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A MOVING ASYMPTOTES ALGORITHM USING NEW LOCAL CONVEX
APPROXIMATION METHODS WITH EXPLICIT SOLUTIONS ∗

MOSTAFA BACHAR†, THIERRY ESTEBENET‡, AND ALLAL GUESSAB§

Abstract. In this paper we propose new local convex approximations for solving unconstrained non-linear
optimization problems based on a moving asymptotes algorithm. This method incorporates second-order information
for the moving asymptotes location. As a consequence, at each step of the iterative process, a strictly convex
approximation subproblem is generated and solved. All subproblems have explicit global optima. This considerably
reduces the computational cost of our optimization method and generates an iteration sequence. For this method,
we prove convergence of the optimization algorithm under basic assumptions. In addition, we present an industrial
problem to illustrate a practical application and a numerical test of our method.

Key words. geometric convergence, nonlinear programming, method of movingasymptotes, multivariate con-
vex approximation
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1. Motivation and theoretical justification. The so-called method of moving asymp-
totes (MMA) was introduced, without any global convergenceanalysis, by Svanberg [28]
in 1987. This method can be seen as a generalization of the CONvex LINearization method
(CONLIN); see [14], for instance. Later on, Svanberg [27] proposed a globally—but in reality
slowly—convergent new method. Since then many different versions have been suggested.
For more details on this topic see the references [3, 11, 12, 13, 18, 24, 25, 26, 30, 33, 34].
For reasons of simplicity, we consider the following unconstrained optimization problem:
findx∗ = (x∗,1, x∗,2, . . . , x∗,d)

⊤ ∈ R
d such that

(1.1) f (x∗) = min
x∈Rd

f (x) ,

wherex = (x1, x2, . . . , xd)
⊤ ∈ R

d andf is a given non-linear, real-valued objective func-
tion, typically twice continuously differentiable. In order to introduce our extension of the
original method more clearly, we will first present the most important facet of this approach.
The MMA generates a sequence of convex and separable subproblems, which can be solved
by any available algorithm taking into account their special structures. The idea behind MMA
is the segmentation of thed-dimensional space into(d)-one-dimensional (1D) spaces.

Given the iteration pointsx(k) = (x
(k)
1 , x

(k)
2 , . . . , x

(k)
d )⊤ ∈ R

d at the iterationk, thenL(k)
j

andU (k)
j are the lower and upper asymptotes that are adapted at each iteration step such that

for j = 1, . . . , d,

L
(k)
j < xj < U

(k)
j .

During the MMA process, the objective functionf is iteratively approximated at thek-th
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l’Adour, 64000 Pau, France (allal.guessab@univ-pau.fr).

21



ETNA
Kent State University 

http://etna.math.kent.edu

22 M. BACHAR, T. ESTEBENET, AND A. GUESSAB

iteration as follows:

f̃ (k)(x) = r(k) +

d
∑

j=1

p
(k)
j

U
(k)
j − xj

+
q
(k)
j

xj − L
(k)
j

.

The parametersr(k), p(k)i , andq(k)i are adjusted such that a first-order approximation is satis-
fied, i.e.,

f̃ (k)(x(k)) = f(x(k)),

∇f̃ (k)(x(k)) = ∇f(x(k)),

where∇f(x) is the gradient of the objective functionf at x. The parameterp(k)j is set to

zero when∂f̃(k)

∂xj
(x(k)) < 0, andq(k)j is set to zero when∂f̃

(k)

∂xj
(x(k)) > 0 such thatf̃ (k) is

a monotonically increasing or decreasing function ofxj . The coefficientsp(k)j andq(k)j are
then given respectively by

p
(k)
j =

(

U
(k)
j − x

(k)
j

)2

max

{

0,
∂f̃ (k)

∂xj

(x(k))

}

,

q
(k)
j =

(

x
(k)
j − L

(k)
j

)2

max

{

0,−∂f̃ (k)

∂xj

(x(k))

}

.

These parameters are strictly positive such that all approximating functionsf̃ (k) are strictly
convex, and hence each subproblem has a single global optimum.

By this technique, the form of each approximated function isspecified by the selected
values of the parametersL(k)

j andU (k)
j , which are chosen according to the specific MMA

procedure. Several rules for selecting these values are discussed in detail in [4, 28]. Svanberg
also shows how the parametersL

(k)
j andU (k)

j can be used to control the general process. If
the convergence process tends to oscillate, it may be stabilized by moving the asymptotes
closer to the current iteration point, and if the convergence process is slow and monotonic,
it may be relaxed by moving the asymptotes a limited distanceaway from their position in
the current iteration. Several heuristic rules were also given for an adaptation process for
automatic adjustment of these asymptotes at each iteration; see [27, 28]. The most important
features of MMA can be summarized as follows.

• The MMA approximation is a first-order approximation atx(k), i.e.,

f̃ (k)(x(k)) = f(x(k)),

∇f̃ (k)(x(k)) = ∇f(x(k)).

• It is an explicitrational, strictly convex function for allx such thatL(k)
j < xj <U

(k)
j

with poles (asymptotes inL(k)
j or in U

(k)
j ), and it is monotonic (increasing if

∂f
∂xj

(x(k)) > 0 and decreasing if∂f
∂xj

(x(k)) < 0).
• The MMA approximation is separable, which means that the approximation function
F : Rd → R can be expressed as a sum of functions of the individual variables, i.e.,
there exist real functionsF1, F2, · · · , Fd such that

F (x) = F1(x1) + F2(x2) + . . .+ Fd(xd).

Such a property is crucial in practice because the Hessian matrices of the approxi-
mations will be diagonal, and this allows us to address large-scale problems.
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• It is smooth, i.e., functions̃f (k) are twice continuously differentiable in the inter-
val L(k)

j < xj < U
(k)
j , j = 1, . . . , d.

• At each outer iteration, given the current pointx(k), a subproblem is generated and
solved, and its solution defines the next iterationx(k+1), so only a single inner
iteration is performed.

However, it should be mentioned that this method does not perform well in some cases and
can even fail when the curvature of the approximation is not correctly assigned [23]. Indeed,
it is important to realize that all convex approximations including MMA, which are based on
first-order approximations, do not provide any informationabout the curvature. The second
derivative information is contained in the Hessian matrix of the objective functionH[f ],

whose(i, j)-component is ∂2f
∂xi∂xj

(x). Updating the moving asymptotes remains a difficult
problem. One possible approach is to use the diagonal secondderivatives of the objective
function in order to define the ideal values of these parameters in the MMA.

In fact, MMA was extended in order to include the first- and second-order derivatives of
the objective function. For instance, a simple example of the MMA that uses a second-order
approximation at iteratex(k) was proposed by Fleury [14]:

f̃ (k)(x) = f(x(k))

+
d
∑

j=1

(

1

x
(k)
j − a

(k)
j

− 1

xj − a
(k)
j

)

(

x
(k)
j − a

(k)
j

)2 ∂f

∂xj

(x(k)),
(1.2)

where, for eachj = 1, . . . , d, the moving asymptotea(k)j determined from the first and second
derivatives is defined by

a
(k)
j = x

(k)
j + 2

∂f
∂xj

(x(k))

∂2f

∂x2
j

(x(k))
.

Several versions have been suggested in the recent literature to obtain a practical implemen-
tation of MMA that takes full advantage of the second-order information, e.g., Bletzinger [2],
Chickermane et al. [5], Smaoui et al. [23], and the papers cited therein provide additional
reading on this topic. The limitations of the asymptote analysis method for first-order con-
vex approximations are discussed by Smaoui et al. [23], where an approximation based on
second-order information is compared with one based on onlyfirst-order. The second-order
approximation is shown to achieve the best compromise between robustness and accuracy.

In contrast to the traditional approach, our method replaces the implicit problem (1.1)
with a sequence of convex explicit subproblems having a simple algebraic form that can be
solvedexplicitly. More precisely, in our method, an outer iteration starts from the current
iteratex(k) and ends up with a new iteratex(k+1). At each inner iteration, within anex-
plicit outer iteration, a convex subproblem is generated and solved. In this subproblem, the
original objective function is replaced bya linear function plusa rational functionwhich
approximates the original functions aroundx(k). The optimal solution of the subproblem
becomesx(k+1), and the outer iteration is completed. As in MMA, we will showthat our
approximation schemes share all the features listed above.In addition, our explicit iteration
method is extremely simple to implement and is easy to use. Furthermore, MMA is very
convenient to use in practice, but its theoretical convergence properties have not been stud-
ied exhaustively. This paper presents a detailed study of the convergence properties of the
proposed method.
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The major motivation of this paper was to propose an approximation scheme which—as
will be shown— meets all well-known properties of convexityand separability of the MMA.
In particular, our proposed scheme provides the following major advantages:

1. An important aspect of our approximation scheme is that all its associated subprob-
lems haveexplicit solutions.

2. It generates an iteration sequence that is bounded and converges to a stationary point
of the objective function.

3. It converges geometrically.

The rest of the paper is organized as follows. For clarity of the discussion, the one-di-
mensional case is considered first. To this end, due to the separability of the approximations
that we will consider later for the multivariate setting, wepresent our methodology for a sin-
gle real variable in Section2. In the following we show that the formulation extends to the
multidimensional case. Indeed, Section3 describes the extensions to more general settings
than the univariate approach, where an explicit description of the proposed method will be
derived and the corresponding algorithm will be presented.We also show that the proposed
method has some favorable convergence properties. In orderto avoid the evaluation of sec-
ond derivatives, we will use a sequence of diagonal Hessian estimations, where only first-
and zeroth-order information is accumulated during the previous iterations. We conclude
Section3 by giving a simple one-dimensional example which illustrates the performance of
our method by showing that it has a wider convergence domain than the classical Newton’s
method. As an illustration, a realistic industrial inverseproblem of multistage turbines using
a through-flow code will be presented in Section4. Finally, concluding remarks are offered
in Section5.

2. Univariate objective function. Since the simplicity of the one-dimensional case al-
lows to detail all the necessary steps by very simple computations, let us first consider the
general optimization problem (1.1) of a single real variable. To this end, we first list the
necessary notation and terminology.

Let d := 1 andΩ ⊂ R be an open subset andf : Ω 7→ R be a given twice differentiable
function in Ω. Throughout, we assume thatf ′ does not vanish at a given suitable initial
point x(0) ∈ Ω, that isf ′(x(0)) 6= 0, since if this is not the case, we have nothing to solve.
Starting from the initial design pointx(0), the iteratesx(k) are computed successively by
solving subproblems of the form: findx(k+1) such that

f(x(k+1)) = min
x∈Ω

f̃ (k)(x),

where the approximating functioñf (k) of the objective functionf at thek-th iteration has the
following form

f̃ (k)(x) = b(k) + c(k)(x− x(k))

+ d(k)

(

1

2

(

x(k) − a(k)
)3

x− a(k)
+

1

2

(

x(k) − a(k)
)(

x− 2x(k) + a(k)
)

)

(2.1)

with

(2.2) a(k) =

{

L(k) if f ′(x(k)) < 0 andL(k) < x(k),

U (k) if f ′(x(k)) > 0 andU (k) > x(k),

where the asymptotesU (k) andL(k) are adjusted heuristically as the optimization progresses
or are guided by a proposed given function whose first and second derivative are evaluated at
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the current iteration pointx(k). Also, the approximate parametersb(k), c(k), andd(k) will be
determined for each iterations. To evaluate them, we use theobjective function value, its first
derivatives, as well as its second derivatives atx(k). The parametersb(k), c(k), andd(k) are
determined in such a way that the following set of interpolation conditions are satisfied

f̃ (k)(x(k)) = f(x(k)),

(f̃ (k))′(x(k)) = f ′(x(k)),

(f̃ (k))′′(x(k)) = f ′′(x(k)).

(2.3)

Therefore, it is easy to verify thatb(k), c(k), andd(k) are explicitly given by

b(k) = f(x(k)),

c(k) = f ′(x(k)),

d(k) = f ′′(x(k)).

(2.4)

Throughout this section we will assume that

f ′′(x(k)) > 0, ∀k ≥ 0.

Let us now define the notion of feasibility for a sequence of asymptotes
{

a(k)
}

:=
{

a(k)
}

k
, which we shall need in the following discussion.

DEFINITION 2.1. A sequence of asymptotes
{

a(k)
}

is called feasible if for allk ≥ 0,

there exist two real numbersL(k) andU (k) satisfying the following condition:

a(k) =











L(k) if f ′ (x(k)
)

< 0 andL(k) < x(k) + 2
f ′(x(k))
f ′′(x(k))

,

U (k) if f ′ (x(k)
)

> 0 andU (k) > x(k) + 2
f ′(x(k))
f ′′(x(k))

.

It is clear from the above definition that every feasible sequence of asymptotes
{

a(k)
}

auto-
matically satisfies all the constraints of type (2.2).

The following proposition, which is easily obtained by a simple algebraic manipulation,
shows that the difference between the asymptotes and the current iteratex(k) can be estimated
from below as in (2.5).

PROPOSITION2.2. Let
{

a(k)
}

be a sequence of asymptotes and let the assumptions (2.2)
be valid. Then

{

a(k)
}

is feasible if and only if

(2.5)
2
∣

∣f ′(x(k))
∣

∣

f ′′(x(k))
<
∣

∣

∣x(k) − a(k)
∣

∣

∣ .

It is interesting to note that our approximation scheme can be seen as an extension of
Fleury’s method [10]. Indeed, we have the following remark.

REMARK 2.3. Considering the approximations̃f (k) given in (2.1), if we write

ã(k) = x(k) +
2f ′(x(k))

f ′′(x(k))

using the values of the parameters given in (2.4), the approximating functions̃f (k) can also
be rewritten as

f̃ (k)(x) = f(x(k)) +
f ′′(x(k))

2

(

ã(k) − a(k)
)(

x− x(k)
)

+
f ′′(x(k))

2

(

x(k) − a(k)
)3

r(k)(x),

(2.6)
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with

r(k)(x) =

(

1

x− a(k)
− 1

x(k) − a(k)

)

.

If we choosẽa(k) = a(k), then the approximating functions become

f̃ (k)(x) = f(x(k)) +

(

1

x(k) − a(k)
− 1

x− a(k)

)

(

x(k) − a(k)
)2

f ′(x(k)).

This is exactly the one-dimensional version of the approximation functions of Fleury given
in equation (1.2). Hence, our approximation can be seen as a natural extension of Fleury’s
method [10].

The following lemma summarizes the basic properties of feasible sequences of asymp-
totes. In what follows, we denote by sign(·) the usual sign function.

LEMMA 2.4. If
{

a(k)
}

is a feasible sequence of asymptotes, then for allk the following
statements are true:

i) sign(f ′(x(k)))
x(k)−a(k) = − 1

|x(k)−a(k)| .

ii)
x(k)−a(k)+

2f′(x(k))

f′′(x(k))

x(k)−a(k) =
|x(k)−a(k)|− 2|f′(x(k))|

f′′(x(k))

|x(k)−a(k)| .

iii) At each iteration, the first derivative of the approximating functionf̃ (k) is given by

(2.7) (f̃ (k))′(x) =
f ′′(x(k))

2

(

x(k) − a(k)
)

(

e[f ](x(k))−
(

x(k) − a(k)

x− a(k)

)2
)

with

e[f ](x(k)) :=
|x(k) − a(k)| − 2|f ′(x(k))|

f ′′(x(k))

|x(k) − a(k)| .

Proof. The proof ofi) is straightforward since it is an immediate consequence of the fact
that the sequence of asymptotes

{

a(k)
}

is feasible. We will only give a sketch of the proof of
partsii) andiii). By i) and the obvious fact that

f ′(x(k)) = sign
(

f ′(x(k))
) ∣

∣

∣
f ′(x(k))

∣

∣

∣
,

we have

x(k) − a(k) + 2f ′(x(k))
f ′′(x(k))

x(k) − a(k)
= 1 +

2
∣

∣f ′(x(k))
∣

∣

f ′′(x(k))

sign
(

f ′(x(k))
)

x(k) − a(k)

= 1− 2
∣

∣f ′(x(k))
∣

∣

f ′′(x(k))

1
∣

∣x(k) − a(k)
∣

∣

=

∣

∣x(k) − a(k)
∣

∣− 2|f ′(x(k))|
f ′′(x(k))

∣

∣x(k) − a(k)
∣

∣

.

Finally, partiii) is a consequence of partii) and the expression of̃f (k) given in (2.6).
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By defining the suitable index set

I(k) =
{

]

L(k),+∞
[

if f ′ (x(k)
)

< 0,
]

−∞, U (k)
[

if f ′ (x(k)
)

> 0,

we now are able to define our iterative sequence
{

x(k)
}

. We still assume thatf is a twice
differentiable function inΩ satisfyingf ′′(x(k)) > 0, ∀k ≥ 0.

THEOREM 2.5. Using the above notation, letΩ ⊂ R be an open subset of the real
line, x0 ∈ Ω, and x(k) be the initial and the current point of the sequence

{

x(k)
}

. Let
the choice of the sequence of asymptotes

{

a(k)
}

be feasible. Then, for eachk ≥ 0, the

approximated functioñf (k) defined by(2.1) is a strictly convex function inI(k). Furthermore,
for eachk ≥ 0, the functionf̃ (k) attains its minimum at

(2.8) x(k+1) = a(k) − sign
(

f ′(x(k)
)

√

g(k),

where

g(k) :=

∣

∣x(k) − a(k)
∣

∣

3

∣

∣x(k) − a(k)
∣

∣− 2|f ′(x(k))|
f ′′(x(k))

.

Proof. An important characteristic of our approximate problem obtained via the approxi-
mation functionf̃ (k) is its strict convexity inI(k). To prove strict convexity, we have to show
that(f̃ (k))′′ is non-negative inI(k). Indeed, by a simple calculation of the second derivatives
of f̃ (k), we have

(

f̃ (k)
)′′

(x) = f ′′(x(k))

(

x(k) − a(k)

x− a(k)

)3

.

Hence, to prove convexity of̃f (k), we have to show that

f ′′(x(k))

(

x(k) − a(k)

x− a(k)

)3

> 0, ∀x ∈ I(k).

But f ′′(x(k)) > 0 and so, according to the definition of the setI(k), it follows thatx(k)−a(k)

andx − a(k) have the same sign in the intervalI(k). Hence, we immediately obtain strict
convexity off̃ (k) onI(k). Furthermore, according to (2.7), if f̃ (k) attains its minimum atx(k)

∗ ,
then it is easy to see thatx(k)

∗ is a solution of the equation

(2.9)

(

x(k) − a(k)

x− a(k)

)2

=

∣

∣x(k) − a(k)
∣

∣− 2|f ′(x(k))|
f ′′(x(k))

∣

∣x(k) − a(k)
∣

∣

.

Note that Proposition2.2 ensures that the numerator of the term on the right-hand sideis
strictly positive. Now by taking the square root and using a simple transformation, we see
that the unique solutionx(k)

∗ belonging toI(k) is given by (2.8). This completes the proof of
the theorem.

REMARK 2.6. At this point, we should remark that the notion of feasibility for a se-
quence of moving asymptotes, as defined in Definition2.1, plays an important role for the
existence of theexplicit minimum given by (2.8) of the approximate functioñf (k) related to
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each subproblem belonging toI(k). More precisely, it guarantees the positivity of the nu-
merator of the fraction on the right-hand side of (2.9) and, hence, ensures the existence of a
single global optimum for the approximate function at each iteration.

We now give a short discussion about an extension of the aboveapproach. Our study
in this section has been in a framework that at each iteration, the second derivative needs to
be evaluated exactly. We will now focus our analysis on examining what happens when the
second derivative of the objective functionf may not be known or is expensive to evaluate.
Thus, in order to reduce the computational effort, we suggest to approximate at each iteration
the second derivativef ′′(x(k)) by some positive real values(k). In this situation, we shall
propose the following procedure for selecting moving asymptotes:

(2.10) â(k) =







L(k) if f ′ (x(k)
)

< 0 andL(k) < x(k) + 2
f ′(x(k))

s(k) ,

U (k) if f ′ (x(k)
)

> 0 andU (k) > x(k) + 2
f ′(x(k))

s(k) .

It is clear that all the previous results easily carry over tothe case when in the interpola-
tion conditions (2.3), the second derivativef ′′(x(k)) is replaced by an approximate (strictly)
positive values(k) according to the constraints (2.10). Indeed, the statements of Theorem2.5
apply with straightforward changes.

In Section3 for the multivariate case, we will discuss a strategy to determine at each
iteration a reasonably good numerical approximation to thesecond derivative. We will also
establish a multivariate version of Theorem2.5and show in this setting a general convergence
result.

3. The multivariate setting. To develop our methods for the multivariate case, we need
to replace the approximating functions (2.1) of the univariate objective function by suitable
strictly convex multivariate approximating functions. The practical implementation of this
method is considerably more complex than in the univariate case due to the fact that, at
each iteration, the approximating function in the multivariate setting generates a sequence of
diagonal Hessian estimates.

In this section, as well as in the case of univariate objective approximating function

presented in Section2, the function valuef(x(k)), the first-order derivatives∂f(x
(k))

∂xj
, for

j = 1 . . . d, as well as the second-order information and the moving asymptotes at the design
point x(k) are used to build up our approximation. To reduce the computational cost, the
Hessian of the objective function at each iteration will be replaced by a sequence of diagonal
Hessian estimates. These approximate matrices use only zeroth- and first-order information
accumulated during the previous iterations. However, in view of practical difficulties of eval-
uating the second-order derivatives, a fitting algorithmicscheme is proposed in order to adjust
the curvature of the approximation.

The purpose of the first part of this section is to give a complete discussion on the the-
oretical aspects concerning the multivariate setting of the convergence result established in
Theorem3.4and to expose the computational difficulties that may be incurred. We will first
describe the setup and notation for our approach. Below, we comment on the relationships
between the new method and several of the most closely related ideas. Our approximation
scheme leaves, as in the one-dimensional case, all well-known properties of convexity and
separability of the MMA unchanged with the following major advantages:

1. All our subproblems haveexplicit solutions.
2. It generates an iteration sequence that is bounded and converges to a local solution.
3. It converges geometrically.
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To simplify the notation, for everyj = 1, . . . , d, we usef,j to denote the first-order
partial derivative off with respect to each variablexj . We also use the notationf,,ij for
the second-order partial derivatives with respect toxi first and thenxj . For anyx,y ∈ R

d,
we will denote the standard inner product ofx andy by 〈x,y〉 and‖x‖ :=

√

〈x,x〉 the
Euclidean vector norm ofx ∈ R

d.

3.1. The convex approximation inΩ ⊂ R
d. To build up the approximate optimization

subproblemsP [k], taking into account the approximate optimization problemas a solution
strategy of the optimization problem (1.1), we will seek to construct a successive sequence
of subproblemsP [k], k ∈ N, at successive iteration pointsx(k). That is, at each iterationk,
we shall seek a suitable explicit rational approximating function f̃ (k), strictly convex and
relatively easy to implement. The solution of the subproblemsP [k] is denoted byx(k)

∗ , and
will be obtained explicitly. The optimumx(k)

∗ of the subproblemsP [k] will be considered as
the starting pointx(k+1) := x

(k)
∗ for the next subsequent approximate subproblemsP [k+1].

Therefore, for a given suitable initial approximationx(0) ∈ Ω, the approximate opti-
mization subproblemsP [k], k ∈ N, of the successive iteration pointsx(k) ∈ R

d can be
written as: findx(k)

∗ such that

f̃ (k)(x
(k)
∗ ) := min

x∈Ω
f̃ (k)(x),

where the approximating function is defined by

f̃ (k) (x) =

d
∑

j=1







(

α
(k)
−

)

j

xj − L
(k)
j

+

(

α
(k)
+

)

j

U
(k)
j − xj







+
〈

β
(k)
− ,x−L(k)

〉

+
〈

β
(k)
+ ,U (k) − x

〉

+ γ(k),

(3.1)

and the coefficientsβ(k)
− ,β

(k)
+ ,L(k),U (k) are given by

β
(k)
− =

((

β
(k)
−

)

1
, . . . ,

(

β
(k)
−

)

d

)T

,

β
(k)
+ =

((

β
(k)
+

)

1
, . . . ,

(

β
(k)
+

)

d

)T

,

L(k) =
(

L
(k)
1 , . . . , L

(k)
d

)T

,

U (k) =
(

U
(k)
1 , . . . , U

(k)
d

)T

,

andγ(k) ∈ R. They represent the unknown parameters that need to be computed based on
the available information. In order to ensure that the functions f̃ (k) have suitable properties
discussed earlier, we will assume that the following conditions (3.2) are satisfied for allk:

(3.2)

(

α
(k)
−

)

j
=
(

β
(k)
−

)

j
= 0 if f,j(x(k)) > 0,

(

α
(k)
+

)

j
=
(

β
(k)
+

)

j
= 0 if f,j(x(k)) < 0,

for j = 1, . . . , d.

Our approximation can be viewed as a generalization of the univariate approximation to the
multivariate case since the approximation functionsf̃ (k) are of the form of a linear function
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plus a rational function. It can easily be checked that the first- and second-order derivatives
of f̃ (k) have the following form

(3.3) f̃
(k)
,j (x) =

−
(

α
(k)
−

)

j
(

xj − L
(k)
j

)2 +

(

α
(k)
+

)

j
(

U
(k)
j − xj

)2 +
(

β
(k)
−

)

j
−
(

β
(k)
+

)

j
, j = 1, . . . , d,

(3.4) f̃
(k)
,,jj (x) =

2
(

α
(k)
−

)

j
(

xj − L
(k)
j

)3 +
2
(

α
(k)
+

)

j
(

U
(k)
j − xj

)3 , j = 1, . . . , d.

Now, making use of (3.2), these observations imply that iff,j(x(k)) > 0, then

(3.5) f̃
(k)
,,jj(x) =

2
(

α
(k)
+

)

j

(U
(k)
j − xj)3

,

and iff,j(x(k)) < 0, then

(3.6) f̃
(k)
,,jj(x) =

2
(

α
(k)
−

)

j

(xj − L
(k)
j )3

.

Since the approximations̃f (k) are separable functions, all the mixed second derivatives of f
are identically zero. Therefore, ifi 6= j, we have

(3.7) f̃
(k)
,,ij (x) = 0, i, j = 1, . . . , d.

Also, the approximating functions̃f (k) need to be identically equal to the first-order approx-
imations of the objective functionsf at the current iteration pointx = x(k), i.e.,

f̃ (k)
(

x(k)
)

= f
(

x(k)
)

,

f̃
(k)
,j

(

x(k)
)

= f,j
(

x(k)
)

, ∀j = 1, . . . , d.

In addition to the above first-order approximations, the approximating functionf̃ (k) should
include the information on the second-order derivativesf . Indeed, the proposed approxima-
tion will be improved if we impose that

(3.8) f̃
(k)
,,jj

(

x(k)
)

= f,,jj

(

x(k)
)

, ∀j = 1, . . . , d.

Since the second derivatives of the original functionsf may not be known or is expensive
to evaluate, the above interpolation conditions (3.8) are not satisfied in general. However, it
makes sense to use second-order derivative information to improve the convergence speed.
The strategy of employing second-order information without excessive effort consists of ap-
proximating at each iteration the HessianH(k)[f ] :=

[

f,,ij
(

x(k)
)]

by a simple-structured
and easily calculated matrix.

Our choice for approximating the derivatives is based on thespectral parameters as de-
tailed in [16], where the Hessian of the functionf is approximated by the diagonal ma-
trix S

(k)
jj I (i.e.,η(k)I in [15, 16]), with I thed-by-d identity matrix, and the coefficientsS(k)

jj
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are simply chosen such that

(3.9) S
(k)
jj :=

d(k)
∥

∥x(k) − x(k−1)
∥

∥

2 ≈ f,,jj

(

x(k)
)

,

where

(3.10) d(k) := 〈∇f(x(k))−∇f(x(k−1)),x(k) − x(k−1)〉 > 0.

The last conditions (3.10) ensure that the approximations̃f (k) are strictly convex for all iter-
atesx(k) since the parametersS(k)

jj are chosen as strictly positive.
Thus, if we use the three identities (3.5), (3.6), (3.7), and the above approximation con-

ditions, we get after some manipulations that

(

α
(k)
−

)

j
=

{

1
2S

(k)
jj

(

x
(k)
j − L

(k)
j

)3

if f,j
(

x(k)
)

< 0,

0 otherwise,
(3.11)

(

α
(k)
+

)

j
=

{

1
2S

(k)
jj

(

U
(k)
j − x

(k)
j

)3

if f,j
(

x(k)
)

> 0,

0 otherwise,
(3.12)

(

β
(k)
−

)

j
=











f,j
(

x(k)
)

+

(

α
(k)
−

)

j
(

x
(k)
j

−L
(k)
j

)2 if f,j
(

x(k)
)

< 0,

0 otherwise,

(3.13)

(

β
(k)
+

)

j
=











f,j
(

x(k)
)

−
(

α
(k)
+

)

j
(

U
(k)
j

−x
(k)
j

)2 if f,j
(

x(k)
)

> 0,

0 otherwise,

(3.14)

and

γ(k) = f
(

x(k)
)

−
d
∑

j=1







(

α
(k)
−

)

j

x
(k)
j − L

(k)
j

+

(

α
(k)
+

)

j

U
(k)
j − x

(k)
j







−
〈

β
(k)
− ,x(k) −L(k)

〉

−
〈

β
(k)
+ ,U (k) − x(k)

〉

.

Our strategy will be to update the lower and upper moving asymptotes,L(k)
j andU (k)

j ,
at each iteration based on second-order information by generalizing Definition2.1from Sec-
tion 2. Since the approximation functions are separable, only thefirst-order derivatives and
the approximate second-order diagonal Hessian terms are required in the process. Smaoui et
al. [23] also use such a second-order strategy, but heref,,jj

(

x(k)
)

is replaced by the esti-

mated valueS(k)
jj given in (3.9) as follows:

A
(k)
j =











L
(k)
j if f,j

(

x(k)
)

< 0 andL(k)
j < x

(k)
j + 2

f,j(x(k))
S

(k)
jj

,

U
(k)
j if f,j

(

x(k)
)

> 0 andU (k)
j > x

(k)
j + 2

f,j(x(k))
S

(k)
jj

,

A(k) = (A
(k)
1 , A

(k)
2 , . . . , A

(k)
d )⊤.

(3.15)
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Note that, as it was done in the univariate case, see Proposition 2.2, we have the following
result.

PROPOSITION3.1. LetA(k) = (A
(k)
1 , A

(k)
2 , . . . , A

(k)
d )⊤ ∈ R

d be the moving asymptotes
with components given by(3.15). Then, for allj = 1, . . . , d, and for allk, we have

2|f,j(x(k))|
S
(k)
jj

<
∣

∣

∣
x
(k)
j −A

(k)
j

∣

∣

∣
.

To define our multivariate iterative scheme, we start from some given suitable initial
approximationx(0) ∈ Ω and let {x(k)} :=

{

x(k)
}

k
be the iterative sequence defined

by x(k+1) = (x
(k+1)
1 , . . . , x

(k+1)
d )T , for all k ≥ 0 andj = 1 . . . , d, with

(3.16) x
(k+1)
j = A

(k)
j − sign

(

f,j

(

x(k)
))

√

g
(k)
j , (j = 1, . . . , d),

where

(3.17) g
(k)
j =

∣

∣

∣x
(k)
j −A

(k)
j

∣

∣

∣

3

∣

∣

∣x
(k)
j −A

(k)
j

∣

∣

∣− 2|f,j(x(k))|
S

(k)
jj

=























(

α
(k)
−

)

j
(

β
(k)
−

)

j

if f,j
(

x(k)
)

< 0,

(

α
(k)
+

)

j

−
(

β
(k)
+

)

j

if f,j
(

x(k)
)

> 0.

It should be pointed out that the sequence
{

x(k)
}

is well-defined for allk since the

denominators of (3.16) never vanish, and it is straightforward to see that the valuesg(k)j in
(3.17) are positive real numbers.

It would be more precise to use the set notation and write:I(k) = I(k)1 ×I
(k)
2 ×· · ·×I

(k)
d ,

with

I(k)j =







]

L
(k)
j ,+∞

[

if f,j
(

x(k)
)

< 0,
]

−∞, U
(k)
j

[

if f,j
(

x(k)
)

> 0,
j = 1, . . . , d.

Now we are in a position to present one main result of this paper.
THEOREM 3.2. Let Ω be a given open subset ofRd and f : Ω → R be a twice-

differentiable objective function inΩ. We assume that the moving asymptotesA(k) ∈ R
d

are defined by equations(3.15), whereS(k)
jj > 0, k ≥ 0, j = 1, . . . , d, and let

{

x(k)
}

be

the iterative sequence defined by(3.16). Then the objective functioñf (k) defined by equa-
tion (3.1) with the coefficients(3.11)–(3.14) is a first-order strictly convex approximation off
that satisfies

f
(k)
,,jj

(

x(k)
)

= S
(k)
jj , j = 1, . . . , d.

Furthermore,f (k) attains its minimum atx(k+1).
Proof. By construction, the approximatioñf (k) is a first-order approximation off

atx = x(k) and satisfies

f
(k)
,,jj

(

x(k)
)

= S
(k)
jj , ∀j = 1, . . . , d.

As (α
(k)
− )j (respectively(α(k)

+ )j) has the same sign asxj − L
(k)
j (respectivelyU (k)

j − xj)

in I(k), we can easily deduce from (3.4) that the approximation is strictly convex inI(k).
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In addition, by using (3.3), we may verify thatx(k+1) given by (3.16) is the unique solution
in I(k) of the equations

f
(k)
,j (x) = 0, ∀j = 1, . . . , d,

which completes the proof of the theorem.
The sequence of subproblems generated by (3.16) is computed by Algorithm3.3.

ALGORITHM 3.3. Method of the moving asymptotes with spectral updating.
Step 1.Initialization

Definex(0)

Setk ← 0

Step 2.Stopping criterion

If x(k) satisfies the convergence conditions of the problem (1.1), then
stop and takex(k) as the solution.

Step 3.Computation of the spectral parametersS(k)
jj , the moving asymptotesA(k)

j , and the

intermediate parameterg(k)j :

Compute

d(k) = 〈∇f(x(k))−∇f(x(k−1)),x(k) − x(k−1)〉,
For j = 0, 1, ..., d

S
(k)
jj = d(k)

‖x(k)−x
(k−1)‖2 ,

A
(k)
j = x

(k)
j + 2α

f,j(x(k))
S

(k)
jj

, α > 1,

g
(k)
j =

∣

∣

∣
x
(k)
j

−A
(k)
j

∣

∣

∣

3

∣

∣

∣
x
(k)
j

−A
(k)
j

∣

∣

∣
−2
|f,j(x(k))|

S
(k)
jj

.

Step 4.Computation of the solution of the subproblem

x
(k+1)
j = A

(k)
j − sign

(

f,j
(

x(k)
))

√

g
(k)
j for j = 0, 1, ..., d,

Setk ← k + 1
Go toStep 2.

3.2. A multivariate convergence result. This subsection aims to show that the pro-
posed method is convergent in the sense that the optimal iterative sequence

{

x(k)
}

generated
by Algorithm3.3converges geometrically tox∗. That is, there exists aξ ∈ ]0, 1[ such that

‖x(k) − x∗‖ ≤
ξk

1− ξ
‖x(1) − x(0)‖ .

To this end, the following assumptions are required. Let us suppose that there exist positive
constantsr, M , C, andξ < 1 such that the following assumptions hold.
Assumption M1:

Br := {x ∈ R : ‖x− x(0)‖ ≤ r} ⊂ Ω.

Assumption M2: We assume that the sequence of moving asymptotes{A(k)} defined by (3.15)
satisfies

(3.18) sup
k≥0
‖x(k) −A(k)‖ ≤ C,
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and for allj = 1, . . . , d,

(3.19)
2C
√
d

MS
(k)
jj

≤
∣

∣

∣
x
(k)
j −A

(k)
j

∣

∣

∣
− 2

∣

∣f,j
(

x(k)
)∣

∣

S
(k)
jj

.

Assumption M3: We require that for allk > 0 and for allj ∈ {1, . . . , d}with x
(k−1)
j 6= x

(k)
j ,

(3.20) sup
k>0

sup
x∈B

∥

∥

∥

∥

∥

∇f,j(x)−
f,j(x

(k−1))

x
(k−1)
j − x

(k)
j

e(j)

∥

∥

∥

∥

∥

≤ ξ

M
,

wheree(j) is the vector ofRd with the j-th component equal to1 and all other
components equal to0.

Assumption M4: For all j = 1, . . . , d, the initial iteratex0 satisfies

0 < |f,j(x0)| ≤ r

M
(1− ξ).

Let us briefly comment on these assumptions.
• First, in order to control the feasibility of the moving asymptotes, we need to find a

(strictly) positive lower bound of

(3.21) |x(k)
j −A

(k)
j | −

2|f,j(x(k))|
S
(k)
jj

,

which needs to be large according to some predetermined tolerance; see Proposi-
tion 3.1. So when the inequalities (3.19) hold, then the sequence of the moving
asymptotes

{

A(k)
}

is automatically feasible. Also note that, when we evaluate
the approximate functioñf (k) and if the difference between the asymptotes and
the current iteration point is small enough, then imposing condition (3.19) avoids
the possibility of (3.21) to become negative or close to zero. In Assumption M2,
inequality (3.18) enforces the quite natural condition that at each iteration k, the
distance betweenx(k) and the asymptoteA(k) is bounded above by some constant.

• Assumption M3 ensures that∇f,j(x) is sufficiently close tof,j(x
(k−1))

x
(k−1)
j

−x
(k)
j

e(j).

• Assumption M4, as we will see, is only used to obtain uniqueness of the limit of
the iteration sequence generated by Theorem3.2. The convergence result is estab-
lished without this assumption. It also requires that|f,j(x0)| to be small enough and
thatf,j(x0) is not equal to0. This assumption will also play an important role when
showing that∇f has a unique zero inBr.

Assumptions M2 and M3 will be used in conjunction with Assumption M4 to prove that
the sequence of iteration points

{

x(k)
}

defined by (3.16) has various nice properties and
converges geometrically to the unique zero of∇f in Br. In addition, note that the constantC
ensures that the distances between the current pointsx(k) and the moving asymptotes are
finite, and the constantM ensures that the process starts reasonably close to the solution.

We are now prepared to state and to show our main convergence result.
THEOREM 3.4. Given Assumptions M1–M4, the sequence

{

x(k)
}

defined in(3.16) is
completely contained in the closed ballBr and converges geometrically to the unique sta-
tionary point off belonging to the ballBr.
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Before we prove Theorem3.4, we present some preparatory lemmas. The first key in-
gredient is the following simple observation.

LEMMA 3.5. Let k be a fixed positive integer. Assume that there exists an index
j ∈ {1, . . . , d} such thatf,j(x(k−1)) 6= 0. Then thej-th components of the two successive
iteratesx(k) andx(k−1) are distinct.

Proof. Indeed, assume the contrary, that isx
(k)
j = x

(k−1)
j . Then from equation (3.16),

we have
(

x
(k−1)
j −A

(k−1)
j

)2

=
(

x
(k)
j −A

(k−1)
j

)2

= g
(k−1)
j

=

∣

∣

∣
x
(k−1)
j −A

(k−1)
j

∣

∣

∣

3

∣

∣

∣x
(k−1)
j −A

(k−1)
j

∣

∣

∣− 2|f,j(x(k−1))|
S

(k−1)
jj

,

or equivalentlyf,j
(

x(k−1)
)

= 0, which leads to a contradiction and proves the lemma.

REMARK 3.6. The previous lemma states that if thej-th partial derivative off does not
vanish at the iteratex(k−1), then the required condition in Assumption M4 is satisfied.

We will also need to prove a useful lemma, which bounds the distance between two
consecutive iteratesx(k−1) andx(k).

LEMMA 3.7. Let Assumptions M2–M4 be satisfied, and let the sequence
{

x(k)
}

be
defined as in equation(3.16). Then, the following inequalities hold for all positive integersk
andj = 1, . . . , d,

∣

∣

∣
x
(k)
j − x

(k−1)
j

∣

∣

∣
≤ M√

d

∣

∣

∣
f,j(x

(k−1))
∣

∣

∣
,

∥

∥

∥
x(k) − x(k−1)

∥

∥

∥
≤M max

1≤j≤d

∣

∣

∣
f,j(x

(k−1))
∣

∣

∣
.

Proof. Let us fix an integerk such thatk > 0. Then using (3.16), x(k)
j − x

(k−1)
j can be

written in the form

x
(k)
j − x

(k−1)
j = A

(k−1)
j − sign

(

f,j(x
(k−1))

)

√

g
(k−1)
j − x(k−1)

= (x
(k−1)
j −A

(k−1)
j ) (−1 + ∆) ,

(3.22)

where, in the last equality, we have denoted

∆ =
−sign(f,j(x(k−1)))

x
(k−1)
j −A

(k−1)
j

√

g
(k−1)
j .

Now, as in one dimension, see Lemma2.4, it is easy to verify that

sign(f,j(x(k−1)))

x
(k−1)
j −A

(k−1)
j

= − 1
∣

∣

∣x
(k−1)
j −A

(k−1)
j

∣

∣

∣

.

Consequently∆ also can be expressed in fraction form

∆ =

√

g(k−1)

∣

∣

∣x
(k−1)
j −A

(k−1)
j

∣

∣

∣

.
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Since

g
(k−1)
j :=

∣

∣

∣x
(k−1)
j −A

(k−1)
j

∣

∣

∣

3

∣

∣

∣
x
(k−1)
j −A

(k−1)
j

∣

∣

∣
− 2|f,j(x(k−1))|

S
(k−1)
jj

,

it follows from (3.22) that

(3.23)
∣

∣

∣x
(k)
j − x

(k−1)
j

∣

∣

∣ ≤
∣

∣

∣x
(k−1)
j −A

(k−1)
j

∣

∣

∣

(

√

g̃(k−1) − 1
)

with

g̃(k−1) :=

∣

∣

∣x
(k−1)
j −A

(k−1)
j

∣

∣

∣

∣

∣

∣x
(k−1)
j −A

(k−1)
j

∣

∣

∣− 2|f,j(x(k−1))|
S

(k−1)
jj

.

Taking into account that̃g(k−1) > 1 and using the square root property, we get

√

g̃(k−1) < g̃(k−1).

Therefore, by (3.23), we conclude that

∣

∣

∣
x
(k)
j − x

(k−1)
j

∣

∣

∣
≤

∣

∣

∣x
(k−1)
j −A

(k−1)
j

∣

∣

∣

∣

∣

∣x
(k−1)
j −A

(k−1)
j

∣

∣

∣− 2|f,j(x(k−1))|
S

(k−1)
jj

2
∣

∣f,j
(

x(k−1)
)∣

∣

S
(k−1)
jj

.

We now obtain the desired conclusion by using Assumption M2.The second inequality in
Lemma3.7 is an immediate consequence of the definition of the Euclidean norm.

Now, we are ready to prove Theorem3.4.
Proof of Theorem3.4. Given a fixed positive integerk, let us pick any integerj between1

andd. We start by showing the following inequality

(3.24)
∣

∣

∣x
(k)
j − x

(k−1)
j

∣

∣

∣ ≤ ξ√
d

∥

∥

∥x
(k−1) − x(k−2)

∥

∥

∥ .

To see this, we may distinguish two cases.
Case I:x(k−1)

j 6= x
(k)
j . Let us set

(3.25) β
(k−1)
j = −1

2
S
(k−1)
jj

(

x
(k−1)
j −A

(k−1)
j

)

− f,j

(

x(k−1)
)

,

and let us introduce the auxiliary functionϕ : Br → R as

ϕ(x) = f,j (x)−
f,j(x

(k−1))
1
2S

(k−1)
jj (x

(k)
j − x

(k−1)
j )

h(xj),

where

h(xj) := −
1

2
S
(k−1)
jj

(

xj − x
(k)
j +

(

x
(k−1)
j −A

(k−1)
j

))

− f,j

(

x(k−1)
)

− β
(k−1)
j .
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Using equation (3.25), it is easy to verify that

h(x
(k−1)
j ) =

1

2
S
(k−1)
jj (x

(k)
j − x

(k−1)
j ),

h(x
(k)
j ) = 0.

Consequentlyϕ satisfies

ϕ(x(k−1)) = 0, ϕ(x(k)) = f,j(x
(k)).

Also, it is easy to see that

∇ϕ(x) = ∇f,j (x)−
f,j
(

x(k−1)
)

x
(k−1)
j − x

(k)
j

e(j).

Hence, taking into account Assumption M3 and the mean-valuetheorem applied toϕ, we get
∣

∣

∣
f,j

(

x(k)
)∣

∣

∣
=
∣

∣

∣
ϕ(x(k))− ϕ(x(k−1))

∣

∣

∣

≤ sup
x∈B

‖∇ϕ(x)‖
∥

∥

∥x
(k) − x(k−1)

∥

∥

∥

= sup
k≥1

sup
x∈B

∥

∥

∥

∥

∥

∇f,j (x)−
f,j
(

x(k−1)
)

x
(k−1)
j − x

(k)
j

e(j)

∥

∥

∥

∥

∥

∥

∥

∥
x(k) − x(k−1)

∥

∥

∥

≤ ξ

M

∥

∥

∥x
(k) − x(k−1)

∥

∥

∥ .

(3.26)

Finally, the above inequality (3.26) together with Lemma3.7 imply that (3.24) holds true for
the casex(k−1)

j 6= x
(k)
j .

Case II:x(k−1)
j = x

(k)
j . Then inequality (3.24) obviously holds true in this case as well.

Now, combining inequality (3.24) and employing Lemma3.7again we immediately de-
duce that

∥

∥

∥x
(k) − x(k−1)

∥

∥

∥ ≤ ξ
∥

∥

∥x
(k−1) − x(k−2)

∥

∥

∥ .

Consequently, we have

∥

∥

∥x
(k) − x(0)

∥

∥

∥ =

∥

∥

∥

∥

∥

k
∑

l=

(

x(l) − x(l−1)
)

∥

∥

∥

∥

∥

≤
k
∑

l=

∥

∥

∥x
(l) − x(l−1)

∥

∥

∥

≤
(

k
∑

l=

ξl−1

)

∥

∥

∥x
(1) − x(0)

∥

∥

∥ ≤ 1

1− ξ

∥

∥

∥x
(1) − x(0)

∥

∥

∥.

(3.27)

Applying Lemma3.7with k = 1 and using Assumption M4, we conclude that
∥

∥

∥x
(1) − x(0)

∥

∥

∥ ≤ r(1− ξ).

Combining this with the previous inequality leads to:

(3.28)
∥

∥

∥x
(k) − x(0)

∥

∥

∥ ≤ r,
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which shows that each iteratex(k) belongs to the ballBr. Next, we prove that
{

x(k)
}

is a
Cauchy sequence, and sinceRd is complete, it has a limit, sayx∗, in Br. Indeed, for any
integerk ≥ 0 andl > 0, we have

∥

∥

∥
x(k+l) − x(k)

∥

∥

∥
=

∥

∥

∥

∥

∥

l−
∑

i=

(

x(k+i+1) − x(k+i)
)

∥

∥

∥

∥

∥

≤
l−
∑

i=

∥

∥

∥
x(k+i+1) − x(k+i)

∥

∥

∥

≤ ξk
∥

∥

∥
x(1) − x(0)

∥

∥

∥

l−
∑

i=

ξi ≤ ξk

1− ξ

∥

∥

∥
x(1) − x(0)

∥

∥

∥
.

(3.29)

As l goes to infinity in (3.29), we can get more precise estimates than those obtained in (3.27),

∥

∥

∥
x(k) − x∗

∥

∥

∥
≤ ξk

1− ξ

∥

∥

∥
x(1) − x(0)

∥

∥

∥
,

thus proving that{x(k)} converges geometrically to a limitx∗. Recalling equation (3.28),
we obviously havex∗ ∈ Br. Now, if the sequence{x(k)} is convergent to a limitx∗ and
passing to the limit in equation (3.26), we immediately deduce from the continuity of∇f
that∇f(x∗) = 0. To complete the proof we show that, under Assumption M3,x∗ is the
unique stationary point off in Br. To this end, assume that there is another pointx̃ ∈ Br with
x̃ 6= x∗ and which solves∇f(x) = 0. We will show that this leads to a contradiction. Since
by Assumption M4 we havef,j(x0) 6= 0, Lemma3.5 with k = 1 ensures thatx(0)

j 6= x
(1)
j ,

for all j = 1, . . . , d. Hence, we may define for eachj = 1, . . . , d, the auxiliary function

λj(x) =
x
(1)
j − x

(0)
j

f,j(x(0))

(

f,j(x)−
f,j(x0)

x
(0)
j − x

(1)
j

(xj − x∗j)

)

.

Obviouslyλj simultaneously satisfiesλj(x∗) = 0 andλj(x̃) = x∗j−x̃j . Therefore, applying
again Lemma3.7for k = 1, we get from the mean value theorem and (3.20),

|x∗j − x̃j | = |λj(x∗)− λj(x̃)| ≤ sup
x∈B

‖∇λj(x)‖ ‖x̃− x∗‖

=

∣

∣

∣

∣

∣

x
(1)
j − x

(0)
j

f,j(x(0))

∣

∣

∣

∣

∣

sup
x∈B

∥

∥

∥

∥

∥

∇f,j (x)−
f,j
(

x(0)
)

x
(0)
j − x

(1)
j

e(j)

∥

∥

∥

∥

∥

‖x̃− x∗‖

≤ ξ√
d
‖x̃− x∗‖ .

Then, we immediately obtain that

0 < ‖x̃− x∗‖ ≤ ξ ‖x̃− x∗‖

with ξ ∈ (0, 1), and therefore the last inequality holds only ifx̃ = x∗, which is clearly
a contradiction. Hence, we can conclude thatf has a unique stationary point. Thus, the
theorem is proved.

We conclude this section by giving a simple one-dimensionalexample, which illustrates
the performance of our method by showing that it has a wider convergence domain than the
classical Newton’s method.

EXAMPLE 3.8. Consider the functionf : R→ R defined by

f (x) = −e−x2

.
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TABLE 3.1
The MMA convergence:f(x) = −e−x

2
.

Iteration x f ′ (x)

0 7.071−1 8.578−1

1 9.250−5 1.850−4

2 5.341−5 1.068−4

3 3.083−5 6.167−5

4 1.780−5 3.561−5

5 1.028−5 2.056−5

6 5.934−6 1.187−5

7 3.426−6 6.852−6

8 1.978−6 3.956−6

9 1.142−6 2.284−6

10 6.594−7 1.319−6

Its first and second derivatives are given, respectively, by

f ′ (x) = 2xe−x2

, f ′′ (x) = 2
(

1− 2x2
)

e−x2

.

Since the second derivative off is positive in the interval
]

− 1√
2
, 1√

2

[

, Newton’s method shall

converge to the minimum off .
Let us recall that the famous Newton’s method for findingx∗ uses the iterative

scheme
{

x(k)
}

defined by

x(k+1) = x(k) − f ′ (x(k)
)

f ′′ (x(k)
) , ∀k ≥ 0,

starting from some initial valuex(0). It converges quadratically in some neighborhood ofx∗
for a simple rootx∗. In our example, the Newton iteration becomes

x(k+1) = x(k)

(

1− 1

1− 2(x(k))2

)

, k ≥ 0.

Starting from the initial approximationx(0) = 1
2 (respectivelyx(0) = − 1

2 ), the New-

ton iterates are given byx(k) = 1
2 (−1)

k (respectivelyx(k) = 1
2 (−1)

k+1 ), and hence
the sequence{x(k)} does not converge. Also for initial values belonging to the interval
]− 1√

2
,− 1

2 [∪] 12 , 1√
2
[, after some iteration, the sequence lies outside the interval ]− 1√

2
, 1√

2
[

and diverges. The domain of convergence of Newton’s method is only the interval]− 1
2 ,

1
2 [.

Differently from the Newton’s method, it is observed that our MMA method converges
for any initial value taken in the larger interval]− 1√

2
, 1√

2
[. Convergence results are reported

in Table3.1.

4. A multistage turbine using a through-flow code.The investigation of through-flow
have been used for many years in the analysis and the design ofturbomachineries by many
authors, especially in the seventies; see for example [8, 19, 31]. The main ideas in these in-
vestigations are based on the numerical analysis of the stream line curvatures and the matrix
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FIG. 4.1.Meridional view of the flow path (left panel), and Steam path design geometry (right panel).

through-flow. More details can be found in [6, 7, 9, 17, 20, 21]. The stream line curva-
ture method offers a flexible way of determining an Euler solution of an axisymmetric flow
through a turbomachine. The theory of stream line curvaturethrough-flow calculations has
been described by many authors, particularly by John Denton[7]. From the assumption of
axial symmetry, it is possible to define a series of meridional stream surfaces, a surface of
revolution along which particles are assumed to move through the machine. The principle of
stream line curvature is to express the equation of motion along lines roughly perpendicular
to these stream surfaces (quasi-orthogonal lines) in termsof the curvature of the surfaces in
the meridional plane, as shown in the left panel of Figure4.1. The two unknowns indicate that
we are interested in the meridional fluid component of the velocity Vm (m/s) in the direction
of the stream lines and the mass flow rateṁ (kg/s).

The mass flow rate is evaluated at each location point at the intersections of the stream
lines and the quasi-orthogonal lines, and it also depends onthe variation of the meridional
fluid velocityVm. The continuity equation takes the form

(4.1) ṁ = 2π

∫ rtip

rhub

rρVm (q,m) sinα (1− b) dq,

where0 ≤ b < 1 is the blade blockage factor,r the radius of the rotating machine axis(m),
andρ the fluid density (kg/m3). The inlet mass flow rate is the mass flow rate calculated along
the first quasi-orthogonal line.

Knowing the geometrical lean angle of the blades, i.e., the inclination of the blades in
the tangential directionε (rad), the total enthalpyH (N.m), the static temperatureT (K),
and the entropyS (J/K) as input data functions evaluated by empirical rules, we can find the
variation of the meridional fluid velocityVm as a function of the distanceq (m) along the
quasi-orthogonal lines and the meridional direction by solving the equilibrium equation

1

2

dV 2
m (q,m)

dq
=

V 2
m (q,m)

rc
sinα+ Vm

∂Vm (q,m)

∂m
cosα− 1

2rc

d
(

r2V 2
θ (q,m)

)

dq

+
dH (q,m)

dq
− T

dS (q,m)

dq

− tan ε
Vm

r

∂ (rVθ)

∂m
,

whereθ represents the direction of rotation, and the values ofrVθ are specified while oper-
ating the design mode. The angleα (rad) between the quasi-orthogonal lines and the stream
surface, and the radius of curvaturerc (m) are updated with respect to the mass flow rate
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distributionṁ (kg/s) . The enthalpy is updated according to the IAPWS-IF97 steam func-
tion as described in [29]. The entropy is calculated by fundamental thermodynamic relations
between the internal energy of the system and external parameters (e.g., friction losses).

The computational parameters of the stream lines are drawn in a meridional view of
the flow path in the left panel of Figure4.1 with one of the quasi-normal stations that are
strategically located in the flow between the tip and hub contours. Several stations are gen-
erally placed in the inlet duct upstream of the turbomachine, the minimum number of quasi-
orthogonal stations between the adjacent pair of blade rowsis simply one, which characterizes
both outlet conditions from the previous row and inlet conditions to the next. In our stream
line curvature calculation tool, there is one quasi-orthogonal station at each edge of each blade
row. Given these equations and a step-by-step procedure, weobtain a solution as described
in [22].

In the left panel of Figure4.2, the contour of the turbomachine is limited on the top by
the line that follows the tip contour at the casing and on the bottom by a line that follows the
geometry of the hub contour at the rotor. Intermediate linesare additional stream lines, dis-
tributed according to the mass flow rate that goes through thestream tubes. Vertical inclined
lines are the quasi-orthogonal stations mainly located at the inlet and outlet of moving and
fixed blade rows.

The possibility to impose a target mass flow rate at the inlet of the turbomachine is
very important for its final design as it is driven by downstream conditions. Equation (4.1)
shows that the mass flow rate depends explicitly on the shape of the turbomachine through
the position of the extreme pointsrhub andrtip of the quasi-orthogonal lines. The purpose of
our inverse problem is to identify both hub and tip contours of the turbomachine to achieve
an expected mass flow rate at the inlet of the turbomachine.

The geometry of the contours of the turbomachine is defined bya univariate interpolation
of n points along ther-axis. The interpolation is based on the improved method developed
by Hiroshi Akima [1]. In this method, the interpolating function is a piecewisepolynomial
function composed of a set of polynomials defined at successive intervals of the given data
points. We use the third-degree polynomial default option as it is not required to reduce any
undulations in the resulting curves.

In this realistic example, we use five points on each curve describing, respectively, the
hub and the tip contours; see the right panel of Figure4.2. The initial ten data points are
extracted from an existing geometry and are chosen arbitrary equidistant along the axial di-
rection. Their radial position is linearly interpolated using the two closest points. The uncon-
strained optimization will be to findr∗ = (r∗,1, r∗,2, . . . , r∗,10)

⊤ ∈ R
10 such that

(4.2) f (r∗) = min
r∈R10

f (r) ,

wheref (r) :=
(

ṁ−ṁ(r)
ṁ

)2

, ṁ (r) is the mass flow rate that depends on the design parame-

ters andṁ is the imposed inlet mass flow rate.
In our example, the target inlet mass flow rate isṁ = 200 kg/s, and the initial realistic

practical geometry gives an initial mass flow rate ofṁ0 = 161.20 kg/s with

r0 = (0.828, 0.836, 0.853, 0.853, 0.853, 0.962, 1.05, 1.337, 1.701, 2.124)T .

The difference between the target and the initial inlet massflow value is about 20% which is
considered to be very significant in practice. The initial shape is shown in the left panel of
Figure4.2.
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FIG. 4.2. Initial steam path contour (left panel), and Initial and optimized steam path contours (right panel).

The moving asymptotes are chosen such that the condition (3.15) is automatically satis-
fied, and their numerical implementation is defined by

A
(k)
j =











L
(k)
j = r

(k)
j + 4

f,j(r(k))
S

(k)
jj

if f,j
(

r(k)
)

< 0,

U
(k)
j = r

(k)
j + 4

f,j(r(k))
S

(k)
jj

if f,j
(

r(k)
)

> 0.

It is important to note the simple form which is used here for the selection of the moving
asymptotes. The first-order partial derivatives are numerically calculated using a two-point
formula that computes the slope

f (r1, . . . , rj + h, . . . , r10)− f (r1, . . . , rj − h, . . . , r10)

2h
, j = 1, . . . , 10,

with an error of orderh2. For our numerical study,h has been chosen equal to5 · 10−4 that
corresponds to about5 · 10−2 % of the size of the design parameters, which gives an ap-
proximation accurate enough. To avoid computing second-order derivatives of the objective
functionf , we use the spectral parameter as defined in (3.9). We observe a good convergence
to the target inlet mass flow rate displayed in Table4.1. The final stream path geometry is
compared with the initial geometry in the right panel of Figure 4.2, where the optimized hub
and tip contour values are

r∗ = (0.824, 0.821, 0.857, 0.851, 0.853, 0.966, 1.074, 1.331, 1.703, 2.124)T .

It appears that the hub contour of the optimized shape is moredeformed than the tip contour,
and the shape is more sensitive to the design parameters of the hub than the tip contours.

5. Concluding remarks. In this paper we develop and analyze new local convex ap-
proximation methods with explicit solutions of non-linearproblems for unconstrained op-
timization for large-scale systems and in the framework of the structural mechanical opti-
mization of multi-scale models based on the moving asymptotes algorithm (MMA).We show
that the problem leads us to use second derivative information in order to solve more effi-
ciently structural optimization problems without constraints. The basic idea of our MMA
methods can be interpreted as a technique that approximatesa priori the curvature of the ob-
ject function. In order to avoid second derivative evaluations in our algorithm, a sequence
of diagonal Hessian estimates, where only the first- and zeroth-order information is accumu-
lated during the previous iterations, is used. As a consequence, at each step of the iterative
process, a strictly convex approximation subproblem is generated and solved. A convergence
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TABLE 4.1
The convergence of inlet mass flow rate:ṁ (kg/s) in the optimization problem (4.2) to the target inlet mass

flowṁ = 200 kg/s.

Iteration Inlet mass flow rate:̇m (kg/s) Objective function:f (r)

0 162.10 0.359010−1

1 170.42 0.218812−1

2 178.54 0.115096−1

3 186.51 0.455025−2

4 194.32 0.806159−3

5 201.74 0.752755−4

6 199.50 0.636189−5

7 200.26 0.167331−5

8 199.97 0.170603−7

9 200.10 0.232201−6

10 199.99 0.366962−8

result under fairly mild assumptions, which takes into account the second-order derivatives
information for our optimization algorithm, is presented in detail.

It is shown that the approximation scheme meets all well-known properties of the MMA
such as convexity and separability. In particular, we have the following major advantages:

• All subproblems haveexplicit solutions. This considerably reduces the computa-
tional cost of the proposed method.

• The method generates an iteration sequence, that, under mild technical assumptions,
is bounded and converges geometrically to a stationary point of the objective func-
tion with one or several variables from any ”good” staring point.

The numerical results and the theoretical analysis of the convergence are very promising
and indicate that the MMA method may be further developed forsolving general large-scale
optimization problems. The methods proposed here also can be extended to more realistic
problems with constraints. We are now working to extend our approach to constrained op-
timization problems and investigate the stability of the algorithm for some reference cases
described in [32].
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