subspace ofA containingvi is C

n. Then there
is an invertible, upper triangular matrixU , so thatK = V U . Since the Krylov subspace is
of full dimension, we haveAV = V H andAKU−1 = KU−1H. SettingHK := U−1HU
yields

AK = KHK .(3.1)

SinceU andU−1 are upper triangular matrices the QR decomposition ofH has the same
pattern of rotators asHK . We will derive the structure ofH based on the structure ofHK .

3.1.1. The structure of the projected counterpart for rational Krylov subspaces
spanned by a non-orthogonal basis.We describe the structure ofHK and show that the

5 -1

∏1
t=i,σt 6=∞(A− σtI)−1 denotes the product is(A− σtI)−1 · · · (A− σ1I)−1.
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QR decomposition ofHK −D = QR̃, whereD is a diagonal matrix based on the shifts, has
a structured pattern of rotators. The following example will be used to illustrate the line of
arguments,σ = [∞, σ2, σ3,∞, σ5,∞,∞, . . . ]. The corresponding Krylov matrix K is

(3.2) K rat
n (A,V, σ) =

[

V, AV, (A− σ2I)
−1V, (A− σ3)

−1(A− σ2I)
−1V, A2V,

(A− σ5I)
−1(A− σ3)

−1(A− σ2I)
−1V, A3V, A4V . . .

]

.

Inserting (3.2) into (3.1) provides

(3.3) K rat
n (A,V, σ)HK =

[

AV, A2V, A(A− σ2I)
−1V, A(A− σ3)

−1(A− σ2I)
−1V,

A3V, A(A− σ5I)
−1(A− σ3)

−1(A− σ2I)
−1V, A4V, A5V . . .

]

.

The matrixHK consists of blocks of sizeb × b. We will now show thatHK in the exam-
ple (3.3) satisfies

HK :=

























0 0 I 0 0 0 0 . . .
I 0 0 0 0 0 0 . . .

0 σ2I I 0 0 0 . . .
0 0 σ3I 0 I 0 . . .
I 0 0 0 0 0 . . .

0 σ5I 0 . . .
I 0 0 . . .

I . . .

























.

One can show that forσj 6= ∞,

A(A− σjI)
−1

1
-1

∏

t=j−1
σt 6=∞

(A− σtI)
−1 V = σj

1
-1

∏

t=j
σt 6=∞

(A− σtI)
−1 V +

1
-1

∏

t=j−1
σt 6=∞

(A− σtI)
−1 V.

Thus, from (3.3) it follows that the diagonal ofHK is D, whereD is a diagonal matrix
containing the shifts, cf. (2.4),

D = blockdiag (0Ib, χ1Ib, . . . , χn−1Ib) with χi =

{

σi, σi 6= ∞,

0, σi = ∞.
(3.4)

Let i andj be the indices of two neighboring finite shiftsσi andσj , with i < j andσk = ∞
∀i < k < j. ThenHK(bi+1 : b(i+1), bj+1 : b(j+1)) = I. Additionally, forj, the index
of the first finite shift, we haveHK(1 : b, bj + 1 : b(j + 1)) = I.

Let q be the index of an infinite shift. Then the associated columnsof K andAK are

K:,bq:b(q+1)−1 = AqV and AK:,bq:b(q+1)−1 = Aq+1V.

Thus, for two neighboring infinite shiftsσi = ∞ andσj = ∞, with i < j andσk 6= ∞
∀i < k < j, we haveHK(bj + 1 : b(j + 1), bi + 1 : b(i + 1)) = I. Additionally, for j, the
index of the first infinite, shift we haveHK(bj + 1 : b(j + 1), 1 : b) = I.

The column ofHK corresponding to the last infinite pole has a special structure related to
the characteristic polynomial ofA. For simplicity, we assume that the last shift is infinite and
that the last block column ofHK is arbitrary. The matrixHK is now completely determined.
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In the next step, we compute the QR decomposition ofHK . For simplicity, we start
with examining the case when all poles equal zero. Let us callthis matrixH0

K , with the QR
decompositionH0

K = Q0R0. The rhombi inQ0 are ordered according to the shift vectorσ.
For the infinite shifts the rhombus is positioned on the rightof the previous rhombus and for
finite shifts on the left. Thus, e.g.,

Q0 =

��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

�� ��

first block

σ1 = ∞
σ2 6= ∞
σ3 6= ∞
σ4 = ∞
σ5 6= ∞
σ6 = ∞,

where all rotators in the rhombi are[ 0 1
1 0 ], and

R0 =











I ×
.. .

...
I ×











,

where× now depicts a matrix of sizeb × b instead of a scalar. The rotations in the trailing
triangle ofQ0 introduce the zeros in the last block column ofR0.

Let us now reconsider the rational case with arbitrary finiteshifts. LetD be the diagonal
matrix defined in (3.4). We then haveHK −D = H0

K = Q0R0.

3.1.2. The structure of the projected counterpart for rational Krylov subspaces
spanned by an orthogonal basis.We use the QR decompositionHK − D = Q0R0 to
compute the QR decomposition ofH. The matrixH can be expressed as

H = UHKU−1 = U
(

Q0R0U
−1 +DU−1 − U−1D

)

+D,

sinceD − UU−1D = 0. The matrixW = DU−1 − U−1D is upper triangular. Ifσi = ∞,
thenDρ(i),ρ(i) = 0, with ρ(i) the set of indices{bi+ 1, bi+ 2, . . . , bi+ b} for i ≥ 0. Thus,
if σi = ∞ andσj = ∞, thenWρ(i),ρ(j) = 0. Further,Wρ(i),ρ(i) = 0 sinceDρ(i),ρ(i) = σiI;
see (3.4). In the example (3.1),W is a block matrix with blocks of sizeb×b and the following
sparsity structure:

W =

























0 0 × × 0 × 0 0
0 × × 0 × 0 0

0 × × × × ×
0 × × × ×

0 × 0 0
0 × ×

0 0
0

























.

We now factorQ0 asQr
0Q

ℓ
0, where all blocks, which are on the left of their predecessor, are

put intoQr
0 and the others intoQℓ

0,
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Qr
0 =

��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��

��

��

��
��

��

��
��

��

��

, Qℓ
0 =

��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��

��

��

��
��

��

��
��

��

��

��

��

��
��

��

��
��

��

��
��

�� ��

.

SinceQℓ
0 consist solely of descending sequences of rhombi, the matrix Hℓ = Qℓ

0R0U
−1 is

of block Hessenberg form, in this example:

Hℓ =

























0 0 I ×
I 0 0 ×

I 0 ×
I ×

0 I ×
I 0 ×

0 ×
I ×

























.

Recall that we can writeH as

H = U
(

Qr
0Hℓ +DU−1 − U−1D

)

+D = UQr
0 (Hℓ +Qr∗

0 W ) +D.

SinceW is a block upper triangular matrix with zero block diagonal andQr∗
0 contains only

descending sequences of rhombi, the productQr∗
0 W is block upper triangular, in this exam-

ple:

Qr∗
0 W =

























0 0 × × 0 × 0 0
0 × × 0 × 0 0

0 0 0 × 0 0
× × × × ×

× × × ×
0 0 0

× ×
0

























.

For σi 6= ∞ we get a non-zero block(Qr∗
0 W )ρ(i+1),ρ(i+1), since for eachσi 6= ∞ the

block rowsρ(i) and ρ(i + 1) are swapped. However, sinceWρ(i+1),ρ(i) = 0 the block
(Qr∗

0 W )ρ(i),ρ(i) is zero if additionallyσi−1 = ∞. Hence, the sum ofHℓ andQr∗
0 W is also

block Hessenberg with the same block subdiagonal asHℓ. In this example the sum is

Hℓ +Qr∗
0 W =

























0 0 ⊗ × 0 × 0 ×
I 0 × × 0 × 0 ×

I 0 0 0 × 0 ×
⊗ × × × ×

× ⊗ × ×
I 0 0 ×

× ×
I ×

























.
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We now determineQ1 = Qr
0Q

ℓ
1Q

t
1, whereQℓ

1 andQℓ
0 have the same pattern of rotators and

Qt
1 will be added later. The rotations inQℓ

1 have to be chosen so thatHℓ + Qr∗
0 W becomes

block upper triangular and so that the blocksρ(i), ρ(i) with σi = ∞ or i = 0 also are upper
triangular. Because of the special structure ofHℓ + Qr∗

0 W andQℓ
1 this is possible. The

remaining blocks in this example can be brought into upper triangular form by the rotators
in Qt

1:

Qt
1 =

��

�� ��

��

�� ��

��

�� ��

.

After passingQ1 through the upper triangular matrixU to the right, we have the QR decom-
position ofH −D.

Summarizing the steps above, we have shown that the projection of A onto a block
rational Krylov subspace such as (3.2) spanned by the matrixV leads to a structure of the
form

H = V ∗AV =

××××××××××××××××××××××××
×××××××××××××××××××××××
××××××××××××××××××××××
×××××××××××××××××××××
××××××××××××××××××××
×××××××××××××××××××
××××××××××××××××××
×××××××××××××××××
××××××××××××××××
×××××××××××××××
××××××××××××××
×××××××××××××
××××××××××××
×××××××××××
××××××××××
×××××××××
××××××××
×××××××
××××××
×××××
××××
×××
××
×
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×
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×
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×
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×
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×
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=

��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��

��

�� ��

��

�� ��

��

�� ��

��

�� ��

R+ diag

0
0
0
0
0
0
σ2
σ2
σ2
σ3
σ3
σ3
0
0
0
σ5
σ5
σ5
0
0
0
0
0
0

,

with R an upper triangular matrix.

This structure is not suitable for our algorithm, since the QR decomposition ofH−D for
the Krylov subspace with solely infinite poles does not have the additional rotators inQt

1. We
will now show that there are similarity transformations that remove the rotators inQt

1. These
transformations change the basis of the Krylov subspace butonly within the block columns.
Thus, the approximation properties are not affected if we always select full blocks.

The following three structure diagrams show the main steps:
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similarity
⇒ =

.
(3.5)

First we bring the middle triangle to the other side. It has tobe passed through the upper
triangular matrix first and next a unitary similarity transformation eliminates the triangle on
the right and reintroduces it on the left. This transformation only changes columns within one
block. After that, a series of turnovers (blue circles) brings the rotators in the triangle down
to the next triangle:



ETNA
Kent State University 

http://etna.math.kent.edu

116 T. MACH, M. S. PRANIC, AND R. VANDEBRIL

��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��

��

��

��
��

��

��
��

��

��

��

��

��
��

��

��
��

��

��

��

��

��
��

��

��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��
��

��

��

��

�� ��

��

�� ��
��

�� ��
��

�� ��

��

��
��

��

��

��

y

y

y= = · · ·
.

(3.6)

Doing this for every rotation in the triangle completes (3.5). Finally, we can merge the two
triangles; in this example withb = 3: fuse the rotations in the middle, do a turnover, and fuse
the pairs on the left and right. Thus bringingH into a shape without the rotations inQt

1 is
sufficient to approximate the blocks of the block rational Krylov subspace. However, we are
not able to approximate the individual vectorsKrat

n (A,V, σ) and thus the Krylov condition
thatV:,1:j spans the firstj vectors ofKrat

n (A,V, σ) holds only forj = ib with i ∈ N. The
desired shape in our example is:
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.

3.2. The algorithm. We can now describe the algorithm to obtain the structure shown
in the last subsection. The difference with respect to the algorithm from Subsection2.2 is
that now the rhombi instead of individual triangles are arranged according to the shift vector.
For eachσi 6= ∞, starting withi = 1, we have to introduce the pole and bring all the rhombi
beginning with the(i + 1)st to the other side. After this has been done for the whole shift
vector the first block columns are selected. The approximation is successful if the residual is
small enough.

We will now describe in detail how to introduce one pole as this is the essential differ-
ence. If we apply the trailing rotations before introducingthe shift, the matrix structure is
not perturbed. Since the trailing rhombi form a descending sequence of rhombi, applying the
rotations to the upper triangular matrix produces a Hessenberg matrix withb subdiagonals.
Let σ2 6= ∞, and introduce the shiftσ2. The following diagram illustrates the introduction of
the shift:
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+ diag

0
0
0
0
0
0
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2

,

where the marked entries⊗ represent the non-zero pattern of the second term. The transfer of
the rotations is completed by pulling the rotators out to theright, thereby restoring the upper
triangular shape. Unfortunately, this is not as simple as inthe one-dimensional case with only
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one vector. Because of the block structure, the zeroing of the entries based on rotators from
the right-hand side leads to
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,

where the rotations are not entirely in the desired pattern.We have to transform the V-
pyramidal shape in the triangle into an A-pyramidal shape and then move the triangle to
the lower end by a series of turnovers as in (3.5) and (3.6):
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= =
.

The rotations on the right-hand side of the upper triangularmatrix are now in the right shape.
We use a unitary similarity transformation to bring these rotators back to the left side of the
matrix. Since this transformation must also be applied to the diagonal matrix containing
the shifts, we have to use the same shift for all trailing positions as in Section2. Then we
continue with the next rhombus. If this rhombus correspondsto an infinite pole, nothing has
to be done; also the shifts inD remain unaltered for convenience as in (2.5). If this rhombus
corresponds to a finite pole, the trailing part of the matrixD is updated to the next shift. The
process is continued until the desired shape is retrieved.

3.3. The implicit-Q-theorem. With the following theorem one can show that, in the
absence of a residual, the above described algorithm computes a block rational Krylov sub-
space.

THEOREM 3.1. LetA be a regular matrix, and letσ and σ̂ be two shift vectors. LetV
and V̂ be twon × (k + 1)b rectangular matrices having orthonormal columns sharing the
first b columnsV [e1, . . . , eb] = V̂ [e1, . . . , eb]. LetV and V̂ be the firstkb columns ofV and
V̂ , respectively. Consider

AV = V H + rw∗
k = V H = V

(

QR+D
)

,

AV̂ = V̂ Ĥ + r̂ŵ∗
k = V̂ Ĥ = V̂

(

Q̂R̂+ D̂
)

,

whereQ andQ̂ are decomposed into a series ofb× b rhombi of rotations ordered as imposed
byσ andσ̂ and letH −D andĤ − D̂ be invertible.

Definek̂ as the minimum index for which one of the2b2 rotations in theith rhombus of
Q or Q̂ is the identity orσi−1 6= σ̂i−1; if no suchk̂ exists, set it equal ton− 1.

Then the first̂kb columns ofV and V̂ , and the upper left̂k × k̂ blocks ofV ∗AV
and V̂ ∗AV̂ are block essentially the same.Block essentially the samemeans here that
V:,jb+1:j(b+1) = V̂:,jb+1:j(b+1)U with U ∈ C

b×b andU∗U = I.
The theorem is a generalization of Theorem2.1and can be shown analogously based on

an analog generalization of Lemma2.2 for the block case. Therefore, one has to show first
that fork = 1, . . . , n

b − 2,
(a) if σk = ∞, thenHKrat

k (H,V, σ) ⊆ Krat
k+1(H,V, σ) and

(b) if σk 6= ∞, then(H − σkI)
−1Krat

k (H,V, σ) ⊆ Krat
k+1(H,V, σ).



ETNA
Kent State University 

http://etna.math.kent.edu

118 T. MACH, M. S. PRANIC, AND R. VANDEBRIL

The next step is to decomposeH into

H = GLGkGRR+D,

whereGk contains all rotators in thekth rhombus. Based on this decomposition, one can
prove the block generalization of Lemma2.2. As a block QR decomposition is block essen-
tially unique we get

V K rat
n (H, [e1, . . . , eb], σ) = K rat

n (V HV ∗, V [e1, . . . , eb], σ) = K rat
n (A,V, σ) =

K rat
n (A,V, σ) = K rat

n (V̂ ĤV̂ ∗, V̂ [e1, . . . , eb], σ) = V̂ K rat
n (Ĥ, [e1, . . . , eb], σ).

Thus, ensuring that the computedH has the desired structure is sufficient to compute an
approximation to a block rational Krylov subspace, as illustrated by the numerical example
in the next subsection.

3.4. A numerical example.The algorithm described above was used to approximately
solve a Lyapunov equation

AX +XA+BB∗ = 0,

for the unknown matrixX. The matrixA ∈ R
5000×5000 is a diagonal matrix with entries

λi = 5.05 + 4.95 cos(θi), θi ∈ [0, 2π) ∀i,

having equally distributedθi. The matrixB is of size5000 × 2, so that one actually needs
a block Krylov algorithm with block-sizeb = 2. The dimension ofB is the only point
where this example differs from [16, Example 4.2]. The entries ofB are computed with the
MATLAB commandrandn, meaning they are pseudo-random based on a normal distribution
with variance1 and mean0. A reference solution is computed with the MATLAB function
lyapchol, which we assume to be exact. The approximate solutionX̃ ≈ X is computed
based on the projection onto an approximate rational Krylovsubspace via

X̃ = V Y V ∗, whereY is the solution ofHY + Y H + (V ∗B)(V ∗B)∗ = 0,

with H = V ∗AV. In Figure3.1, we compare the relative error forB of rank2 (colored lines,
bottom axis) with the results for aB of rank1 (gray lines, larger marks, top axis). We need for
the block-sizeb = 2 about twice as many vectors as forb = 1. The oversampling parameter
p was chosen to be100 · b. To make the comparison easier the gray lines are scaled according
to the axis on top.

We observe that the relative accuracy shows almost the same behavior. According to the
results from the last section, we also observe that the use ofshifts (here{0.5, 0, 0.25, 0.125}
in round robin for the finite poles) improves the accuracy.

4. Symmetric matrices. If the matrix A is symmetric, then the Hessenberg matrix
H = V ∗AV is also symmetric and thus tridiagonal. In this section we will exploit the sym-
metry when computing the approximate extended Krylov subspace. Therefore, we replace
the QR decomposition ofH by the LDL∗ factorization. Besides this adaption the algorithm
remains the same and we can reuse the implicit-Q-theorem andthe structure ofH.
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FIG. 3.1.Relative error when solvingAX +XA∗ +BB∗ = 0 for m = 12, 24, 36, 48, 60.

4.1. Eliminators. The factorizationH = LDL∗ of the tridiagonal matrixH is of the
form

×
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×
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=
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×
×
×
×
×
×
×
×
×

= D ,

where we replaced the diagonal matrix in the middle byD to simplify the notation. In the
second part of the equation, we factor the bidiagonal matrices into special Gaussian elimina-
tion matrices: identity matrices except for a single non-zero sub- (or super-)diagonal element.
We use resembling symbols as for rotators and call them for short eliminators: ⌈� =

[

1
× 1

]

is a lower eliminatorand �⌊ =
[

1 ×
1

]

anupperone. Applying such an eliminator to a matrix
means adding a multiple of a row or column to another row or column respectively, e.g.,

⌈�
[

a
b

]

=

[

1
α 1

] [

a
b

]

=

[

a
αa+ b

]

and also �⌊
[

a
b

]

=

[

1 β
1

] [

a
b

]

=

[

a+ βb
b

]

.

As with rotators we can perform several operations with eliminators. If the eliminators act on
disjoint rows we can change their order arbitrarily. We can further change the ordering in the
following cases:

�⌊
⌈� =





1 ξ
1

1









1
1
χ 1



 =





1 ξ
1
χ 1



 =
�

⌈
⌊

� and
⌈�

�⌊
=

⌈
�

�

⌊
.

We can also pass eliminators through diagonal matrices: applying an eliminator to a diagonal
matrix creates a1×1-bulge; this bulge can be removed by another eliminator acting from the
other side. If we want to change the ordering of a lower and an upper eliminator acting on the
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same rows,

� ⌈⌊ � ⇔⌈ �� ⌊

we have to compute the product and factor the resulting2×2 matrix by an LDU or UDL fac-
torization, respectively. This creates, however, an additional diagonal matrix. This diagonal
matrix can be passed through the other eliminators and merged with the main diagonal.

4.2. The algorithm. We run the same algorithm, but replace the QR decomposition by
the LDL∗ factorization and update this representation instead. First, we investigate the non-
block, non-rational variant. We start with a large standardKrylov subspace withH = LDL∗.

The matrixH must now be brought into the shape determined by the shift vector. The
lower eliminators on the left have the same pattern as the rotations in the general case. The
pattern for the upper eliminators, however, is flipped. A similar structure has been used
in [18, Section 4] to solve an inverse eigenvalue problem.

The transfer of rotators through the upper triangular matrix is replaced by bringing the
corresponding lower eliminators from the left to the right and the corresponding upper elimi-
nators from the right to the left. We start with the last eliminators. The trailing2×2 matrix is
given by an LDU factorization. We compute the UDL factorization of the product. The upper
eliminator on the left commutes with the lower eliminators.Thus, the penultimate eliminators
are now the most inner ones and we can repeat the process in thesame way. After we have
repeated this steps for then− 4 trailing eliminators, say forσ = [∞, 0,∞, . . . ], we have the
following diagram:

D = D .

Now we have to bring the eliminators back to the other side. Bya single unitary similarity
transformation, we can bring both the lower eliminators on the right to the left and the upper
eliminators on the left to the right. This can be achieved by

[

c −s
s c

] [

1 ξ
1

]

=

[

1
χ 1

] [

d
e

]

,

[

1
ξ 1

] [

c s
−s c

]

=

[

d
e

] [

1 χ
1

]

(4.1)

with

c =
1

√

1 + |ξ|2
, s =

ξ
√

1 + |ξ|2
, d = c, e = sξ + d, and χ = ξ.

This step also preserves the symmetry and we end up with an LDL∗ factorization of the form

D .

After we have brought all the eliminators in the right shape determined by the shift vector,
we select the first columns and the upper left part ofH.

The main advantage of this eliminator-based approach is that we make full use of the
symmetry. First of all that means that fewer unknown parameters inH, O(k + p) instead of
O((k + p)2), are needed. This reduces the number of required floating point operations. For



ETNA
Kent State University 

http://etna.math.kent.edu

RATIONAL KRYLOV WITHOUT INVERSION 121

instance, passing one rotator through the upper triangularmatrix changes2(k + p) entries
in the upper triangular matrix. By using the LDL∗ factorization we have to change only
two entries on the diagonal. The reduced number of floating point operations also reduces
the runtime of the algorithm; see Example4.1. Unfortunately, the overall complexity is
almost the same as for non-symmetric matrices. This will be illustrated and explained in the
numerical example. Second, we preserve the symmetry and canexploit this in the remaining
computations that have to be executed on the projected counterpart.

4.3. A numerical example. The matrices in [17, Examples 6.1–6.4] are all symmetric.
The runtime of the symmetric variant is up to 5% less than the runtime of the non-symmetric
implementation used in [17]. This small gain can be explained by the fact that the most ex-
pensive step, the update of the subspaceV , which is of linear complexity inn, the dimension
of A, is the same for the symmetric and the non-symmetric implementation. However, the
accuracy of the symmetric variant is almost the same as we will see in the following example.

EXAMPLE 4.1. This example is identical to [13, Example 5], which has been used
also in [17, Example 6.3] in the context of approximate extended Krylovsubspaces without
explicit inversion.

We compute the product of a matrix function and a vector,f(A)v, with f(x) = 1/
√
x,

using an approximate, extended Krylov subspace. The matrixA is the discretization of the
differential operatorL(u) = 1

10uxx − 100uyy on the unit square. We use 40 equally spaced
interior points. The discretization uses three-point stencils in both directions. Together with
homogeneous boundary conditions the matrixA is symmetric, positive definite, and of size
1600× 1600. The vectorv is chosen to have the entriesvj = 1/

√
40, ∀j.

We choose the oversampling parameterp to be200. In Figure4.1 we can see almost
no difference between the symmetric and the non-symmetric implementation; the crosses are
always inside the circles. Thus the accuracy of the symmetric variant is as good as the one of
the non-symmetric variant in this example.

[∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ · · · ]
[ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ · · · ]
[ 0 ∞ ∞ 0 ∞ ∞ 0 ∞ ∞ 0 ∞ ∞ · · · ]
[ 0 ∞ ∞ ∞ 0 ∞ ∞ ∞ 0 ∞ ∞ ∞ · · · ]
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FIG. 4.1.Relative error in approximatingf(x) = 1/
√
x for m = 12, 24, 36, 48, 60.
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4.4. Combination with block rational Krylov subspaces. Obviously one can combine
the ideas for exploiting the symmetry with the algorithm forapproximating a block rational
Krylov subspace. This leads again only to a different implementation based on the more
efficient representation of the symmetric matrix. Thus the theoretical results from Section2
and3 remain valid.

4.4.1. Block matrices.We will explain the block matrix approach for an example with
b = 2, where we get a pentadiagonal matrix instead of the tridiagonal one as forb = 1.
Hence the LDL∗ factorization of this matrix gives us two sequences of eliminators on both
sides, which we can group in rhombi as in Section3. Based on the shift vector similarity
transformations are used to order the rhombi on both sides ina way that the result approxi-
mates a block extended Krylov subspace. Forσ = [∞, 0,∞] the following diagram sketches
the shape:

D
similarity
⇒ D .

4.4.2. Rational Krylov subspaces.The LDL∗ factorization of the projected counter-
partH of the rational Krylov subspace

Krat
s,k(A, v, σ) = span

{

v,Av, (A− σ2I)
−1v,A2v,A3v, . . .

}

with symmetricA looks like

D +

0
0
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2

.

For the introduction of the shifts a similar trick as for the rational case is used: we apply the
trailing eliminators to the diagonal matrix and get a tridiagonal matrix. Then the shifts are
introduced and the tridiagonal matrix is refactored. The intermediate step is

×
×
×
×
×
×
×
×
×
×

=

×
×
⊗×
×⊗×
×⊗×
×⊗×
×⊗×
×⊗×
×⊗×
×⊗

+ diag

0
0
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2

,

where the entries⊗ are changed by introducing the shifts. We observe that the diagonal
matrix that is subtracted from the tridiagonal matrix is notchanged by applying the inverses
of the four eliminators. Next the UDU∗ factorization of the tridiagonal block is computed.
Hence, we get (the diagonal matrix equalsD)

D +

0
0
σ2
σ2
σ2
σ2
σ2
σ2
σ2
σ2

,

where we now can use rotations to bring the trailing eliminators simultaneously by unitary
similarity transformations back to the other side as in (4.1). If the desired rational Krylov
subspace has several finite poles the above described steps have to be repeated.
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4.4.3. Block rational Krylov subspaces.We just provide an example pattern of a sym-
metric block rational Krylov subspace forb = 3. The necessary steps to achieve this pattern
are analogous to the previous sections. The projected counterpartH of the block rational
Krylov subspace

Krat
[ℓ rrℓ rℓ ℓ ],8(A,V, σ) = span

{

V, AV, (A− σ2I)
−1V, . . .

}

,

with A = A∗ andV ∈ C
n×3 has the factorization:

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×

×
×
×
×
×

×
×
×
×
×
×
×

×
×
×
×

×
×
×
×
×
×

×
×
×

×
×
×
×
×

×
×
×
×

×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×

×
×
×
×
×

×
×
×
×
×
×
×

×
×
×
×

×
×
×
×
×
×

×
×
×

×
×
×
×
×

×
×
×
×

×
×
×

= D + diag

0
0
0
0
0
0
σ2
σ2
σ2
σ3
σ3
σ3
0
0
0
σ5
σ5
σ5
0
0
0
0
0
0

.

5. Conclusions. We have presented an algorithm to approximately compute rational
Krylov subspaces and rational block Krylov subspaces. We explained how to exploit the
symmetry of the original matrix. The numerical experimentsillustrate that the algorithm
is efficient for some of the examples. The algorithm can be interpreted as a compression
algorithm operating on an oversampled large Krylov subspace, and this implies that it cannot
add new data in the compression step. Unfortunately, this means that the algorithm fails to
deliver good results for those applications or examples where the large Krylov subspace lacks
the information on the inverse.

Even though this is a major step forward towards an algorithmof practical use, further
research is necessary. Future investigations include preliminary analysis of the matrices to
predict whether the algorithm will succeed, incorporatingpreconditioning, examining pos-
sible extensions to bi-orthogonal Krylov methods, and incorporation of good pole selection.
When testing the algorithm on some rational Krylov spaces, weaccidently picked poles equal
to the eigenvalues, and even, though the associated Krylov space is ill-defined, the algorithm
performed well. This behavior requires further study.

Acknowledgments. The authors thank the referees for their valuable comments.

REFERENCES

[1] A. C. ANTOULAS, Approximation of Large-Scale Dynamical Systems, SIAM, Philadelphia, 2005.
[2] T. BREITEN AND T. DAMM , Krylov subspace methods for model order reduction of bilinear control systems,

Systems Control Lett., 59 (2010), pp. 443–450.
[3] T. DAMM , Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equa-

tions, Numer. Linear Algebra Appl., 15 (2008), pp. 853–871.
[4] V. D RUSKIN AND L. K NIZHNERMAN, Extended Krylov subspaces: Approximation of the matrix square root

and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 755–771.
[5] V. D RUSKIN AND V. SIMONCINI , Adaptive rational Krylov subspaces for large-scale dynamical systems,

Systems Control Lett., 60 (2011), pp. 546–560.
[6] D. FASINO, Rational Krylov matrices and QR-steps on Hermitian diagonal-plus-semiseparable matrices,

Numer. Linear Algebra Appl., 12 (2005), pp. 743–754.
[7] R. W. FREUND, Krylov-subspace methods for reduced-order modeling in circuit simulation, J. Comput. Appl.

Math., 123 (2000), pp. 395–421.
[8] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 4th ed., Johns Hopkins University Press, Balti-

more, 2013.
[9] S. GUGERCIN, A. C. ANTOULAS, AND C. BEATTIE,H2 model reduction for large-scale dynamical systems,

SIAM J. Matrix Anal. Appl., 30 (2008), pp. 609–638.



ETNA
Kent State University 

http://etna.math.kent.edu

124 T. MACH, M. S. PRANIC, AND R. VANDEBRIL
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