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BLOCK GRAM-SCHMIDT DOWNDATING ∗

JESSE L. BARLOW†

Abstract. Given positive integersm, n, andp, wherem ≥ n+ p andp ≪ n. A method is proposed to modify
the QR decomposition ofX ∈ R

m×n to produce a QR decomposition ofX with p rows deleted. The algorithm
is based upon the classical block Gram-Schmidt method, requires an approximation of the norm of the inverse of
a triangular matrix, hasO(mnp) operations, and achieves an accuracy in the matrix 2-norm that is comparable to
similar bounds for related procedures forp = 1 in the vector 2-norm. Since the algorithm is based upon matrix-
matrix operations, it is appropriate for modern cache oriented computer architectures.

Key words. QR decomposition, singular value decomposition, orthogonality, downdating, matrix-matrix oper-
ations.
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1. Introduction. Given a matrixX ∈ R
m×n and an integerp, wherem ≥ n + p and

p ≪ n. Suppose that we have the orthogonal decomposition (i.e., QR decomposition)

(1.1) X = UR,

whereU ∈ R
m×n is left orthogonal andR ∈ R

n×n is upper triangular. LetX be partitioned
as

(1.2) X =

[
X0

X

]}
p}
m−p

,

and suppose that we wish to produce the QR decomposition

(1.3) X = U R,

whereU ∈ R
(m−p)×n̄ is left orthogonal,R ∈ R

n̄×n is upper trapezoidal, and̄n ≤ n. Obtain-
ing (1.3) inexpensively from (1.1), called theblock downdatingproblem, is important in the
context of solving recursive least squares problems where observations are added or deleted
over time. It also arises as an intermediate computation in arecent null space algorithm by
Overton et al. [18]. In (1.2), the firstp observations are deleted, but, by simply applying a
row permutation toX, anyp observations can be deleted. Without changing the algorithm,
we could assume thatU ∈ R

m×n0 andR ∈ R
n0×n is upper trapezoidal, wheren0 ≤ n, but,

for simplicity, we assumen0 = n.
For p = 1, the block downdating problem (or simply thedowndatingproblem) has

an extensive literature [4, 9, 20]. A block downdating algorithm for the Cholesky decom-
position based upon hyperbolic transformations was described by Q. Liu [17]. Our block
CGS algorithm, closely related to the BCGS2 algorithm in [3] and the CGS2 algorithm
in [1, 12], has matrix-matrix operations substituted for the matrix-vector operations, orthog-
onal decompositions—either the QR or the singular value decomposition—substituted for
normalizations along with inverse norm estimates and singular values used in orthogonality
tests instead of the size of vector norms. This leads to a BLAS-3 [10] or matrix-matrix oper-
ation oriented algorithm, which is more suited to modern computer architectures as it makes
more effective use of caching. It requiresO(mnp) operations.
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The downdating problem forp = 1 is solved by adding the columnb = e1, the first col-
umn of the identity, toX in (1.1), updating its QR factorization, and obtaining the matricesU
andR in (1.3) as “by-products” of that updating process.

Forp > 1 we substitute forb = e1 the left orthogonal matrixB ∈ R
m×p given by

(1.4) B =

[
V
0

]}
p}
m−p

,

whereV ∈ R
p×p is orthogonal.

Following a script in [3] for adding a block of columnsB, we seek an integerk ≤ p,
a left orthogonal matrixQB ∈ R

m×k, an upper trapezoidal matrixRB ∈ R
k×p, and a

matrixSB ∈ R
n×p such that

B = USB +QBRB ,(1.5)

UTQB = 0.(1.6)

Once the problem (1.5)–(1.6) is solved, we have the decomposition

[
V X0

0 X

]
=
[
QB U

] [RB 0
SB R

]
.

We then letZ ∈ R
(n+k)×(n+k) be an orthogonal matrix such that

(1.7) ZT

[
RB 0
SB R

]
=

[
RV Y0

0 R

]}
p}
n̄︸︷︷︸

p

︸︷︷︸
n

,

wheren̄ = n − p + k andR ∈ R
n̄×n remains upper trapezoidal. ApplyingZ to

[
QB U

]
,

we obtain

(1.8) Ũ =
[
QB U

]
Z =

[
Ũ1 Ũ2

]

︸︷︷︸
p

︸︷︷︸
n̄

,

where we note that

(1.9)

[
V X0

0 X

]
= Ũ

[
RV Y0

0 R

]
.

Thus,
[
V
0

]
= Ũ1RV ,

requiring that the matrix̃U1 in (1.8) has the form

(1.10) Ũ1 =

[
UV

0

]}
p}
m−p

and implying thatUV , RV ∈ R
p×p must be orthogonal.
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SinceŨ is left orthogonal,̃U2 ∈ R
m×n̄ has the form

(1.11) Ũ2 =

[
0
U

]}
p}
m−p

so thatU in (1.11) andR in (1.9) satisfy (1.3). OnceQB , SB , andRB are obtained, the
decomposition (1.7) can be constructed efficiently as the product of2 × 2 orthogonal trans-
formations.

Unfortunately, if the matrix

(1.12) C =
[
B U

]

is rank deficient, the problem of obtainingQB , RB , andSB in (1.5)–(1.6) is ill-posed; the
left orthogonal matrixQB is not unique,RB is rank deficient, and the resulting factorization
in (1.3) is rank deficient. From (1.5)–(1.6), C in (1.12) can be factored into

C =
[
QB U

] [SB In
RB 0

]
.

Since
[
QB U

]
is left orthogonal and the matrix on the right is quasi-uppertriangular,C is

rank deficient (ill-conditioned) only ifRB is.
There is little difficulty in obtainingQB ,RB , andSB that satisfy (1.5) with a small resid-

ual, i.e., where‖B − USB −QBRB‖2 is small. However, ifC is (near) rank deficient, the
ill-conditioning inRB can make it difficult to obtainQB such that

∥∥UTQB

∥∥
2

is small, i.e.,
such that (1.6) has a small residual. Understanding this issue and constructing an algorithm
that addresses it are the main themes of the text below.

To develop block CGS downdating, we relax the assumption that U is left orthogonal
and instead assume that

(1.13)
∥∥In − UT U

∥∥
2
≤ ξ ≪ 1

for some small and unknown valueξ. In some contexts (as in, say, [3]), we may assume
that ξ ≤ f(m,n)εM whereεM is machine precision andf(m,n) is a modestly growing
function, but, in our discussion, we simply assume that it is“small.” It is possible thatξ
depends on the condition number ofR, for example, when it is the result of a modified
Gram-Schmidt QR factorization [6]. Using the assumption (1.13), in Section2 we design
our algorithm with the goal of computingQB ∈ R

m×k, RB ∈ R
k×p upper trapezoidal, and

SB ∈ R
n×p, k ≤ p, such that

‖B − USB −QBRB‖2 ≤
√
5ξ +O(ξ2),(1.14) ∥∥UTQB

∥∥
2
≤ 0.5ξ +O(ξ2).(1.15)

Whenk < p, i.e., whenRB is strictly upper trapezoidal, the algorithm produces a lower
bound estimateξest for ξ in (1.13).

The algorithm we develop and the bounds associated with it, (1.14)–(1.15), assume the
reliability of anO(p2 log p) operation heuristic that, for an upper triangular matrixR2, finds
the largest integerk such that, for a prescribed constantβorth,

∥∥R−1
2 (1 : k, 1: k)

∥∥
2
≤ βorth.

The outline of this paper is as follows. The algorithm for computingQB , RB, andSB

that satisfy (1.14)–(1.15) is assembled in Section2. It is based firmly upon the function
block CGS2 step from [3, Function 2.2], which we restate as Function2.1. Our modi-
fication, given asblock CGS2 down (Function2.2), is justified by Theorems2.1 and2.2,
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FUNCTION 2.1 (Functionblock CGS2 step from [3]).

function [QB , SB , RB ]=block CGS2 step(U,B)
%

% First block Gram-Schmidt step
% ProducesY1 = (I − UUT )B
% Left orthogonalQ1 satisfiesRange(Q1) = Range(Y1) = Range((Im − UUT )B)
% if R1 nonsingular
%

(1) S1 = UTB;
(2) Y1 = B − US1;
(3)Q1R1 = Y1; % QR decomposition ofY1

%

% Second block Gram-Schmidt step
% ProducesY2 = (I − UUT )Q1

% Left orthogonalQB satisfiesRange(QB) = Range(Y2) = Range((Im − UUT )2B)
% if R1 andR2 nonsingular
%

(4) S2 = UTQ1;
(5) Y2 = Q1 − US2;
(6)QBR2 = Y2; % QR decomposition ofY2

%

% AssembleRB andSB to satisfy (1.5)
%

(7) SB = S1 + S2R1; RB = R2R1;
end block CGS2 step

requires a condition number estimate to determine the appropriate valuek for the dimensions
of QB andRB and leads to the functionblock downdate info (Function2.4). We forgo
a backward error analysis ofblock downdate info, but this could also be established
from the backward error analysis ofblock CGS2 step in [3, Section 3.2].

In Section3.1, we perform a sequence of Givens rotations to produceZ in (1.7) that re-
sults in the factorization (1.3). In Section3.2, we give an analysis of the relationship between∥∥∥In̄ − U

T
U
∥∥∥
F

and
∥∥In − UT U

∥∥
F

and show how, in practice,̃U1 andŨ2 deviate from struc-

tural orthogonality in (1.10)–(1.11). Numerical tests are presented in Section4 along with a
Householder-based algorithm for adding a block of rows in Section 4.1. Proofs of important
theorems are given in Section5, and we summarize with a brief conclusion in Section6.

2. A block Gram-Schmidt algorithm for downdating.

2.1. The functionsblock CGS2 step and block CGS2 down. We begin our de-
velopment by examining the functionblock CGS2 step from [3, Function 2.2] (given as
Function2.1 here) applied to a general matrixB ∈ R

m×p with the intention of producing
matricesQB , RB , andSB to solve (1.5)–(1.6). The function performs two classical Gram-
Schmidt (BCGS) steps onB. The resulting matricesQB andRB satisfy

QBRB = (Im − UUT )2B,

andQB , SB , andRB satisfy (1.5). The remaining issue is the extent to which (1.6) or at
least (1.15) can be satisfied. In [3], Function2.1 is part of a QR factorization of a larger ma-
trix, and the conditions on that QR factorization implicitly impose conditions onRB relative
to the loss of orthogonality inU .
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AssumingU satisfies (1.13) and thatRB is nonsingular, we have that

UTQB = (In − UT U)2UTBR−1
B ,

‖U‖2 ≤ (1 + ξ)1/2.

A crude norm bound is
∥∥UTQB

∥∥
2
≤
∥∥In − UT U

∥∥2
2
‖U‖2 ‖B‖2

∥∥R−1
B

∥∥
2

≤ ξ2(1 + ξ)1/2 ‖B‖2
∥∥R−1

B

∥∥
2
.

If

(2.1) ξ ‖B‖2
∥∥R−1

B

∥∥
2
≤ corth

for some constantcorth, then

(2.2)
∥∥UTQB

∥∥
2
≤ corthξ +O(ξ2).

The inequality (2.1) poses two problems: we cannot always guarantee thatRB is nonsingular
much less that it satisfies (2.1), andξ is not necessarily known. The relationship (2.1)–(2.2)
can be made columnwise in that for any positive integerk ≤ p,

(2.3)
∥∥UTQB( : , 1: k)

∥∥
2
≤ corthξ +O(ξ2)

if

(2.4) ξ
∥∥B( : , 1: k)

∥∥
2

∥∥R−1
B (1 : k, 1: k)

∥∥
2
≤ corth.

Unfortunately, (2.3)–(2.4) does not lead to such a bound as in (1.14).
The downdating problem (1.3) demands that we chooseB of the form (1.4), but our ideas

for choosingQB , RB , andSB apply to the situation in [3] whereB is more general, provided
that we normalize it as‖B‖2 = 1. For the downdating problem,RB andSB are discarded
once the decomposition (1.3) is computed, whereas for the application in [3], these quantities
are needed in subsequent computations.

To delete the firstp rows from the QR decomposition (1.1), we let

B0 =

[
Ip
0

]

and look at the application of the Function2.1toB0. Steps (1)–(2) of Function2.1read

S1 = UTB0 = U(1 : p, : )T ,

Y1 = B0 − US1.

Instead of computing the QR decomposition in step (3), we compute the singular value de-
composition (SVD) ofY1. Thus, we have

Y1 = Q1R1V
T ,(2.5)

Q1 ∈ R
m×p, left orthogonal,

V ∈ R
p×p, orthogonal,

R1 = diag(ρ1, . . . , ρp), ρ1 ≥ · · · ≥ ρp ≥ 0.(2.6)
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REMARK 2.1. In (2.5), the matrixR1 in the statement (3) of Function2.1is replaced by
the diagonal matrix ofY1’s singular values rather than its upper triangular factor.We use the
same notation for it since it is the matrixR1 obtained by Function2.1with B given by (1.4)
andV being the right singular vector matrix in (2.5). Moreover,R1 is used in the same way
in the algorithm described below as it is in Function2.1. We substitute the SVD because it
sets us up to extract useful information for solving the problem (1.14)–(1.15).

To obtain a matrixQB that is near orthogonal toU , the second BCGS step, steps (4)–(5)
in Function2.1, reads

S2 = UTQ1,

Y2 = Q1 − US2,

Q̂BR2 = Y2, QR decomposition,(2.7)

Q̂B ∈ R
m×p, left orthogonal,

R2 ∈ R
p×p, upper triangular.

To guarantee thatQ1 andQ̂B are left orthogonal to near machine accuracy, that is,

(2.8)
∥∥Ip −QT Q

∥∥
F
≤ εML(m, p) ≤ ξ, Q ∈ {Q1, Q̂B},

whereL(m, p) = O(mp3/2), εM is the machine unit, andξ is defined in (1.13), we rec-
ommend that (2.5) is computed with either the Golub-Kahan-Householder (GKH) SVD [13]
or the Lawson-Hanson-Chan (LHC) SVD [16, Section 18.5], [8] and that the QR factoriza-
tion (2.7) may be computed using the Householder QR factorization [7].

Step (6) of Function2.1becomes

(2.9) SB = S1V + S2R1, R̂B = R2R1.

Equations (2.7) and (2.9) yield Q̂B , R̂B , andSB such that

(2.10) B = USB + Q̂BR̂B .

We write Q̂B and R̂B because we are not yet ready to accept these matrices as solutions
to (1.14)–(1.15), however,SB will not be further modified by our algorithms. The only
difference between (2.9) and step (6) of Function2.1is the presence ofV in the computation
of SB .

The modifications (2.5) and (2.9) to block CGS2 step produceblock CGS2 down
given in Function2.2. This function produces the samêQB , R̂B , andSB as Function2.1
applied toU andB in (1.4). Note that it also outputsR1, the diagonal matrix of singular
values from the SVD in (2.5)–(2.6), and the upper triangular matrixR2.

REMARK 2.2. Function2.2requires three matrix multiplications withU , one SVD ofY1

using the GKH or LHC SVD, one QR decomposition ofY2, two matrix multiplications and
one matrix addition to formSB , and one multiplication of a triangular matrix by a diagonal
matrix to formRB . This totals to6mnp+10mp2+(20/3)p3+2np2+O(m+n) operations.
The dominant cost is the matrix multiplication withU .

Although equation (2.10) guarantees that̂QB , R̂B , and SB satisfy (1.5) (and thus
also (1.14)), we cannot guarantee thatQB = Q̂B satisfies (1.15). However, we are able
to identify a subset of the columns of̂QB that are sufficiently orthogonal toU . More pre-
cisely, for a given constantcorth such that0 < corth ≤ 1, we intend to find the largest
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FUNCTION 2.2 (The functionblock CGS2 down).

function [Q̂B , SB , R̂B , R2, R1]=block CGS2 down(U, p)
%

% First orthogonalization ofB0 againstU
%

(1) S1 = UT

[
Ip
0

]
(= U(1 : p, : )T );

(2) Y1 =

[
Ip
0

]
− US1;

(3)Q1R1V
T = Y1; % SVD of Y1

%

% Second orthogonalization
%

(4) S2 = UTQ1; Y2 = Q1 − US2;
(5) Q̂BR2 = Y2; % QR decomposition ofY2

(6) SB = S1V + S2R1; R̂B = R2R1;
end block CGS2 down

integerk such that
∥∥∥UT Q̂B( : , 1: k)

∥∥∥
2
≤ corthξ +O(ξ2),(2.11)

∥∥∥UT Q̂B( : , 1: k)
∥∥∥
F
≤ corthξF +O(ξ2), ξF ≥ max{

∥∥In − UT U
∥∥
F
, ξ}.(2.12)

In this paper, we default tocorth = 0.5 as it was used in [4] for the casep = 1. Daniel et al. [9]
usedcorth = 1 for the casep = 1 since it maintains roughly the same level of orthogonality.
Values ofcorth > 1 are not desirable since that would make the bound in (2.11) larger than
the bound in (1.13). On the other hand, we do not want the restriction (2.11) to be too harsh,
thus we recommendcorth to be bounded away from zero.

To assure the bound (1.15), we need two theorems both of which require the definition

(2.13) βj =
∥∥R−1

2 (1 : j, 1: j)
∥∥
2
, j = 1, . . . , p, β0 = 0

and both of which are proved in Section5.1. Equation (2.13) defines the norms of the inverses
of the leading principal submatrices ofR2 in (2.7). The first theorem relates the valuesβj

in (2.13) to the singular values in the diagonal matrixR1 in (2.5).
THEOREM2.1. Assume thatU satisfies(1.13). LetQ1 in (2.5) be left orthogonal andβj ,

j = 1, . . . , p, be given by(2.13). Letρj , j = 1, . . . , p, be the singular values ofY1 in (2.5).
If, for a given constantcorth with 0 < corth ≤ 1, k is the largest integer such that

(2.14) βk ≤ βorth =
(
1 + c2orth

)1/2

andk < p, then

(2.15) ρj ≤ αorthξ +O(ξ2), αorth =

(
1 + c2orth

)1/2

corth
,

for j = k + 1, . . . , p.
Usingcorth = 0.5, the two constants in Theorem2.1areβorth =

√
5/2 andαorth =

√
5.

If k < p, then the inequality

ρk+1 ≤ αorthξ +O(ξ2)
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yields the lower bound estimate ofξ given by

(2.16) ξest = ρk+1/αorth.

This estimate may be useful in determining ifU has become too far off from being left
orthogonal after a sequence of modifications to the QR factorization.

A second theorem, which follows from Theorem2.1, shows that establishingk in (2.14)
leads to an algorithm to produceQB , SB , andRB satisfying (1.14)–(1.15).

THEOREM 2.2. Assume the hypothesis and terminology of Theorem2.1 including the
assumption thatk satisfies(2.14). LetQ̂B , R̂B , andSB be the output of Function2.2. Then,
we have(2.11)–(2.12) and

(2.17) B = USB + Q̂B( : , 1: k)R̂B(1 : k, : ) +Dk,

whereDp = 0m×p,

(2.18) Dk = Q̂B( : , k + 1: p)R̂B(k + 1: p, k + 1: p), k < p,

and

(2.19) ‖Dk‖2 ≤
{
0 k = p,

ρk+1 k < p.

Thus, using the bound forρk+1 in (2.15), for corth = 0.5, we have thatQB = Q̂B( : , 1: k),
RB = R̂B(1 : k, : ), andSB satisfy(1.14)–(1.15).

In the next section, to find the integerk that satisfies (2.14), we give anO(p2 log p)
operation algorithm.

2.2. Finding the largestk such that Q̂B( : , 1: k) is near orthogonal toU . To pro-
duce an algorithm to find the largestk satisfying (2.14), for the upper triangular matrixR2 in
step (5) of Function2.2, we need an algorithm to compute

∥∥R−1
2 (1 : j, 1: j)

∥∥
2

with reason-
able accuracy for a givenj, and we need a binary search.

To produce the first, we computezj ,wj ∈ R
j such that

R−1
2 (1 : j, 1: j)wj = βjzj ,

R−T
2 (1 : j, 1: j)zj = βjwj + fj ,

thus yielding the approximate leading singular triplet(βj , zj ,wj) of R−1
2 (1 : j, 1: j). The

vectorfj is a residual that satisfies

wT
j fj = 0, ‖fj‖2 ≤ tol ∗ βj

for some tolerancetol. This can easily be done with a few steps of a Golub-Kahan-Lanczos
(GKL) bidiagonal reduction followed by an algorithm to find the largest singular triplet of
a bidiagonal matrix. This approach is related to ideas in Ferng, Golub, and Plemmons [11]
and ideas that have been used in ULV decompositions [2, 5]. If we are seeking the leading
singular value ofR−1

2 (1 : j, 1: j), such a procedure is akin to finding the leading eigenvalue
of a symmetric, positive definite matrix by the Lanczos algorithm, and no reorthogonaliza-
tion is necessary in this circumstance [19]. Since the details of GKL bidiagonal reduction
and the process of extracting the leading singular triplet is explored in detail elsewhere (see,
for instance, [14, Chapters 8 and 9]), we skip these here and simply assume thatthe triplet
(βj , zj ,wj) can be delivered by the “black box” call

[βj , zj ,wj ] = GKL inv norm(R2(1 : j, 1: j)).
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FUNCTION 2.3 (Lanczos-based routine for findingk satisfying (2.14)).

function k = max col orth(R2, βorth)
n=length(R2);
if βorth|R2(1, 1)| < 1
%

% All of R2 is too small, no columns are guaranteed orthogonal
%

k = 0;
else

[β, z,w]=GKL inv norm(R2);
if β <= βorth

%

%
∥∥R−1

2

∥∥
2
≤ βorth, all columns are guarantee orthogonal

%

k = p;
else

%

% Do binary search
%

first = 1; last = p;
%

% At any given point in this loop
% first ≤ k < last
%

while last− first > 1
middle = ⌊(first+ last)/2⌋;
cols = 1: middle;
[β, z,w] = GKL inv norm(R2(cols, cols));
if β > βorth

last = middle;
else

first = middle;
end;

end;
k = first;

end;
end;
end max col orth

CouplingGKL inv norm with a binary search that successively bracketsk in the interval

first ≤ k < last

that starts withfirst = 1 andlast = p and converges whenk = first = last − 1, yields
the functionmax col orth (Function2.3) that producesk in (2.14).

2.3. The necessary information for a block downdate.The following function, Func-
tion 2.4, usesblock CGS2 down (Function2.2) to produceQ̂B , SB , and R̂B and then
usesmax col orth (Function 2.3) to find k such thatQB = Q̂B( : , 1: k), SB, and
RB = R̂B( : , 1: k) satisfy (1.14)–(1.15) as shown by Theorem2.2.
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FUNCTION 2.4 (Block Downdate Information).

function [QB , SB , RB , k, ξest]=block downdate info (U, p)
%

% Produces information for a Block Downdate Operation for deleting the firstp rows
% from a QR decomposition whereU is a near left orthogonal matrix.
% Functionmax orth cols from Section2.2 is called to find the largest integerk
% such that

∥∥R−1
2 (1 : k, 1: k)

∥∥
2
≤ βorth for 1 ≤ j ≤ p.

%

% Define constants used in the function. Specifycorth = 0.5 to get
% the bounds (1.14)–(1.15).
%

(1) corth = 0.5; βorth =
(
1 + c2orth

)1/2
; αorth = βorth/corth;

(2) [Q̂B , SB , R̂B , R2, R1]=block CGS2 down(U, p);
%

% Determine “rank =k”, the number of columns of̂QB guaranteed orthogonal toU .
%

(3) k=max orth cols(R2, βorth)
%

% Give lower bound estimate,ξest in (2.16), for ξ.
% Note thatρk+1 = R1(k + 1, k + 1).
%

(4) if k < p
(5) ξest = R1(k + 1, k + 1)/αorth;
(6) else
(7) ξest = 0;
(8) end;
%

% Produce rankk solution to satisfy (1.14)–(1.15).
%

(9)RB = R̂B(1 : k, : );
(10)QB = Q̂B( : , 1: k);
end block downdate info

REMARK 2.3. Except forO(p2 log p) operations formax orth cols, almost all of the
operations for Function2.4are fromblock CGS2 down, thus it requires6mnp+10mp2+
(20/3)p3 + 2np2 +O(m+ n+ p2 log p) operations.

3. Producing a new QR factorization.

3.1. The algorithm to produce a new QR factorization. The remaining step in per-
forming the block downdate is to find an orthogonal matrixZ such that

(3.1) ZT

[
RB 0
SB R

]}
k}
n︸︷︷︸

p

︸︷︷︸
n

=

[
RV Y0

0 R

]}
p}
n̄︸︷︷︸

p

︸︷︷︸
n

, n̄ = n− p+ k,

whereR remains upper trapezoidal. First, permute the rows of the above matrix so that

PT

[
RB 0
SB R

]}
k}
n︸︷︷︸

p

︸︷︷︸
n

=




RB 0
SB(n̄+ 1: n, : ) R(n̄+ 1: n, : )
SB(1 : n̄, : ) R(1 : n̄, : )


 .
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We then letZ̆0 be a product of Householder transformations such that

Z̆T
0

[
RB

SB(n̄+ 1: n, : )

]
= R̆B ,

whereR̆B is upper triangular. LettingZ0 =

[
Z̆0 0
0 In̄

]
, we have

ZT
0




RB 0
SB(n̄+ 1: n, : ) R(n̄+ 1: n, : )
SB(1 : n̄, : ) R(1 : n̄, : )


 =

[
R̆B Y̆0

S̆B R̆

]}
p}
n̄

︸︷︷︸
p

︸︷︷︸
n

.

Note thatR̆ is upper trapezoidal and̆Y0 is nonzero only in the columns̄n+ 1, . . . , n.
The remaining orthogonal transformations inZ are either Givens rotations or House-

holder transformations applied to only two rows. For simplicity, we just refer to both kinds
as “Givens rotations”.

SinceR̆B is upper triangular, we let

(3.2) Z̆ = Z1 · · ·Zp,

where eachZj , j = 1, . . . , p, is given by

Zj = Gj,p+n̄ · · ·Gj,p+1

andGj,ℓ is a Givens rotation rotating rowsj andℓ and inserting a zero in position(j, ℓ) so
that

Z̆T

[
R̆B

S̆B

]
=

[
RV

0

]
.

In terms of data movement, (3.2) is a poor Givens ordering. A better one is to let

Z̆ = Ẑ1 · · · Ẑp−1Ẑp · · · Ẑn · · · Ẑn̄+p−1.

Here we have

Ẑj =





Gj,n̄+p · · ·G1,n+p−j+1 j < p,

Gp,n̄+2p−j · · ·G1,n̄+p−j+1 p ≤ j ≤ n̄,

Gp,n̄+2p−j · · ·Gj−n̄+1,p+1 n̄ < k < n̄+ p.

On its set of “active rows,” each of thesêZj has the form

Ẑj =

[
Γj ∆j

−∆j Γj

]
, Γ2

j +∆2
j = I,

whereΓj and∆j are diagonal. The orthogonal factorZ in the operation above is given by

Z = PZ0Ẑ1 . . . Ẑn̄+p−1.

REMARK 3.1. Ignoring terms ofO(mn), the algorithm described in this section requires
2mp2+(10/3)p3−2kp2 operations to calculate and applyZ0 and6mn̄p+3nn̄p+3n̄p2 oper-
ations to calculate and apply̆Z, with a total of6mn̄p+3nn̄p+3n̄p2+2mp2+(10/3)p3−2kp2

operations. The dominant cost in this algorithm is the operation of updating the orthogonal
factor as in (1.8).
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3.2. Properties of the new QR factorization.In our new QR factorization, we havẽU
given in (1.8) with

(3.3) Ũ =

[
UV ∆U
∆UV U

]}
p}
m−p

︸︷︷︸
p

︸︷︷︸
n̄

,

where, ifξ = 0, ∆U = 0p×n̄ and∆UV = 0(m−p)×p. In practice, this will not necessarily be
the case. Given the QR factorization (1.1), our downdate algorithm has produced

[
V X0

0 X

]
=
[
QB U

] [RB 0
SB R

]
+
[
Dk 0

]

=
[
QB U

]
ZZT

[
RB 0
SB R

]
+
[
Dk 0

]

= Ũ

[
RV Y0

0 R

]
+
[
Dk 0

]

=

[
UV ∆U
∆UV U

] [
RV Y0

0 R

]
+
[
Dk 0

]
.(3.4)

Blockwise that is
[
V
0

]
=

[
UV

∆UV

]
RV +Dk,

X0 = UV Y0 + (∆U)R,

X = (∆UV )Y0 + U R.(3.5)

We acceptU above to produce (1.3). Thus we need bounds for

(3.6)
∥∥X − U R

∥∥
F

and

(3.7)
∥∥∥In̄ − U

T
U
∥∥∥
F
.

For the quantity in (3.6), we could use an identical argument to obtain a bound in the 2-norm,
but for the quantity in (3.7), the Frobenius norm yields a more meaningful bound.

Bounds for
∥∥∆U

∥∥
2

and‖∆UV ‖2 are also desirable. Theorems3.1 and3.3 are proved
in Section5.2. The short proof of Corollary3.2 following from Theorem3.1 is given in this
section.

THEOREM3.1. LetŨ be the result of the matrixZ defined to perform the operation(1.7)
usingQB , RB , andSB produced by Function2.4 with inputU satisfying(1.13) andQB

satisfying(2.8). Assume thatQB is exactly left orthogonal. If̃U is partitioned according
to (3.3), then

‖∆UV ‖2 ≤ αorthξ +O(ξ2),(3.8) ∥∥∆U
∥∥
2
≤ (αorth + γorth)ξ +O(ξ2),(3.9)

∥∥∥In+k − ŨT Ũ
∥∥∥
2
≤ γorthξ +O(ξ2),(3.10)

where

γorth = 1 + corth.
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COROLLARY 3.2. Assume the terminology and hypothesis of Theorem3.1. Then
∥∥X − U R

∥∥
F
≤ ‖∆UV ‖2 ‖X‖F(3.11)

≤ αorthξ ‖X‖F +O(ξ2).(3.12)

Proof. From (3.5), we have

X − U R = X − UR = (∆UV )Y0,

where

Y0 = Z( : , 1: p)T
[
0
R

]
.

Thus,
∥∥X − UR

∥∥
F
= ‖(∆UV )Y0‖F ≤ ‖∆UV ‖2 ‖Y0‖F .

Since

‖Y0‖F =

∥∥∥∥Z( : , 1: p)T
[
0
R

]∥∥∥∥
F

≤ ‖X‖F ,

we have (3.11). The bound (3.8) gives us (3.12).
We now let

Ũ1 =

[
UV

∆UV

]}
p}
m−p

, Ũ2 =

[
∆U
U

]}
p}
m−p

and present a theorem bounding the quantity in (3.7).
THEOREM 3.3. Assume the terminology and hypothesis of Theorem3.1. LetQB sat-

isfy (2.8), and defineξF = max{
∥∥In − UT U

∥∥
F
, ξ}. Then

∥∥∥In̄ − ŨT
2 Ũ2

∥∥∥
2

F
≤ ξ2F + 2

(∥∥UTQB

∥∥2
F
−
∥∥∥ŨT

1 Ũ2

∥∥∥
2

F

)

+
∥∥Ip −QT

BQB

∥∥2
F
−
∥∥∥Ip − ŨT

1 Ũ1

∥∥∥
2

F
,(3.13)

∥∥∥In̄ − U
T
U
∥∥∥
F
≤
∥∥∥In̄ − ŨT

2 Ũ2

∥∥∥
F
+
∥∥(∆U)T (∆U)

∥∥
F
,(3.14)

≤
∥∥∥In̄ − ŨT

2 Ũ2

∥∥∥
F
+
√
p(αorth + γorth)

2ξ2 +O(ξ3F ).(3.15)

Thus,

(3.16)
∥∥∥In̄ − U

T
U
∥∥∥
2

F
≤ 5

2
ξ2F − 2

∥∥∥ŨT
1 Ũ2

∥∥∥
2

F
−
∥∥∥Ip − ŨT

1 Ũ1

∥∥∥
2

F
+O(ξ3F ).

Theorem3.3establishes that a loss of orthogonality inU will not be significantly worse
than that inU . Moreover, it is possible thatU is closer to a left orthogonal matrix thanU

since
∥∥∥Ip − ŨT

1 Ũ1

∥∥∥
F

and
∥∥∥ŨT

1 Ũ2

∥∥∥
F

may contain a significant portion of the loss of orthog-

onality in Ũ while
∥∥Ip −QT

BQB

∥∥
F

will be near machine accuracy and our implied bound
from (1.15) for

∥∥UTQB

∥∥
F

could be quite pessimistic. In the next section, our numerical
tests on a sliding window problem bear out this observation.
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4. Numerical tests. We consider a classic “sliding window” problem from statistics.
Here, we compute the QR decomposition of a matrixX(t) ∈ R

m×n which is a slice of a
large matrixXbig ∈ R

M×n. The results displayed are forM = 4000, m = 300, n = 250.
At stept,

X(t) = Xbig (p ∗ (t− 1) + 1: p(t− 1) +m, : ) ,

where, in the example shown,p = 40. The matrixXbig is constructed by generating a
randomM × n matrix using MATLAB’srandn function that simulates a standard normal
distribution and then multiplying the rows at random by factors of1, 10−7, 10−14, and10−21.
ThusXbig is a random matrix with rows that have large and small entries.

4.1. Adding a block of rows to a QR factorization. For the purposes of our numerical
tests in Section4.2, we also need an algorithm that adds a block of rows to a QR factorization.
Again, supposing that we already have the factorization (1.1) and we wish to add ap×n block
of rows given byXnew, then we simply compute the QR factorization

[
R

Xnew

]
= Qnew

[
Rnew

0

]
,

whereQnew is the product ofn Householder transformations. Thus, the new QR factorization
is

[
X

Xnew

]
= UnewRnew,

where

Unew =

[
U 0
0 Ip

]
Qnew( : , 1: n).

4.2. The sliding window experiment.Given the QR factorization

X(t) = U(t)R(t)

at stept, the QR factorization ofX(t+1) is produced by addingp rows at the bottom ofX(t)
using the algorithm in Section4.1 to produce its QR factorization, deleting thep rows at the
top ofX(t), and updating its QR factorization using Function2.4 followed by the algorithm
in Section3.1to obtain

X(t+ 1) = U(t+ 1)R(t+ 1).

For t = 1, 2, . . . , rank, changes were frequent because of the wild scaling ofXbig.
At t = 1, we produce the QR decomposition

X(1) = U(1)R(1)

using the modified Gram-Schmidt algorithm. SinceX(1) is ill-conditioned, consistent with
the bound in [6], we expect that

∥∥I − U(1)T U(1)
∥∥
2

will be significantly larger than the IEEE double precision machine unit
εM = 2−53 ≈ 1.1102× 10−16.
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FIG. 4.1.Loss of orthogonality for the sliding window example.

We produce two graphs. The first, Figure4.1, is the graph of

(4.1) ξ =
∥∥I − U(t)T U(t)

∥∥
2
.

The symbol ”+” in the graph indicates the estimate ofξ given by ξest in (2.16) from the
functionblock downdate info wheneverk < p holds in Theorem2.2. As can see be
observed,ξest is a fairly accurate estimate ofξ.

The second, Figure4.2, is the graph of

(4.2)
‖X(t)− U(t)R(t)‖2

‖X(t)‖2
·

The value of ”*” is graphed wheneverk < p hold in Function2.4, which makesR having
smaller rank thanR.

Note that in Figure4.1, the value of
∥∥I − U(t)T U(t)

∥∥
2

improves to near machine preci-
sion after about 10–20 steps, and this improvement persists. A similar pattern can be observed
for the relative residual‖X(t)− U(t)R(t)‖2 / ‖X(t)‖2, that is, it also improves to near ma-
chine precision and remains at this level. If we compute the QR factorization ofX(1) with
Householder transformations instead of the modified Gram-Schmidt method, the loss of or-
thogonality starts out at near machine precision and stays there. The residuals, graphed in
Figure4.2, follow the same pattern.

We have repeated this test with different values ofM , m, n, andp many times. IfU(1)
satisfied the fundamental assumption (1.13), the result was always similar. However, if the
matrixU(1) in the initial MGS factorization ofX(1) did not satisfy the assumption (1.13),
meaning thatU(1) could not be considered “near left orthogonal” and thus did not meet a
fundamental assumption of this work, the residuals still self-corrected, but the loss of orthog-
onality either did not self-correct or took significantly longer to do so.
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FIG. 4.2.Residuals for the sliding window example.

5. Proofs of the key theorems.

5.1. Proofs of Theorems2.1and 2.2. Using the form ofR1 in (2.6), we have that if for
someℓ ≤ p it hold thatρℓ = · · · = ρp = 0, then

(I − UUT )

[
V ( : , ℓ : p)

0

]
= 0,

thus concluding that

[
V ( : , ℓ : p)

0

]
is linearly dependent upon the columns ofU and thereby

allowing us to immediately reduce the dimension of this problem. Therefore, without loss of
generality, we assume that

(5.1) ρ1 ≥ . . . ≥ ρp > 0

and thus thatR1 is nonsingular.
Using (5.1), we note that

UTQ1 = (I − UT U)UTBR−1
1 ,

= (I − UT U)F1,(5.2)

whereF1 = UTBR−1
1 . This allows us to rewriteQ1 as

(5.3) Q1 = BR−1
1 − UF1

leading to the following lemma.
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LEMMA 5.1. LetU ∈ R
m×n andξ satisfy(1.13). LetB,Q1 ∈ R

m×p be left orthogonal
matrices and be as in(5.3), n + p ≤ m, R1 ∈ R

p×p be nonsingular, andF1 = UTBR−1
1 .

Then for any unit vectorw ∈ R
p,

(5.4)
∥∥R−1

1 w
∥∥2
2
= 1 + ‖F1w‖22 (1 + δw), |δw| ≤ ξ,

whereδw depends uponw.
Proof. Using the fact thatQ1 andB are left orthogonal and computing the normal equa-

tion’s matrix of both sides of (5.3) yields

I = R−T
1 R−1

1 −R−T
1 BTUF1 − FT

1 UTBR−1
1 + FT

1 UT UF1

= R−T
1 R−1

1 − 2FT
1 F1 + FT

1 UT UF1

= R−T
1 R−1

1 − FT
1 F1 − FT

1 (I − UT U)F1.

Thus,

R−T
1 R−1

1 = I + FT
1 F1 + FT

1 (I − UT U)F1

so that for any unit vectorw ∈ R
p, ‖w‖2 = 1, the use of norm inequalities yields

∥∥R−1
1 w

∥∥2
2
= 1 + ‖F1w‖22 +wTFT

1 (I − UT U)F1w

≤ 1 + ‖F1w‖22 +
∥∥I − UT U

∥∥
2
‖F1w‖22

= 1 + (1 + ξ) ‖F1w‖22 .

By a similar argument,

∥∥R−1
1 w

∥∥2
2
≥ 1 + (1− ξ) ‖F1w‖22 .

Thus, for some|δw| ≤ ξ that depends uponw, we have (5.4).
REMARK 5.1. Note that Lemma5.1 does not depend uponR1 being diagonal, butR1

only needs to be nonsingular.
From (5.4), using the definition of the 2-norm yields

‖F1( : , 1: k)‖2 ≤

(∥∥R−1
1 (1 : k, 1: k)

∥∥2
2
− 1
)1/2

(1− ξ)
1/2

·

From the definition ofR1 in (2.5)–(2.6), i.e., as a diagonal matrix of singular values, we have
that

(5.5) ‖F1( : , 1: k)‖2 ≤
(
1− ρ2k

)1/2

ρk
(1− ξ)−1/2,

and thus from (5.2) it follows that

∥∥UTQ1( : , 1: k)
∥∥
2
≤
∥∥I − UT U

∥∥
2
‖F1( : , 1: k)‖2

≤ ξ

(
1− ρ2k

)1/2

ρk
+O(ξ2).
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The following lemma allows us to assume thatR2 in (2.7) is nonsingular.
LEMMA 5.2. Assume the hypothesis and terminology of Lemma5.1. Let the left orthog-

onal matrixQ̂B ∈ R
m×p and the upper triangular matrixR2 ∈ R

p×p be given by(2.7). If
R2(1 : k, 1: k) is singular, then

(5.6) ρk ≤ ξ(1 + ξ).

Proof. If ρk = 0, the theorem holds trivially, so we assume thatρk > 0. For the left
orthogonal matrixB in (1.4),

Q1R1 = (I − UUT )B,

Q̂BR2R1 = (I − UUT )2B.

If R2(1 : k, 1: k) is singular, there is a vectorv 6= 0 such that

R2(1 : k, 1: k)v = 0.

Sinceρ1 ≥ · · · ≥ ρk > 0 andR1(1 : k, 1: k) = diag(ρ1, . . . , ρk), we can choosev so that

v = R1(1 : k, 1: k)w,

wherew is a unit vector. Thus,

Q̂B( : , 1: k)R2(1 : k, 1: k)R1(1 : k, 1: k)w = (I − UUT )2B( : , 1: k)w = 0.

Since

(I − UUT )2 = I − UUT − U(I − UT U)UT ,

this implies

Q1( : , 1: k)R1(1 : k, 1: k)w = (I − UUT )B( : , 1: k)w

= U(I − UT U)UTB( : , 1: k)w.

Thus, by the definition ofρk and using the fact that‖w‖2 = 1,

ρk ≤ ‖R1(1 : k, 1: k)w‖2 ≤
∥∥U(I − UT U)UTB( : , 1: k)w

∥∥
2

≤
∥∥U(I − UT U)UTB( : , 1: k)

∥∥
2
.

SinceB is left orthogonal, we have

ρk ≤ ‖U‖22
∥∥I − UT U

∥∥
2
≤ ξ ‖U‖22 .

From the assumption (1.13),

‖U‖22 =
∥∥UT U

∥∥
2
≤ 1 +

∥∥I − UT U
∥∥
2
= 1 + ξ,

thusρk satisfies (5.6).
AssumingR2 is nonsingular, we have that

UT Q̂B = (I − UT U)F2, F2 = UTQ1R
−1
2
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so that
∥∥∥UT Q̂B( : , 1: k)

∥∥∥
2
≤ ξ ‖F2( : , 1: k)‖2 ,

∥∥∥UT Q̂B( : , 1: k)
∥∥∥
F
≤ ξF ‖F2( : , 1: k)‖2 .

Invoking Lemma5.1, for any unit vectorw ∈ R
p, we obtain

∥∥R−1
2 w

∥∥2
2
= 1 + ‖F2w‖22 (1 + δw), |δw| ≤ ξ

so that, again from the definition of the matrix 2-norm,
∥∥∥UT Q̂B( : , 1: k)

∥∥∥
2
≤ ξ

(
β2
k − 1

)1/2
+O(ξ2),

∥∥∥UT Q̂B( : , 1: k)
∥∥∥
F
≤ ξF

(
β2
k − 1

)1/2
+O(ξ2F ),

whereβk =
∥∥R−1

2 (1 : k, 1: k)
∥∥
2
.

Proof of Theorem2.1. We note thatF1 andF2 are related according to

F2 = UTQ1R
−1
2 = (I − UT U)UTBR−1

1 R−1
2

= (I − UT U)F1R
−1
2 .(5.7)

We now exploit (5.7) to show an important relationship betweenβj =
∥∥R−1

1 (1 : j, 1: j)
∥∥
2

andρj , thejth singular value ofR1. Applying norm inequalities to (5.7) and (5.5), we have

‖F2( : , 1: j)‖2 ≤
∥∥I − UT U

∥∥
2
‖F1( : , 1: j)‖2

∥∥R−1
2 (1 : j, 1: j)

∥∥
2

≤ ξ

((
1− ρ2j

)1/2

ρj

)(
1 + ‖F2( : , 1: j)‖22

)1/2
+O(ξ2),

which yields

‖F2( : , 1: j)‖2(
1 + ‖F2( : , 1: j)‖22

)1/2 ≤ ξ

(
1− ρ2j

)1/2

ρj
+O(ξ2).

Sinceβj > βorth implies (2.15) and sincex/
(
1 + x2

)1/2
is a strictly increasing function

for x > 0, ‖F2( : , 1: j)‖2 ≤ corth implies that

corth

(1 + c2orth)
1/2

≤ ξ

(
1− ρ2j

)1/2

ρj
+O(ξ2) ≤ ξ/ρj +O(ξ2),

which becomes

ρj ≤ αorthξ +O(ξ2),

whereαorth is given in (2.15).

We note that ifk is the largest integer such thatβk ≤
(
1 + c2orth

)1/2
, then the matrix

QB = Q̂B( : , 1: k) as defined in Theorem2.2satisfies
∥∥UTQB

∥∥
2
≤ corthξ +O(ξ2),(5.8)

∥∥UTQB

∥∥
F
≤ corthξF +O(ξ2).
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Some algebra shows that

B = USB + Q̂BR̂B

= USB +QBRB +Dk,(5.9)

whereDk is given by (2.18).
Thus, we have that

‖B − USB −QBRB‖2 = ‖Dk‖2
=
∥∥∥Q̂B( : , k + 1: p)R̂B(k + 1: p, k + 1: p)

∥∥∥
2

=
∥∥∥R̂B(k + 1: p, k + 1: p)

∥∥∥
2
.(5.10)

To prove a bound for
∥∥∥R̂B(k + 1: p, k + 1: p)

∥∥∥
2

and thus to bound the residual in (5.10),

we need the following lemma proved in [3].
LEMMA 5.3 ( [3, Lemma 3.2]).If U ∈ R

m×n satisfies(1.13), then
∥∥Im − UUT

∥∥ ≤ 1.

Proof of Theorem2.2. From (5.8), we have thatQB = Q̂B( : , 1: k) satisfies (2.11).
Fork = p, we haveDk = 0, and (2.19) is trivially satisfied. Fork < p, from (5.9), we have
(2.17)–(2.18), thus by orthogonal equivalence,

‖Dk‖2 =
∥∥∥R̂B(k + 1: p, k + 1: p)

∥∥∥
2
.

Thus, we only need to establish a bound for
∥∥∥R̂B(k + 1: p, k + 1: p)

∥∥∥
2

to prove the theorem.

Since

R̂B(k + 1: p, k + 1: p) = R2(k + 1: p, k + 1: p)R1(k + 1: p, k + 1: p),

by a standard norm inequality and the SVD structure (2.5)–(2.6), it follows that
∥∥∥R̂B(k + 1: p, k + 1: p)

∥∥∥
2

≤ ‖R2(k + 1: p, k + 1: p)‖2 ‖R1(k + 1: p, k + 1: p)‖2
= ρk+1 ‖R2(k + 1: p, k + 1: p)‖2 ≤ ρk+1 ‖R2‖2 .(5.11)

A bit of algebra shows that

R2 = Q̂T
B(I − UUT )Q1,

thus we can use orthogonal equivalence and Lemma5.3to show

‖R2‖2 ≤
∥∥I − UUT

∥∥
2
≤ 1.

Thus, from (5.11),

‖Dk‖2 =
∥∥∥R̂B(k + 1: p, k + 1: p)

∥∥∥
2
≤ ρk+1 ‖R2‖2 ≤ ρk+1,

which establishes (2.19).
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5.2. Proofs of Theorems3.1 and 3.3. We begin with the proof of Theorem3.1. First,
we need two lemmas.

LEMMA 5.4. Let Ũ andγorth be as in Theorem3.1. Then
∥∥∥In+k − ŨT Ũ

∥∥∥
2

def
= ξ̃ ≤ γorthξ +O(ξ2).

Proof. We have that

In+k − ŨT Ũ = ZT [In+k −
[
QB U

]T [
QB U

]
]Z

= ZT

[
Ik −QT

BQB QT
BU

UTQB In − UT U

]
Z.

Thus using standard norm inequalities, we have

∥∥∥In+k − ŨT Ũ
∥∥∥
2
=

∥∥∥∥
[
Ik −QT

BQB QT
BU

UTQB In − UT U

]∥∥∥∥
2

≤
∥∥∥∥
[∥∥Ik −QT

BQB

∥∥
2

∥∥UTQB

∥∥
2∥∥UTQB

∥∥
2

∥∥In − UT U
∥∥
2

]∥∥∥∥
2

.

SinceQB satisfies (2.8) and since Theorem2.2 implies that Function2.4 produces a ma-
trix QB satisfying

∥∥UTQB

∥∥
2
≤ corthξ +O(ξ2),

∥∥Ik −QT
BQB

∥∥
2
≤ ξ

and moreoverU is assumed to satisfy (1.13), it follows that

∥∥∥In+k − ŨT Ũ
∥∥∥
2
≤
∥∥∥∥
[

1 corth
corth 1

]∥∥∥∥
2

ξ +O(ξ2) = γorthξ +O(ξ2).

LEMMA 5.5. LetRV ∈ R
p×p be the upper triangular matrix defined in(3.1). Using the

terminology in Theorem2.1and Lemma5.4with the convention thatρp+1 = 0, we have

∥∥R−1
V

∥∥
2
≤ (1 + ξ̃)1/2(1− ρk+1)

−1

≤ 1 + (αorth + γorth/2)ξ +O(ξ2),(5.12)

‖RV ‖2 ≤ 1 + (αorth + γorth/2)ξ +O(ξ2).(5.13)

Proof. Theorem2.2 implies

(5.14) Ũ1RV =

[
V
0

]
−Dk,

whereDk is bounded as in (2.19). Through the use of a singular value inequality in [15,
Problem 7.3.P16], we conclude that

σp(Ũ1)σj(RV ) ≤ σj(Ũ1RV ) ≤ σ1(Ũ1)σj(RV ).

Thus, using standard norm inequalities,

σp(RV )
∥∥∥Ũ1

∥∥∥
2
≥ σp

[
V
0

]
− ‖Dk‖2 .
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SinceV is orthogonal and
∥∥∥Ũ1

∥∥∥
2
≤
∥∥∥Ũ
∥∥∥
2
≤ (1 + ξ̃)1/2 +O(ξ2),

we have that within a margin ofO(ξ2),

σp(RV )(1 + ξ̃)1/2 ≥ 1− ‖Dk‖2 .

Invoking Theorem2.2yields

σp(RV ) ≥ (1 + ξ̃)−1/2(1− ρk+1).

Thus,
∥∥R−1

V

∥∥
2
= σp(RV )

−1 ≤ (1 + ξ̃)1/2(1− ρk+1)
−1 +O(ξ2).

From the bound for̃ξ in Lemma5.4and the bound forρk+1 in Theorem2.1, we have
∥∥R−1

V

∥∥
2
≤ (1 + αorth + γorth/2)ξ +O(ξ2).

To establish the bound for‖RV ‖2 , simply note that

RV = Ũ †
1

([
V
0

]
−Dk

)

so that

‖RV ‖2 ≤
∥∥∥Ũ †

1

∥∥∥
2
(1 + ρk+1) ≤ (1− ξ̃)−1/2(1 + ρk+1).

The bound (5.13) follows from an argument similar to that for (5.12).
We are now ready to prove Theorem3.1.
Proof of Theorem3.1. We have already proved (3.10). Next we bound‖∆UV ‖2. From

(1.8), (3.1), (3.3), and (5.14), we have

∆UV = −Dk(p+ 1: m, : )R−1
V .

Thus, from Theorem2.1and Lemma5.5,

‖∆UV ‖2 ≤ ‖Dk(p+ 1: m, : )‖2
∥∥R−1

V

∥∥
2

≤ ρk+1(1 + (αorth + γorth/2)ξ +O(ξ2)

= αorthξ +O(ξ2),

which is (3.8).
Now proceed to prove (3.9). We have that

ŨT
1 Ũ2 = UT

V ∆U + (∆UV )
TU

so that

(5.15)
∥∥UT

V ∆U
∥∥
2
≤
∥∥∥ŨT

1 Ũ2

∥∥∥
2
+
∥∥(∆UV )

TU
∥∥
2
.

To bound the first term in (5.15), note that
∥∥∥ŨT

1 Ũ2

∥∥∥
2
≤
∥∥∥In+k − ŨT Ũ

∥∥∥
2
= ξ̃,
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and thus

(5.16)
∥∥UT

V ∆U
∥∥
2
≤ ξ̃ + ‖∆UV ‖2

∥∥U
∥∥
2
.

SinceU is just the lower right block of̃U ,

∥∥U
∥∥
2
≤
∥∥∥Ũ
∥∥∥
2
≤ (1 + ξ̃)1/2

so that (5.16) becomes
∥∥UT

V ∆U
∥∥
2
≤ ξ̃ + ‖∆UV ‖2 (1 + ξ̃)1/2.

Again using the singular value result in [15, Problem 7.3.P16], we have

σp(UV )
∥∥∆U

∥∥
2
≤ (ξ̃ + ‖∆UV ‖2)(1 + ξ̃)1/2.

We note that from (3.4) it follows that

UV = (V +Dk(1 : p, : ))R
−1
V ,

hence

σp(UV ) ≥ σp(V +Dk(1 : p, : ))σp(R
−1
V ).

Using the orthogonality ofV and the bound for‖Dk‖2 from Theorem2.2, we have

σp(UV ) ≥ (1− ρk+1) ‖RV ‖−1
2 .

Therefore, using (5.13) yields
∥∥∆U

∥∥
2
≤ (ξ̃ + ‖∆UV ‖2)(1 + ξ̃)1/2(1− ρk+1)

−1 ‖RV ‖2
= (ξ̃ + ‖∆UV ‖2)(1 + ξ̃)1/2(1 + ρk+1)(1− ρk+1)

−1

≤ (αorth + γorth)ξ +O(ξ2).

We now prove Theorem3.3.
Proof of Theorem3.3. We note that

∥∥∥In+k − ŨT Ũ
∥∥∥
2

F
=

∥∥∥∥∥

[
Ip − ŨT

1 Ũ1 ŨT
1 Ũ2

ŨT
2 Ũ1 In̄ − ŨT

2 Ũ2

]∥∥∥∥∥

2

F

=
∥∥∥Ip − ŨT

1 Ũ1

∥∥∥
2

F
+ 2

∥∥∥ŨT
1 Ũ2

∥∥∥
2

F
+
∥∥∥In̄ − ŨT

2 Ũ2

∥∥∥
2

F
(5.17)

and that by orthogonal equivalence

∥∥∥In+k − ŨT Ũ
∥∥∥
2

F
=
∥∥∥ZT (In+k −

[
QB U

]T [
QB U

]
)Z
∥∥∥
2

F

=
∥∥∥In+k −

[
QB U

]T [
QB U

]∥∥∥
2

F

=
∥∥Ik −QT

BQB

∥∥2
F
+ 2

∥∥UTQB

∥∥2
F
+
∥∥In − UT U

∥∥2
F
.(5.18)

Equating (5.17) and (5.18) and solving for
∥∥∥In̄ − ŨT

2 Ũ2

∥∥∥
2

F
obtains (3.13).
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To obtain (3.15), we note that

Ũ2 =

[
∆U
U

]
,

thus

In̄ − ŨT
2 Ũ2 = (∆U)T (∆U) + In̄ − U

T
U.

Thus,
∥∥∥In̄ − U

T
U
∥∥∥
F
≤
∥∥∥In̄ − ŨT

2 Ũ2

∥∥∥
F
+
∥∥(∆U)T (∆U)

∥∥
F
,

which is (3.14). From the inequalities

∥∥(∆U)T (∆U)
∥∥
F
≤ √

p
∥∥(∆U)T (∆U)

∥∥
2
≤ √

p
∥∥∆U

∥∥2
2

and the bound (3.9), we obtain (3.15). To get (3.16), we note that

(5.19)
∥∥In − UT U

∥∥
F
,
∥∥Ik −QT

BQB

∥∥
F
≤ ξF

and that

(5.20)
∥∥UTQB

∥∥
F
≤ corthξF +O(ξ2F ) =

1

2
ξF +O(ξ2F ),

thus
∥∥∥In̄ − U

T
U
∥∥∥
2

F
≤ (
∥∥∥In̄ − ŨT

2 Ũ2

∥∥∥
F
+
√
p(αorth + γorth)

2ξ2)2 +O(ξ4F )

≤
∥∥∥In̄ − ŨT

2 Ũ2

∥∥∥
2

F
+

√
p(αorth + γorth)

2ξ2
∥∥∥In̄ − ŨT

2 Ũ2

∥∥∥
F
+O(ξF ).

From (3.13) and (5.19)–(5.20), we have

∥∥∥In̄ − ŨT
2 Ũ2

∥∥∥
2

F
≤ 5

2
ξF − 2

∥∥∥ŨT
1 Ũ2

∥∥∥
2

F
−
∥∥∥Ip − ŨT

1 Ũ1

∥∥∥
2

F
+O(ξ3F ),

which is (3.16).

6. Conclusion. We have taken the 2-norm formulation of the downdating algorithms
in [4, 9, 20] for deleting a single row from a QR factorization and fashioned the matrix 2-
norm formulation for a block downdating algorithm designedto deletep rows from a matrix.
Similar to results shown in [4], if we are asked to deletep rows from a QR decomposition
with a near left orthogonal factorU satisfying (1.13), we can obtain a QR decomposition for
the remainingm−p rows that has a new left orthogonal factorU whose loss of orthogonality
can be bounded as in Theorem3.3. Our numerical tests indicate that repeated block updates
and downdates often have a correcting effect on the loss of orthogonality.
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