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STAGNATION OF BLOCK GMRES AND ITS RELATIONSHIP TO BLOCK FOM∗

KIRK M. SOODHALTER†

Abstract. We analyze the convergence behavior of block GMRES and characterize the phenomenon of stagnation
which is then related to the behavior of the block FOM method. We generalize the block FOM method to generate
well-defined approximations in the case that block FOM would normally break down, and these generalized solutions
are used in our analysis. This behavior is also related to the principal angles between the column-space of the previous
block GMRES residual and the current minimum residual constraint space. At iteration j, it is shown that the proper
generalization of GMRES stagnation to the block setting relates to the column space of the jth block Arnoldi vector.
Our analysis covers both the cases of normal iterations as well as block Arnoldi breakdown wherein dependent basis
vectors are replaced with random ones. Numerical examples are given to illustrate what we have proven, including
one built from a small application problem to demonstrate the validity of the analysis in a less pathological case.
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1. Introduction. The Generalized Minimum Residual Method (GMRES) [35] and the
Full Orthogonalization Method (FOM) [33] are two Krylov subspace methods for solving
linear systems with non-Hermitian coefficient matrices and one right-hand side, i.e.,

(1.1) Ax = b with A ∈ Cn×n and b ∈ Cn.

The convergence behavior of these two methods is closely related, and this relationship was
characterized by Brown [5], other related results can be found in [7, 8, 42], and a related
detailed geometric analysis of projection methods was presented in [11]. A nice description
can also be found in [34, Section 6.5.5]. Krylov subspace methods have been generalized to
treat the situation in which we have multiple right-hand sides, i.e., we are solving

(1.2) AX = B with B ∈ Cn×L.

In particular, block GMRES and block FOM [34, Section 6.12] have been proposed for
solving (1.2). However, to our knowledge, a similar full analysis of block GMRES, the
connection between stagnation and block FOM convergence and accompanying geometric
considerations have yet to be described in the literature. Therefore, in this work we analyze the
stagnation behavior of block GMRES and characterize its relationship to the behavior of the
block FOM method. Similar analytic tools as in [5] and [11] are used, but the behavior of block
methods is a bit more complicated to describe. The key result is the proper generalization
of GMRES stagnation to the block setting. The analog of stagnation for block GMRES is
not simply stagnation of some columns of the iterate. Rather, at iteration j, it is associated to
the dimension of the intersection between the column space of the jth block Arnoldi vector
and the jth block GMRES correction. Stagnation of some columns of the iterate is shown to
be a special case thereof. This then allows analogs of many of the results on stagnation of
GMRES and the relationship between GMRES and FOM to be proven in the block setting. As
block methods can suffer from partial or full stagnation of the iteration and breakdowns due
to linear dependence of the block residual, additional analysis is needed to fully characterize
the stagnation in these settings. Here we consider the case that dependent basis vectors are
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replaced with random ones (as in [3, 6, 30, 40]). One could similarly consider the case that
dependent vectors are removed and the block size reduced; see, e.g., [1, 22, 32, 28].

The rest of this paper proceeds as follows. In the next section, we review Krylov subspace
methods, focusing in particular on block GMRES and block FOM. We also review existing
analysis relating GMRES- and FOM-like methods. The type of relationship illuminated in [5]
has been extended to many other pairs of methods. In Section 3, we present our main results
which characterize the relationship between block GMRES and block FOM. In Section 4, we
construct numerical examples which demonstrate what has been revealed by our analysis. We
offer some discussion and conclusions in Section 5.

In this paper, we adopt the convention that I is the identity matrix, where context de-
termines the appropriate dimension. When needed, we specify the dimension IJ ∈ RJ×J .
Similarly, 0 denotes the matrix of zeros, with dimension determined by context. We denote
0J ∈ RJ×J to be a square matrix of zeros and 0J1×J2 ∈ RJ1×J2 with J1 6= J2 to be a
rectangular matrix of zeros. Furthermore, exact arithmetic is assumed for all the analysis in
this paper. Breakdown in the case of inexact arithmetic is considered in [32].

2. Background. In this section, we review the basics about Krylov subspace methods
and focus on the block version, designed to solve, e.g., (1.2). We describe everything in terms
of block Krylov subspace methods, and discuss the simplifications in the case that the block
size L = 1. We then review existing results relating the iterates of pairs of methods (many
times derived from Galerkin and minimum residual projections, respectively), e.g., FOM and
GMRES [5] and BiCG and QMR [15] as well as subsequent works which expand upon and
offer additional perspective on these pair-wise relationships, e.g., [7, 8, 18, 31, 42].

2.1. Single-vector and block Krylov subspaces. In the case that we are solving the
system (1.2) with multiple right-hand sides (a block right-hand side), block Krylov subspace
methods are an effective family of methods for generating high-quality approximate solutions
to (1.2) at relatively low cost. Let X0 be an initial approximate solution to (1.2) with block
initial residual F0 = B−AX0. We can define the jth block Krylov subspace as

Kj(A,F0) = colspan
[
F0 AF0 A2F0 . . . Aj−1F0

]
,

where the span of a collection of block vectors is understood to be the span of all their columns.
When L = 1 (B, X0 ∈ Cn), this definition reduces to the single-vector Krylov subspace,
denoted Kj(A,F0). In the case L > 1, it is straightforward to show that

Kj(A,F0) = Kj(A,F0(:, 1)) +Kj(A,F0(:, 2)) + · · ·+Kj(A,F0(:, L)),

where we use the MATLAB style indexing notation F(:, i) to denote the ith column of a matrix
F ∈ CI×J such that J ≥ i; see, e.g., [20].

Let Wj =
[
V1 V2 . . .Vj

]
∈ Cn×jL be the matrix with columns spanning Kj(A,F0)

with Vi ∈ Cn×L having orthonormal columns and V∗iVj = 0 for i 6= j. These orthonormal
blocks can be generated one block at a time by an iterative orthogonalization process called
the block Arnoldi process, which is a natural generalization of the Arnoldi process for the
single-vector case. We have the block Arnoldi relation

(2.1) AWj = Wj+1H
(B)

j ,

where H
(B)

j = (Hi,j) ∈ C(j+1)L×jL is block upper Hessenberg with Hij ∈ CL×L and
Hj+1,j upper triangular.
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We can derive block FOM and block GMRES methods through Galerkin and minimization
constraints. We have for each column of the jth block residual the constraints

Fj(:, i) ⊥ Kj(A,F0) or(2.2)
Fj(:, i) ⊥ AKj(A,F0),(2.3)

which lead to the block FOM and block GMRES methods, respectively. For both methods,
approximations can be computed for all columns simultaneously. Let X(F )

j and X
(G)
j denote

the jth block FOM and block GMRES approximate solutions for (1.2). Furthermore, let
E

[I]
L ∈ RI×L have as columns the first L columns of the I × I identity matrix, and let

F0 = V1S0 be the reduced QR factorization with S0 ∈ CL×L upper triangular. Using (2.1),
block FOM can be derived from (2.2) which leads to the formulation

X
(F )
j = X0 +T

(F )
j where T

(F )
j = WjY

(F )
j and H

(B)
j Y

(F )
j = E

[jL]
L S0,

where H(B)
j ∈ CjL×jL is defined as the matrix containing the first jL rows of H

(B)

j . Similarly
for block GMRES, we can use (2.1), combined with (2.3) to yield a formulation

X
(G)
j = X0 +T

(G)
j where T

(G)
j = WjY

(G)
j

and Y
(G)
j = argmin

Y∈CjL×L

∥∥∥H(B)

j Y −E
[(j+1)L]
L S0

∥∥∥
F
,(2.4)

where ‖·‖F is the Frobenius norm. Updates such as T(G)
j and T

(F )
j are often called corrections

and the subspaces from which they are drawn are called correction subspaces. There has
been a great deal of research on the convergence properties of block methods such as block
GMRES; see, e.g., [17, 23, 38].

In the case L = 1, block Krylov methods reduce to the well-described single-vector
Krylov subspace methods; see, e.g., [34, Section 6.3] and [39]. In this case, we drop the
superscript (B) and write Hj := H

(B)

j . The block Arnoldi method simplifies to a simpler
Gram-Schmidt process in which the block entries Hi,j of Hj reduce to scalars, now denoted
with lower-case hij ∈ C. Then using the scalar version of (2.1), single-vector FOM can be
derived from (2.2) which leads to the formulation

x
(F )
j = x0 + t

(F )
j where t

(F )
j = Vjy

(F )
j and Hjy

(F )
j = βe

[j]
1 ,

where β = ‖F0‖ is the 2-norm of the single-vector residual, and e
[I]
J ∈ CI is the J th Cartesian

basis vector in CI . Similarly for single-vector GMRES, we can use (2.1) combined with (2.3)
to yield the formulation

x
(G)
j = x0 + t

(G)
j where t

(G)
j = Vjy

(G)
j and y

(G)
j = argmin

y∈Cj

∥∥∥Hjy − βe[j+1]
1

∥∥∥ .
In the case L = 1, if at some iteration j we have Kj−1(A,F0) = Kj(A,F0) (i.e.,

dimKj(A,F0) = j − 1 < j), then we have reached an invariant subspace, and both GMRES
and FOM will produce an exact solution at that iteration. In this case, j − 1 is called the
grade of the pair (A,F0), denoted ν(A,F0). This notion of grade has been extended to
the case L > 1 [20]; however, the situation is a bit more complicated. It can occur that
dimKj(A,F0) < jL without convergence for all right-hand sides (in other words, without
having reached the block grade of A and F0, the iteration at which we reach an invariant
subspace). It may be that we have convergence for some or no right-hand sides. In this case,
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dependent block Arnoldi vectors are generated and there must be some procedure in place
to gracefully handle this situation for reasons of stability. The dependence of block Arnoldi
vectors and methods for handling this dependence have been discussed extensively in the
literature (see, e.g., [3, 14, 17, 20, 24, 28, 36, 40]), and general convergence analysis of block
methods has been presented in, e.g., [12, 23, 38, 37]. In this paper, we consider only the case
that dependent basis vectors are replaced with random vectors.

2.2. Relationships between pairs of projection methods. Pairs of methods such FOM
and GMRES which are derived from a Galerkin and minimum residual projection, respectively,
over the same space are closely related. The analysis of Brown [5] characterized this relation-
ship in the case of FOM and GMRES when L = 1. We state here a theorem encapsulating the
results relevant to this work. First, though, note that in FOM at iteration j, we must solve a
linear system involving Hj . Thus, if Hj is singular, the jth FOM iterate does not exist. We
define x̃

(F )
j to be the generalized FOM approximation through

(2.5) x̃
(F )
j = x0 + t̃

(F )
j where t̃

(F )
j = Vjỹ

(F )
j and ỹ

(F )
j = H†j

(
βe

[j]
1

)
,

where H†j is the Moore-Penrose pseudoinverse of Hj . In the case that Hj is nonsingular, we

have that x̃(F )
j = x

(F )
j , but x̃(F )

j is well-defined in the case that x(F )
j does not exist. In this

case ỹ
(F )
j minimizes

∥∥∥Hjy − βe[j]1

∥∥∥ and has minimum norm of all possible minimizers. The
following theorem combines two results proven by Brown in [5].

THEOREM 2.1. The matrix Hj is singular (and thus x
(F )
j does not exist) if and only

if GMRES stagnates at iteration j with x
(G)
j = x

(G)
j−1. Furthermore, in the case that Hj is

singular, we have x̃
(F )
j = x

(G)
j .1

Thus in the GMRES stagnation case, it is shown that the two methods are “equivalent”, if
we consider the generalized formulation of FOM. However, the relationship persists in the
case that Hj is nonsingular as show in, e.g., [34]. In the same text, the following proposition
is also shown.

PROPOSITION 2.2. Let x(G)
j and x

(F )
j be the the jth GMRES and FOM approximations

to the solution of (1.1) over the correction subspace Kj(A,F0). Then we can write x
(G)
j as

the following convex combination,

(2.6) x
(G)
j = c2jx

(F )
j + s2jx

(G)
j−1,

where sj and cj are the jth Givens sine and cosine, respectively, obtained from annihilating
the entry hj+1,j while forming the QR factorization of Hj .

One proves this by studying the differences between the QR factorizations of the rectan-
gular Hj ∈ C(j+1)×j and square Hj ∈ Cj×j generated by the single-vector Arnoldi process.
The relation (2.6) reveals information about GMRES stagnation and its relationship to FOM.
If x(G)

j = x
(G)
j−1, then we have that cj = 0 which implies that Hj is singular and x

(F )
j does

not exist. In this case, (2.6) can be thought of as still valid, in the sense that sj = 1, and (2.6)
reduces to x

(G)
j = x

(G)
j−1 if we replace x

(F )
j with x̃

(F )
j .

This characterization of the relationship is not only important for understanding how
these two methods behave at each iteration. They also reveal that FOM can suffer from
stability issues when GMRES is close to stagnation as the matrix Hj is nearly singular

1Note that Brown in [5] did not use the expression “generalized FOM approximation”. He calls it the least
squares solution and proves it’s equivalence to the stagnated x

(G)
j .
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(poorly conditioned) in this case. Whereas the residual curve of GMRES is monotonically
nonincreasing, we see spikes in the FOM residual norm corresponding to periods of near
stagnation in the GMRES method. These so-called “peaks” of residual norms of FOM and
their relation to “plateaus” of the residual norms of GMRES have been previously studied;
see, e.g., [7, 8, 42, 43]. Of particular interest is the observation by Walker [42] that the
GMRES method can be seen as the result of a “residual smoothing” of the FOM residual.
Similar observations extend to other pairings, such as QMR and BiCG, and more recently
the relationship was studied more generally for such pairs when nonorthonormal bases were
used [10]. It should also be noted that there has been work done characterizing GMRES
stagnation in various circumstances [25, 26].

3. Main results. WhenL > 1, block GMRES and block FOM also fit into the framework
of a Galerkin/minimization pairing. Thus, it is natural that stagnation of block GMRES and
behavior of the block FOM algorithm would exhibit the same relationship, using a generalized
block FOM iterate defined similar by (2.5). However, this interaction is more complicated for
a block method. There are interactions between the different approximations to individual
systems. As such, the generalization of stagnation to the block GMRES setting must be done
correctly. We introduce two definitions.

DEFINITION 3.1. At iteration j, we call the situation in which X
(G)
j = X

(G)
j−1 total

stagnation. We call the situation in which some columns of the block GMRES approximation
have stagnated but not all columns partial stagnation. Let I denote an indexing set such that
I ( {1, 2, . . . , L}, and let I = {1, 2, . . . , L} \ I. For F ∈ CJ×L, let F (:, I) ∈ CJ×|I| have
as columns those from F corresponding to indices in I. Then partial stagnation refers to the
situation in which we have

(3.1) X
(G)
j (:, I) = X

(G)
j−1 (:, I) but X

(G)
j (:, i) 6= X

(G)
j−1 (:, i) for each i ∈ I.

Total stagnation is analogous to stagnation of GMRES in the single-vector case, as character-
ized in [5], but partial stagnation has no single-vector analog. Both total and partial stagnation
can occur for multiple reasons. Total block GMRES stagnation can occur when block GMRES
has converged, i.e., X(G)

j = X, implying (if j is the first iteration for which this occurs) from
[20, Theorem 9], that we have that j = ν(A,F0) and dimKj+k(A,F0) = dimKj(A,F0)
for all k > 0. This case is trivial and will not be considered. If there is no breakdown of
the block Arnoldi process (the rank of the block residual is L), then an occurrence of total
stagnation is the block analog of single-vector GMRES stagnation. We prove in this case that
Theorem 2.1 has a block analog; cf., Corollary 3.17 and Corollary 3.20.

Partial stagnation has no direct analog to the single-vector case. Partial stagnation can oc-
cur when for column i, the system is exactly solved with
X

(G)
j (:, i) = X(:, i). This implies that F0(:, i)−AWjY

(G)
j (:, i) = 0, which implies that

dim (R(F0) ∩AKj(A,F0)) = 1

(see, e.g., [32]) and that a dependent Arnoldi vector has been produced. In this case, one can
treat this with one of the referenced strategies; see, e.g., [28, 3, 2, 4, 14, 41].

This is a specific instance of block Arnoldi process breakdown. At iteration j, the
process breaks down when the matrix

[
F0 AF0 · · · Aj−1F0

]
is rank deficient which is

equivalent to saying dim (R(X) ∩Kj(A,F0)) = dimN (Rj) > 0. In this case, Kj (A,F0)
contains a linear combination of the columns of X [27, 32]. It has also been observed [32] that
a dependent Arnoldi vector can be generated without the convergence of any of the columns.

In the case that there has been no breakdown of the block Arnoldi process we show that
partial stagnation is actually a special case of a more general situation in which a part of the
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Krylov subspace does not contribute to the GMRES minimization process and the dimension
of this subspace corresponds to the dimension of the null space of the rank-deficient FOM
matrix H

(B)
j ; cf., Theorem 3.16 and Theorem 3.19 below.

We derive a relationship for block GMRES and block FOM which is a generalization
of (2.6) and is valid even in the case that H(B)

j is singular. Thus, as in (2.5), we generalize the

definition of the block FOM approximation to be compatible with a singular H(B)
j , i.e.,

X̃
(F )
j = X0 + T̃

(F )
j where T̃

(F )
j = WjỸ

(F )
j

and Ỹ
(F )
j =

(
H

(B)
j

)† (
E

[jL]
L S0

)
,(3.2)

where
(
H

(B)
j

)†
is the Moore-Penrose pseudoinverse of H

(B)
j . In the case that H(B)

j is

nonsingular, we have that X̃(F )
j = X

(F )
j , but X̃(F )

j is well-defined in the case that X(F )
j does

not exist. In this case Ỹ
(F )
j minimizes

∥∥∥H(B)
j Y −E

[jL]
L S0

∥∥∥
F

and has minimum norm of all
possible minimizers. As in (2.5), this definition reduces to the standard formulation of the
FOM approximation in the case that H(B)

j is nonsingular. In the single-vector case, to prove
[34, Lemma 6.1], expressions are derived for the inverses of upper-triangular matrices. We
need to obtain similar identities here. However, we want our derivation to be compatible with
the case that H(B)

j is singular.
To characterize both types of stagnation requires us to follow the work in [5], generalizing

to the block Krylov subspace case. We also need to generalize (2.6) to the block GMRES/FOM
setting. This is quite useful in extending the work in [5] and also of general interest.

3.1. GMRES and FOM from a particular perspective. We discuss briefly the known
results for the relationship of single-vector GMRES and (generalized) FOM. This discussion
closely relates to the discussion and results on ascent directions in, e.g., [5]. It has been shown
that at the jth iteration the approximations x(G)

j and x̃
(F )
j can both be related to the (j − 1)st,

with

x
(G)
j = x

(G)
j−1 + s

(G)
j and x̃

(F )
j = x

(G)
j−1 + s̃

(F )
j ,(3.3)

where s
(G)
j = Vjy

(G)
sj ∈ Kj(A,F0) and s̃

(F )
j = Vjỹ

(F )
sj ∈ Kj(A,F0),

where ỹ
(F )
sj and y

(G)
sj are representations of the generalized FOM and GMRES progressive

corrections from Kj(A,F0). The next proposition follows directly.
PROPOSITION 3.2. The GMRES and generalized FOM updates y(G)

sj and ỹ
(F )
sj . respec-

tively. satisfy the minimizations

y(G)
sj = argmin

y∈Cn

∥∥∥∥[βe[j]1 −Hj−1y
(G)
j−1

0

]
−Hjy

∥∥∥∥ and(3.4)

ỹ(F )
sj = argmin

y∈Cn

∥∥∥βe[j]1 −Hj−1y
(G)
j−1 −Hjy

∥∥∥ .(3.5)

Proof. To prove (3.4), one simply inserts the expression for x(G)
j from (3.3) into the

residual and applies the GMRES Petrov-Galerkin condition (2.3). To prove (3.5), one begins
similarly, by substituting the expression for x(F )

j from (3.3) into the residual and applying the
FOM Galerkin condition (2.2). In this case, if Hj is nonsingular, then this is equivalent to
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solving the linear system

(3.6) Hjỹ
(F )
sj = βe

[j]
1 −Hj−1y

(G)
j−1.

In the case that Hj is singular (the jth FOM approximation does not exist), we set

(3.7) ỹ(F )
sj = H†j

(
βe

[j]
1 −Hj−1y

(G)
j−1

)
.

In either case, we have that ỹ(F )
sj is the minimizer of (3.5), yielding the result.

The result on FOM is [5, Theorem 3.3] but stated differently. This formulation allows us
to discuss GMRES and FOM at iteration j using the (j − 1)st GMRES minimization. We see
that the GMRES method least-squares problem simply grows by one dimension when we go
from iteration j − 1 to j. However, at iteration j, imposing the FOM Galerkin condition (2.2)
is equivalent to an augmentation of the (j−1)st GMRES least squares matrix. This augmented
matrix is square. If it is nonsingular, then the jth FOM approximation exists, and we solve
the augmented system (3.6). If the augmented matrix is singular, then the generalized FOM
approximation is computed by solving the least squares problem (3.7). In the case of single-
vector GMRES and FOM, this is not necessary to characterize their relationship. However, in
the case of block GMRES and block FOM, we can better discuss a generalization to the more
complicated block Krylov subspace situation.

3.2. The QR factorization of the block upper Hessenberg matrices. We begin by de-
scribing the structure of the QR factorizations of the square and rectangular block Hessenberg
matrices.

LEMMA 3.3. Let Rj ∈ C(j+1)L×jL and R̂j ∈ CjL×jL be the R-factors of the respective

QR factorizations of H
(B)

j and H
(B)
j , and let Rj be the jL × jL nonzero block of Rj .

Furthermore, let j ≥ 2. Then Rj and R̂j both have as their upper left (j − 1)L× (j − 1)L

block the R-factor of the QR factorization of H
(B)

j−1, i.e., Rj−1. Furthermore, the structures of
Rj and R̂j , respectively, are,

(3.8) Rj =

Rj−1 Zj
Nj

 and R̂j =

[
Rj−1 Zj

N̂j

]
,

where Zj ∈ C(j−1)L×L and Nj , N̂j ∈ CL×L are upper triangular.
Proof. Let Q(j+1)

i ∈ C(j+1)L×(j+1)L be the orthogonal transformation which annihilates

all subdiagonal entries in columns (i− 1)L+ 1 to iL of H
(B)

j and effects no other rows so
that we can write

Q
(j+1)
j−1 · · ·Q(j+1)

1 H
(B)
j =

Rj−1 Zj

Ĥj,j

Hj+1,j

 and Q
(j)
j−1 · · ·Q

(j)
1 H

(B)
j =

[
Rj−1 Zj

Ĥj,j

]
.

Let Q̂(j)
j ∈ CjL×jL be the orthogonal transformation which annihilates the lower subdiagonal

entries of the block Ĥj,j in Q
(j)
j−1 · · ·Q

(j)
1 H

(B)
j and effects no other rows. Then we have

(3.9) Rj = Q
(j+1)
j

Rj−1 Zj
Ĥj,j

Hj+1,j

 and R̂j = Q̂
(j)
j

[
Rj−1 Zj

Ĥj,j

]
,

and the Lemma is proven.
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Thus, the two core problems which must be solved at every iteration of block GMRES
and block FOM can be written[

Rj−1 Zj
Nj

]
Y

(G)
j = (Q

(j+1)
j · · ·Q(j+1)

1 E
[(j+1)L]
L S0)1:jL(3.10)

and
[
Rj−1 Zj

N̂j

]
Y

(F )
j = Q̂

(j)
j Q

(j)
j−1 · · ·Q

(j)
1 E

[jL]
L S0.(3.11)

It is also straightforward to show that the block right-hand sides of these core problems are
related. If

G
(G)
j = (Q

(j+1)
j · · ·Q(j+1)

1 E
[(j+1)L]
L S0)1:jL and G

(F )
j = Q̂

(j)
j Q

(j)
j−1 · · ·Q

(j)
1 E

[j)L]
L S0,

then G
(G)
j and G

(F )
j are equal for the first (j − 1)L rows, with

(3.12) G
(G)
j =

[
G

(G)
j−1
Cj

]
and G

(F )
j =

[
G

(G)
j−1

Ĉj

]
,

where we have that

(3.13) G
(G)
j =

Q
(j+1)
j

G
(G)
j−1

C̃j

0




1:jL

=


G(G)

j−1
Cj

C̃j+1




1:jL

.

This is a consequence of the structure of the orthogonal transformations used to define these
vectors. It is important to pause here for a moment to discuss the L × L matrices Cj , Ĉj ,
and C̃j and characterize if and when they are full rank. At times for convenience, we refer to
these matrices as the “C-matrices”. This characterization can be related to the previous block
GMRES residual, F(G)

j−1 = B−AX
(G)
j−1.

LEMMA 3.4. We have that rank C̃j = rank F
(G)
j−1; and, in particular, if

dimKj−1(A,F0) = (j − 1)L, we have that, C̃j is nonsingular.
Proof. Let Y(G)

j−1 be the solution to the block GMRES least squares subproblem (2.4) but
for iteration j − 1. Let

F
(G)
j−1 = B−AX

(G)
j−1 = −Wj

(
H

(B)

j−1Y
(G)
j−1 −E

[jL]
L S0

)
.

By assumption (3.10) has a solution at iteration j − 1, and thus

H
(B)

j−1Y
(G)
j−1 −E

[jL]
L S0 = Q

∗
j−1

G(G)
j−2

Cj−1
0

−E
[jL]
L S0,

where Qj−1 = Q
(j)
j−1 · · ·Q

(j)
1 . Since Wj and Qj−1 are both full rank, we have

rank F
(G)
j−1 = rankQj−1W

∗
jF

(G)
j−1 = rank


G(G)

j−2
Cj−1
0

−
G(G)

j−2
Cj−1
C̃j


 = rank

 0
0

−C̃j


= rank C̃j ,
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where in the third equality in the first line, we use the fact that C̃j in the last L rows results
from multiplication by Q

(j)
j−1, as is shown in equation (3.13) (but there for iteration j rather

than j − 1). If we assume that the block Arnoldi method has not produced any dependent
basis vectors, then we know from [32, Section 2, Corollary 1] that F(G)

j−1 is full-rank meaning
C̃j is nonsingular.

From this, we can similarly characterize the ranks of Cj and Ĉj , which are closely related
to C̃j .

LEMMA 3.5. We have that rank Ĉj = rank C̃j . In particular, if dimKj−1(A,F0) =

(j − 1)L, then we have that Ĉj is square and nonsingular.
Proof. Let

Q̂
(j)
j =

[
I(j−1)L

Q̂
(b)
j

]
where Q̂

(b)
j ∈ CL×L is the orthogonal transformation such that the second equation of (3.9)

holds. Then from (3.13), we have Ĉj = Q̂
(b)
j C̃j . If C̃j has full rank, the second statement

follows.
We can prove a similar result for Cj , which will be used later to verify the nonsingularity

of Cj under certain conditions.
LEMMA 3.6. Let

Q
(j+1)
j =

I(j−1)L Q
(11)
j Q

(11)
j

Q
(21)
j Q

(22)
j


with Q

(11)
j ∈ CL×L, Q(12)

j ∈ CL×L, Q(21)
j ∈ CL×L, and Q

(22)
j ∈ CL×L. In general, we

have rankCj ≤ min
{
rankQ

(11)
j , rank C̃j

}
. If dimKj−1(A,F0) = (j − 1)L, then we

have Cj is singular if and only if Q(11)
j is singular.

Proof. From (3.13) we have that Cj = Q
(11)
j C̃j . The general result comes from basic

inequality results for ranks of products of matrices; see, e.g., [21, Chapter 0]. If we assume
dimKj−1(A,F0) = (j − 1)L, then we know that C̃j has full rank, and the second result
(in both directions) follows.

We see that the ranks of C̃j and Ĉj are directly connected to block Arnoldi breakdown
at iteration j − 1. Later in Section 3.3, we assume no breakdown, thus both C̃j and Ĉj are
nonsingular. In Section 3.4, we assume that the block Arnoldi process produces dependent
vectors at iteration j which are replaced with random vectors. Thus, at iteration j, both C̃j

and Ĉj are still nonsingular, and their dimensions do not change at subsequent iterations.
We now turn to solving (3.11) and either solving (3.10) or obtaining the generalized

least squares solution if R̂j is singular. Since Rj is nonsingular, we simply compute the
actual inverse while for R̂j , we compute the pseudo-inverse. These are both straightforward
generalizations of the identities used in the proof of [34, Lemma 6.1], though verifying the
structure of the Moore-Penrose pseudo-inverse identity requires a bit of thought. Let us recall
briefly the following definition which can be found in, e.g., [13, Section 2.2],

DEFINITION 3.7. Let T : X → Y be a bounded linear operator between Hilbert spaces.
Let N (T ) denote the null space andR(T ) denote the range of T and define T̃ : N (T )⊥ →
R(T ) to be the invertible operator such that T̃ x = Tx for all x ∈ N (T )⊥. Then we call the
operator T † the Moore-Penrose pseudo-inverse if it is the unique operator satisfying
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1. T †
∣∣
R(T )

= T̃−1,

2. T †
∣∣
R(T )⊥

= 0op,
where 0op is the zero operator.

This definition is more general than the matrix-specific definition given in, e.g., [16,
Section 5.5.2]. We choose to follow Definition 3.7 as it renders the proof of the following
lemma less dependent on many lines of block matrix calculations, but of course the theoretical
results would be the same.

LEMMA 3.8. The inverse and pseudo-inverse, respectively, of Rj and R̂j can be directly
constructed from the identities (3.8), i.e.,

(3.14) R−1j =

[
R−1j−1 −R−1j−1ZjN

−1
j

N−1j

]
and R̂†j =

[
R−1j−1 −R−1j−1ZjN̂

†
j

N̂†j

]
,

where N̂†j is the Moore-Penrose pseudo-inverse of N̂j .
Proof. The expression for R−1j can be directly verified by left and right multiplication.

To verify the expression for R̂†j , we must verify the two conditions listed in Definition 3.7.
To verify condition 1, we first construct a basis for N (R̂j)

⊥. Observe that under our
assumption that Rj−1 is nonsingular, we have that

dimN (R̂j) = dimN (N̂j) = L− r,

where r = rank (N̂j). Let {yi}ri=1 be a basis for N (N̂j)
⊥. Furthermore, let

{mi}(j−1)Li=1 be a basis for R(j−1)L. Then it follows that{[
R−1j−1m1

0

]
, . . . ,

[
R−1j−1mj−1

0

]
,

[
−R−1j−1Zjy1

y1

]
, . . . ,

[
−R−1j−1Zjyr

yr

]}
is a basis for N (R̂j)

⊥. For any x̂ ∈ N (R̂j)
⊥, we can write

x̂ =

(j−1)L∑
i=1

αi

[
R−1j−1mi

0

]
+

r∑
i=1

βi

[
−R−1j−1Zjyi

yi

]
.

By direct calculation, we see that

R̂jx̂ =

(j−1)L∑
i=1

αi

[
mi

0

]
+

r∑
i=1

βi

[
0

N̂jyj

]
,

and applying our prospective pseudo-inverse yields

R̂†jR̂jx̂ =

(j−1)L∑
i=1

αi

[
R−1j−1mi

0

]
+

r∑
i=1

βi

[
−R−1j−1ZjN̂

†
jN̂jyi

N̂†jN̂jyi

]
.

Finally, we observe that since {yi}ri=1 is a basis for N (N̂j)
⊥, we have from Definition 3.7

that N̂†jN̂jyi = yi for all i, and thus R̂†jR̂jx̂ = x̂, verifying condition 1.
To verify condition 2, we first observe that{[

m1

0

]
, . . . ,

[
m(j−1)L

0

]
,

[
0

N̂jy1

]
, . . . ,

[
0

N̂jyr

]}
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is a basis forR(R̂j). Let {ci}L−ri=1 be a basis forR(N̂j)
⊥. Then it follows that

{[
0
ci

]}L−r
i=1

is a basis forR(R̂j)
⊥. Let ỹ =

∑L−r
i=1 γi

[
0
ci

]
be an element ofR(R̂j)

⊥. Then we have

R̂†jỹ =

L−r∑
i=1

γi

[
−R−1j−1ZjN̂

†
jci

N̂†jci

]
.

It follows directly from the definition in (3.7) that N̂†jci = 0 for all i, and this proves
condition 2, thus proving the the lemma.

The following corollary technically follows from Lemma 3.8, though it can easily be
proven directly.

COROLLARY 3.9. If H(B)
j is nonsingular, then it follows that R̂−1j exists and can be

written

R̂−1j =

[
R−1j−1 −R−1j−1ZjN̂

−1
j

N̂−1j

]
.

Now we have all the pieces we need to analyze the relationship between the block GMRES
and block FOM approximations, and we can then discuss the implications with respect to
stagnation.

3.3. The case of a breakdown-free block Arnoldi process. We begin this section by
discussing block GMRES and block FOM from the same perspective as advocated in Sec-
tion 3.1. We have the block analog of Proposition 3.2, and in this case we explicitly construct
the block analogs of s(G)

j and s
(F )
j .

LEMMA 3.10. Let S(G)
j = WjY

(G)
Sj

and S̃
(F )
j = WjỸ

(F )
Sj

both be in Cn×L such that
they satisfy the block GMRES and FOM progressive update formulas

X
(G)
j = X

(G)
j−1 + S

(G)
j and X̃

(F )
j = X

(G)
j−1 + S̃

(F )
j .

Then we can write

(3.15) Y
(G)
Sj

=

[
−R−1j−1ZjN

−1
j Cj

N−1j Cj

]
and Ỹ

(F )
Sj

=

[
−R−1j−1ZjN̂

†
jĈj

N̂†jĈj

]
,

and these vectors minimize the two residual update equations

Y
(G)
Sj

= argmin
Y∈CjL×L

∥∥∥∥∥
[
E

[jL]
1 S0 −H

(B)

j−1Y
(G)
j−1

0

]
−H

(B)

j Y

∥∥∥∥∥ and(3.16)

Ỹ
(F )
Sj

= argmin
Y∈CjL×L

∥∥∥E[jL]
1 S0 −H

(B)

j−1Y
(G)
j−1 −H

(B)
j Y

∥∥∥ .(3.17)

Proof. Combining (3.12) and (3.14) to solve (3.10) and (3.2), we have the following
expressions for Y(G)

j and Ỹ
(F )
j ,

Y
(G)
j =

[
R−1j−1G

(G)
j−1 −R−1j−1ZjN

−1
j Cj

N−1j Cj

]
and Ỹ

(F )
j =

[
R−1j−1G

(G)
j−1 −R−1j−1ZjN̂

†
jĈj

N̂†jĈj

]
.
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As it can be appreciated, R−1j−1G
(G)
j−1 = Y

(G)
j−1, and it follows that

Y
(G)
j =

[
Y

(G)
j−1
0

]
+

[
−R−1j−1ZjN

−1
j Cj

N−1j Cj

]
and Ỹ

(F )
j =

[
Y

(G)
j−1
0

]
+

[
−R−1j−1ZjN̂

†
jĈj

N̂†jĈj

]
,

which yields (3.15). The proof that these vectors are the minimizers of (3.16) and (3.17)
proceeds exactly as in that of Proposition 3.2.

The behavior of block FOM and GMRES can be divided into three cases.
Case 1 If H(B)

j is nonsingular (i.e., the block FOM solution exists), then (3.17) is satisfied

exactly, and by augmenting with L columns to expand H
(B)

j−1, to H
(B)
j , the (j − 1)st

GMRES least squares problem becomes a nonsingular linear system.
Case 2 If H(B)

j is singular with rank (j − 1)L + r with 1 ≤ r < L, then the linear system

produced by the augmentation of H
(B)

j−1 produces a better minimizer than X
(G)
j−1 from

(3.17), but it is not exactly solvable. This corresponds to only an r-dimensional
subspace ofR(Vj) contributing to the block GMRES minimization at iteration j.

Case 3 If H(B)
j is singular with rank (j−1)L, then the situation is analogous to that described

in Theorem 2.1. We have X̃(F )
j = XG

j = X
(G)
j−1, and augmentation of H

(B)

j−1 produces
no improvement.

We note that Case 2 is unique to the block setting and represents a block generalization of
the concept of GMRES stagnation, where only an r-dimensional subspace of R(Vj) (with
r < rank Vj = L) contributes to the minimization of the residual at step j. We direct the
reader to the related discussion in [5] about ascent directions, though we omit here such an
analysis in the interest of manuscript length. Before proving these results, we prove some
intermediate technical results.

Let us begin by discussing the structure of Q(j+1)
j . In this case, as discussed in Lemma 3.6,

this matrix has a large (j − 1)L× (j − 1)L identity matrix in the upper left-hand corner, and
a 2L× 2L nontrivial orthogonal transformation block in the lower right-hand corner, denoted

(3.18) Ĥj =

[
Q

(11)
j Q

(12)
j

Q
(21)
j Q

(22)
j

]
.

We note that Ĥj is itself a product of elementary orthogonal transformations, and all four
blocks are of size L × L. Because Ĥj is an orthogonal transformation, it admits a CS-
decomposition (see, e.g., [16, Theorem 2.5.3] and more generally for complex matrices [29]
and references therein) i.e., there exist unitary matrices U1,U2,V1,V2 ∈ CL×L and diagonal
matrices S,C ∈ RL×L with S = diag {s1, . . . , sL} and C = diag {c1, . . . , cL} such that

Q
(11)
j = U1CV∗1, Q

(12)
j = U1SV∗2, Q

(21)
j = U2SV∗1,

and Q
(22)
j = −U2CV∗2,(3.19)

and for 1 ≤ i ≤ L we have s2i + c2i = 1, i.e., the diagonal entries of S and C are the sines
and cosines of L angles, {θ1, . . . , θL}. We assume that c1 ≤ c2 ≤ · · · ≤ cL, and it then
follows that s1 ≥ s2 ≥ · · · ≥ sL. Note that in the case of the single-vector Krylov methods,
Ĥj ∈ C2×2, U1 = U2 = V1 = V2 = 1, and S = s1 and C = c1 are the Givens sine and
cosine. Thus this CS-decomposition yields a nice generalization of the Givens sine and cosine
in the block setting; see, cf. Section 3.5 below . We can characterize some elements of this
CS-decomposition by studying the QR factorization of H

(B)

j and its relationship to the rank

of H(B)
j . The proofs that follow often use generalizations of elements of proofs in [5].
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LEMMA 3.11. Let rankH
(B)
j = (j − 1)L+ r with 1 ≤ r ≤ L. Then we can write

(3.20) H
(B)
j =

[
H

(B)

j−1 Lj

]
with Lj ∈ CjL×L such that

(3.21) Lj = H
(B)

j−1Ŷ1 +GjŶ2

with Ŷ1 ∈ C(j−1)L×L, Ŷ2 ∈ Cr×L, and Gj ∈ CjL×r having orthonormal columns which

are orthogonal to R
(
H

(B)

j−1

)
. Furthermore, the blocks Zj and Ĥjj from (3.9) have the

following representations

(3.22) Zj = Rj−1Ŷ1 and Ĥjj = M̂jŶ2,

where M̂j ∈ CL×r so that M̂jŶ2 is a rank-r outer product.

Proof. We begin as in [5] by observing that the square matrix H
(B)
j has the form (3.20)

following from its nested structure and rank. Since rankH(B)
j = (j−1)L+r, we can represent

the columns of Lj as linear combinations of vectors coming from R(H(B)

j−1) and vectors

coming from a subspace ofR(H(B)

j−1)
⊥, from which (3.21) follows, where Gj ∈ CjL×r has

orthonormal columns such that R(H(B)

j−1) ⊥ R(Gj) and R(H(B)
j ) = R

([
H

(B)

j−1 Gj

])
.

Thus we can write

H
(B)

j =

[
H

(B)

j−1 Lj
Hj+1,j

]
=

Qj−1

[
Rj−1
0

]
Qj−1

[
Rj−1
0

]
Ŷ1 +GjŶ2

Hj+1,j

 ,
and we have that

Rj = Q
(j+1)
j Q

∗
j−1

Qj−1

[
Rj−1
0

]
Qj−1

[
Rj−1
0

]
Ŷ1 +GjŶ2

Hj+1,j


= Q

(j+1)
j

[Rj−1
0

] [
Rj−1
0

]
Ŷ1 +Q

∗
j−1GjŶ2

Hj+1,j

 .
Since Qj−1 ∈ C(j+1)L×(j+1)L, its columns form an orthonormal basis for C(j+1)L. However,
from the upper triangular structure of Rj−1, we know we can partition the columns of

Qj−1 ∈ C(j+1)L×(j+1)L such that the first (j − 1)L columns form a basis ofR(H(B)

j−1) and

the remaining columns form a basis forR(H(B)

j−1)
⊥, of whichR(Gj) is a subspace. Thus we

can write

Q
∗
j−1Gj =

[
0

M̂j

]
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with M̂j ∈ CL×r, which yields

Rj = Q
(j+1)
j

[Rj−1
0

] [
Rj−1
0

]
Ŷ1 +

[
0

M̂j

]
Ŷ2

Hj+1,j


= Q

(j+1)
j


[
Rj−1
0

] [
Rj−1Ŷ1

M̂jŶ2

]
Hj+1,j

 .
After some simplifications, both the identities for Zj and Ĥjj have been proven.

COROLLARY 3.12. The representations in (3.22) are not unique, and there always exists
one such representation such that M̂j has orthonormal columns and Ŷ2 is upper triangular.

Proof. Let Ŷ2 = QŶ2
RŶ2

be the QR factorization. With the updates Gj ← GjQŶ2

and Ŷ2 ← RŶ2
, (3.21) still holds with Gj still having orthonormal columns. With the

updates M̂j ← Q
M̂j

and Ŷ2 ← R
M̂j

Ŷ2, (3.22) still holds. Thus we have demonstrated

the non-uniqueness of (3.22) and that M̂j and Ŷ2 with the structures we sought always exist.

Henceforth, we assume that M̂j has orthonormal columns and that Ŷ2 is upper triangular.
Lemma 3.11 and Corollary 3.12 illuminate various properties of the CS-decomposition of
Ĥj . We note here that for any 1 ≤ m ≤ L and a matrix A ∈ CL×m with orthonormal
columns, that A⊥ ∈ CL×(L−r) (a notation we abuse) is some matrix which has orthonormal
columns spanningR(A)⊥ whose exact structure is determined by the context in which it is
used. Furthermore, let U(·) refer to the U-factor of the singular value decomposition of the
argument.

LEMMA 3.13. The orthogonal transformation Ĥj with CS-decomposition described in
(3.19) has the following properties,

(I) Q
(12)
j = N−∗j H∗j+1,j , and it is lower triangular.

(II) U1 = U(N−∗j H∗j+1,j).

(III) rankQ
(12)
j = rankQ

(21)
j = L, i.e., they are nonsingular.

(IV) rankQ
(11)
j = rankQ

(22)
j = r.

(V) V1 =
[
M̂jQ M̂⊥j

]
where Q ∈ Cr×r is unitary.

Proof. Observing that[
Q

(11)
j Q

(12)
j

Q
(21)
j Q

(22)
j

] [
Ĥjj

Hj+1,j

]
=

[
Nj

0

]

⇐⇒

(Q(11)
j

)∗ (
Q

(21)
j

)∗(
Q

(12)
j

)∗ (
Q

(22)
j

)∗
[Nj

0

]
=

[
Ĥjj

Hj+1,j

]
,

(3.23)

the right-hand equation of (3.23) yields

(3.24)
(
Q

(11)
j

)∗
Nj = Ĥjj = M̂jŶ2, and

(
Q

(12)
j

)∗
Nj = Hj+1,j .

Since we assume no breakdown of the block Arnoldi method, we know that Nj is nonsingular

and we can see that
(
Q

(21)
j

)∗
= Hj+1,jN

−1
j which yields Property I. This automatically
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proves Property II as well. This also implies that Q(12)
j is nonsingular (i.e., has rank L). From

(3.19), we know Q
(21)
j and Q

(12)
j have the same singular values which completes the proof

of Property III. The first equation in (3.24) can be transformed to
(
Q

(11)
j

)∗
= M̂jŶ2N

−1
j

implying that R
((

Q
(11)
j

)∗)
⊆ R(M̂j). We know that Ŷ2 is full rank from how it was

constructed, thusR
((

Q
(11)
j

)∗)
= R

(
M̂j

)
. This yields Property IV, since from (3.19) we

know that Q(11)
j and Q

(22)
j also share the same singular values. From (3.19), we know that(

Q
(11)
j

)∗
= V1CU∗1. This implies Property V due to the assumed ordering of the singular

values contained in C.
Lemma 3.11 also allows us to describe the structure of the orthogonal transformation

Q̂
(b)
j , the non-trivial block of Q̂(j)

j .
LEMMA 3.14. We have that

Q̂
(b)
j =

[
M̂j M̂⊥j

]∗
,

so that we then can write

N̂j =

[
Ŷ2

0(L−r)×L

]
.

Proof. This follows directly from the assumptions on M̂j (orthogonal columns) and Ŷ2

(upper triangular).
COROLLARY 3.15. It follows directly that rank Cj = rank N̂j .
Proof. The combination of Lemma 3.6 with Property IV of Lemma 3.13 yields the result.

We have now collected sufficient intermediate results to develop our main results. As in
the single-vector Krylov method case, the rank of H(B)

j is intimately related with the solution
of the block GMRES least-squares problem (2.4). The following theorem is a generalization
of [5, Theorem 3.1], although we frame it a bit differently.

THEOREM 3.16. The matrix H
(B)
j is singular with rank H

(B)
j = (j − 1)L + r with

r < L if and only if the jth block GMRES update S
(G)
j is such that

dim
(
R
(
S
(G)
j

)
∩R (Vj)

)
= r.

Proof. Let us first assume that H(B)
j is singular with rank (j − 1)L+ r. It follows from

Lemma 3.10 that

(3.25) S
(G)
j = Wj

[
−R−1j−1ZjN

−1
j Cj

N−1j Cj

]
= Wj−1

(
−R−1j−1ZjN

−1
j Cj

)
+Vj

(
N−1j Cj

)
.

From Corollary 3.15 it follows that the rank of Cj (and thus also N−1j Cj) is r. Let

(3.26) Pj =
[
p1 p2 · · · pr

]
∈ CL×r

be the matrix with orthonormal columns spanningR(N−1j Cj). It follows directly then that

the vectors inR
(
S
(G)
j

)
only have non-trivial intersection with an r-dimensional subspace of

R (Vj), namely the subspaceR(VjPj).
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Now assume that at the jth iteration of block GMRES, the span of the columns of the
update S(G)

j has an r-dimensional non-trivial intersection withR(Vj). This implies that there

exists Pj of the form (3.26) such thatR
(
S
(G)
j

)
∩R (Vj) = R (VjPj). It follows again from

Lemma 3.10 that S(G)
j has the form (3.25). However, this then implies that rankN−1j Cj = r.

Since N−1j is invertible, it follows that rankCj = r, and from Corollary 3.15 we then have

that rank N̂j = r, and thus H(B)
j has rank (j − 1)L+ r.

We observe here that Theorem 3.16 and its proof hinge on the structure of Cj . If r is
nonzero, it follows that Cj must be nonzero but singular due to Corollary 3.15. The only case
in which we can have total stagnation (i.e., Cj = 0), then, is when r = 0. Thus we state the
following corollary, which is the block analog of [5, Theorem 3.1].

COROLLARY 3.17. The matrix H(B)
j is singular with rankH

(B)
j = (j − 1)L if and only

if block GMRES has totally stagnated with X
(G)
j = X

(G)
j−1.

It follows that if there is a nontrivial S(G)
j whose columns come from Kj(A,F0) yielding

a better minimizer, it can be decomposed into a part coming fromR (Vj) and a corresponding
part from Kj−1(A,F0) which is completely determined by the correction coming from
R (Vj).

LEMMA 3.18. Let S(·)
j = S

(·)
j,1 + S

(·)
j,2 where S

(·)
j,1(:, i) ∈ Kj−1(A,F0), S

(·)
j,2(:, i) ∈

R (Vj) for 1 ≤ i ≤ L, and (·) stands for either (G) or (F ). Then S
(·)
j,1 = N

(·)
j S

(·)
j,2 where

N
(·)
j is a nilpotent operator such that

N
(·)
j : R (Vj)→ Kj−1(A,F0) and N

(·)
j : R (Vj)

⊥ → {0} ,

i.e.,R
(
N

(·)
j

)
= Kj−1(A,F0), and N

(
N

(·)
j

)
= R (Vj)

⊥.

Proof. We prove only for the case (·) = (G), as both proofs proceed in the same way.
From (3.25), we see that

S
(G)
j,1 = −Wj−1R

−1
j−1ZjN

−1
j Cj = −Wj−1R

−1
j−1ZjV

∗
jVjN

−1
j Cj

= −Wj−1R
−1
j−1ZjV

∗
jS

(G)
j,2 = −Wj−1Ŷ1V

∗
jS

(G)
j,2 .

Assigning N
(G)
j = −Wj−1Ŷ1V

∗
j , one can easily check that it satisfies the statements of the

lemma.
The following theorem is a generalization of [5, Theorem 3.3].
THEOREM 3.19. The span of the columns of S̃(F )

j has a non-trivial intersection with

exactly an r-dimensional subspace ofR(Vj) if and only if the same is true of S(G)
j .

Proof. We begin with the assumption that S(G)
j has this property. We know from

Theorem 3.16 that this implies rankH
(B)
j = (j − 1)L+ r and that rank N̂j = r. It follows

then that N̂†j has a dimension L− r null space.4 From Lemma 3.10, we can write

S̃
(F )
j = Wj−1

(
−R−1j−1ZjN̂

†
jĈj

)
+Vj

(
N̂†jĈj

)
.

4Because we know that N̂j is upper triangular with an (L − r) × (L − r) zero block in the bottom right-

hand corner, it follows that N (N̂†j) = R(N̂j)
⊥ = span

{
e
[L]
r+1, e

[L]
r+2, . . . , e

[L]
L

}
. Thus we can write N̂†j =[

∗L×r 0L×(L−r)

]
.
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Since we know that Ĉj is nonsingular, it follows that rank N̂†jĈj = r. Thus, using the

same argument used at the end of the proof of Theorem 3.16 it follows that S̃(F )
j only has a

non-trivial intersection with an r-dimensional subspace ofR(Vj). For the other direction, we
simply carry out the same steps but in reverse order.

COROLLARY 3.20. Block GMRES at iteration j totally stagnates with X
(G)
j = X

(G)
j−1 if

and only if X̃(F )
j = X

(G)
j−1.

Proof. This corresponds to the case r = 0 for Theorem 3.19.
We now show that the case of partial stagnation of block GMRES (as defined at the

beginning of Section 3) is actually just a special case of Theorem 3.16, and is not really of
special interest with respect to this analysis

THEOREM 3.21. Block GMRES suffers a partial stagnation at iteration j of the form
(3.1) if and only if 0 < rank Cj ≤ r where r = |I| such that for all i ∈ I the ith column of
Cj is the zero vector.

Proof. Let us first assume that the columns of Cj corresponding to indices in I are zero
but that Cj 6= 0. Then rank Cj ≤ L− |I|. Furthermore, since

S
(G)
j = Wj

[
R−1j−1Zj

I

]
N−1j Cj ,

for i ∈ I, if we look at the ith column of S(G)
j , we see that

S
(G)
j e

[L]
i = Wj

[
R−1j−1Zj

I

]
N−1j Cje

[L]
i = Wj

[
R−1j−1Zj

I

]
N−1j 0 = 0.

The first direction is thus proven.
Now we assume that partial stagnation occurs at the jth iteration where for each i ∈ I,

X
(G)
j−1e

[L]
i = X

(G)
j e

[L]
i . This implies that S(G)

j e
[L]
i = 0 for all i ∈ I. Specifically, this implies

that VjN
−1
j Cje

[L]
i = 0. Because we assume that Vj is full rank and N−1j is nonsingular, it

follows that Cje
[L]
i = 0, which proves the other direction.

Now we also state the block analog of Proposition 2.2.
THEOREM 3.22. Suppose that H(B)

j is nonsingular. Then at iteration j we have the
following relationship between the approximations produced by block GMRES and block FOM,

(3.27) X
(G)
j = X

(F )
j

(
Ĉ−1j QC2Q∗Ĉj

)
+X

(G)
j−1

(
Ĉ−1j QS2Q∗Ĉj

)
.

Proof. Since H(B)
j is nonsingular, we have that N̂j and Cj are nonsingular, and the block

FOM approximation X
(F )
j (and thus also Y

(F )
j ) exists. From the proof of Lemma 3.10, we

have then that (
Y

(F )
j −

[
Y

(G)
j−1
0

])
=

[
−R−1j−1Zj

I

]
N̂−1j Ĉj and(

Y
(G)
j −

[
Y

(G)
j−1
0

])
=

[
−R−1j−1Zj

I

]
N−1j Cj .

Since everything in this case is invertible, we see that

(3.28)
(
Y

(F )
j −

[
Y

(G)
j−1
0

])
Ĉ−1j N̂jN

−1
j Cj = Y

(G)
j −

[
Y

(G)
j−1
0

]
.
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We can now simplify Ĉ−1j N̂jN
−1
j Cj using Lemmas 3.5, 3.6, and 3.13. We note that in the

case that the block FOM approximation exists, we have that N̂j = Ŷ2 is upper triangular and
nonsingular, V1 = M̂jQ, and Q̂

(b)
j = M̂∗j . It follows then that

Ĉ−1j N̂jN
−1
j Cj = Ĉ−1j Ŷ2

((
Q

(11)
j

)−∗
M̂jŶ2

)−1
Q

(11)
j C̃j

= Ĉ−1j Ŷ2

(
Ŷ−12 M̂∗j

(
Q

(11)
j

)∗)
Q

(11)
j C̃j

= Ĉ−1j M̂∗j (U1CV∗1)
∗ U1CV∗1C̃j

= Ĉ−1j M̂∗j

(
M̂jQCU∗1

)
U1C

(
M̂jQ

)∗
C̃j

= Ĉ−1j QC2
(
M̂jQ

)∗
C̃j

= Ĉ−1j QC2Q∗Ĉj .(3.29)

We now insert (3.29) into (3.28), multiply both sides by Wj , and perform some algebraic
manipulations to get

X
(G)
j = X

(F )
j

(
Ĉ−1j QC2Q∗Ĉj

)
+X

(G)
j−1

(
I− Ĉ−1j QC2Q∗Ĉj

)
.

Lastly, we observe that Ĉ−1j QC2Q∗Ĉj is an eigendecomposition since
(
Q∗Ĉj

)−1
=

Ĉ−1j Q, and we thus can write

I− Ĉ−1j QC2Q∗Ĉj = Ĉ−1j Q
(
I− C2

)
Q∗Ĉj .

The result follows by observing that I− C2 = S2 which follows from (3.19).
We will return shortly to understand the meaning of the angles associated to these sines

and cosines in Section 3.5.

3.4. The case of breakdown in the block Arnoldi process. Our discussion of the case
of breakdown focuses first upon the behaviors of block GMRES and block FOM at the jth
iteration in which the block Arnoldi process produces p dependent basis vectors. For simplicity,
we assume that no single system has converged but rather that some linear combination of some
columns of the solution X is in Kj(A,F0). Both the block GMRES and block FOM residuals
are thus of rank L− p. We assume that these p vectors are replaced with p random vectors so
that we maintain a block size of L. For the most part, what we have proven thus far holds with
little to no alterations, but the reduction of residual rank does have some consequences.

We consider a breakdown at iteration j in which p dependent basis vectors are produced.
Various strategies have been suggested for replacing dependent vectors in the interest of
maintaining the block size of L. The block Arnoldi process produces from AVj ∈ Cn×L the
block

Uj+1 = AVj −
j∑
i=1

ViHij with Hij ∈ CL×L, and rankUj+1 = L− p.

Then we have the reduced QR factorization Uj+1 = V̈j+1Ḧj+1,j , where V̈j+1 ∈ Cn×(L−p)
has columns spanning R(Uj+1), and Ḧj+1,j ∈ C(L−p)×L is upper triangular. To maintain

block size, we set Hj+1,j =

[
Ḧj+1,j

0

]
∈ CL×L and Vj+1 =

[
V̈j+1 Z

]
∈ Cn×L where
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Z ∈ Cn×p is a set of orthonormal replacement vectors, which have been orthogonalized
against all of the block Arnoldi vectors. Thus the columns of Wj+1 no longer span a Krylov
subspace, but they do still satisfy the block Arnoldi relation (2.1). The iteration continues
unabated. It is observed in, e.g., [32], that at the iteration in which the breakdown occurs,
the least squares problem still has a unique solution. From the analysis in this paper, this
corresponds to Nj still being nonsingular. Furthermore, as we assume that iteration j is the
first iteration at which there is a block Arnoldi breakdown, the block residual F(G)

j−1 is full rank,
and, thus, so are the C-matrices. Therefore, at iteration j, if there has been a block Arnoldi
breakdown, all of the results we have proven still hold with no alteration. The block residual
F

(G)
j has rank L− p.

Without loss of generality, let us consider the case that the breakdown at iteration j is the
only breakdown. Consider some later iteration j + k with k > 0. As we have replaced all
dependent Arnoldi vectors with linearly independent ones, the GMRES least squares problem
still has a unique solution. This implies that Nj+k is still nonsingular. The block GMRES
residuals will continue to be rank L− p. Thus, the C-matrices will be square (as we maintain
block size) and rank-deficient. However, few of the results rely on the invertibility of these
matrices. Indeed, the only result not valid in this case is Theorem 3.22. However, we can
prove a weaker result in this case.

THEOREM 3.23. Suppose at step j there has been a block Arnoldi breakdown with p
dependent Arnoldi vectors being generated and that there are no further breakdowns. Let
these vectors be replaced using the procedure described above. Then at iteration j + k, if
H

(B)
j+k is nonsingular, we have that

X
(F )
j −X

(G)
j = Wj

[
−R−1j−1Zj

I

]
Ŷ−12 QS2Q∗Ĉj .

Proof. We show this by substituting many of the identities we have previously proven,
which are still valid in this setting.

Y
(F )
j −Y

(G)
j =

[
−R−1j−1Zj

I

](
N̂−1j Q̂

(b)
j −N−1j Q

(11)
j

)
C̃j

=

[
−R−1j−1Zj

I

](
Ŷ−12 M̂∗j − Ŷ−12 M̂∗jQ

(11)∗
j Q

(11)
j

)
C̃j

=

[
−R−1j−1Zj

I

](
Ŷ−12 M̂∗j − Ŷ−12 M̂∗jV1CU∗1U1CV∗1

)
C̃j

=

[
−R−1j−1Zj

I

](
Ŷ−12 M̂∗j − Ŷ−12 M̂∗jM̂jQC2Q∗M̂∗j

)
C̃j

=

[
−R−1j−1Zj

I

]
Ŷ−12

(
I−QC2Q∗

)
Ĉj .

One then performs a bit of algebra and multiplies both sides by Wj to get the result.
Although this result is less satisfying that Theorem 3.22, as it does not generalize Proposi-

tion 2.2, it still yields valuable information about the relationship of the block FOM and block
GMRES iterates in the case that breakdown has occurred. We see that if the angles represented
by the sines contained on the diagonal of S are small, this implies that block FOM and block
GMRES in this scenario produce iterations which are not far from one another. We must thus
now clarify the precise significance of these angles to complete our analysis.
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3.5. Principal angles between the range of F(G)
j−1 and AKj(A,F0). In this section,

we show that the angles represented by the sines and cosines from the CS-decomposition
of (3.18) which appear in (3.27) are the principal angles between the columns space of the
previous residual and the current residual constraint space.

In [11], many geometric properties of single-vector projection methods were analyzed. In
particular, the authors discussed minimum residual projection methods such as GMRES. In
that paper, the authors show that the angle represented by the Givens sine and cosine calculated
at iteration j of GMRES is actually the principal angle between the (j − 1)st GMRES residual
and the jth constraint space. In essence, the closeness of this angle to zero indicates how
much of the (j − 1)st residual lies in the jth constraint space and will thus be eliminated
by the projection at iteration j. If the angle is near π2 , however, then the Givens cosine cj is
close to 0 and we have near stagnation since almost none of the (j − 1)st residual lies in the
new constraint space, and thus there will not be much improvement from the projection at
iteration j.

To illuminate the meaning of these angles in the block setting, we generalize some results
from the single-vector GMRES case. Following [11], we represent AKj(A,F0) with a
specific, useful basis. The columns of Wj+1 form an orthonormal basis for Kj+1(A,F0),

and it follows from the block Arnoldi relation (2.1) that the columns of Wj+1H
(B)

j form a

non-orthonormal basis for AKj(A,F0). Using the QR factorization H
(B)

j = Q
∗
jRj , we see

that the columns of Wj+1Q
∗
j form another, orthonormal basis of AKj(A,F0). From the

equation

F0 = Wj+1E
[(j+1)L]
1 S0 = Wj+1Q

∗
jQjE

[(j+1)L]
1 S0,

we see that QjE
[(j+1)L]
1 S0 is a representation of F0 in that basis. This leads to a general-

ization of, e.g., [34, Equation 6.48], that the Givens sines can be used to cheaply update the
GMRES residual norm. We note that following from the block partitioning of the orthogonal
transformation in (3.18), we can write

(3.30) Q
(j+1)
i =


I(i−1)L

Q
(11)
i Q

(12)
i

Q
(21)
i Q

(22)
i

I(j−i)L

 .
Then we have the following.

LEMMA 3.24. The representation QjE
[(j+1)L]
1 S0 of F0 has the following structure,

(3.31) QjE
[(j+1)L]
1 S0 =



Q
(11)
1

Q
(11)
2 Q

(21)
1

Q
(11)
3 Q

(21)
2 Q

(21)
1

...
Q

(11)
j−1

∏j−2
i=1 Q

(21)
i

Q
(11)
j

∏j−1
i=1 Q

(21)
i∏j

i=1 Q
(21)
i


S0.

Proof. This follows from the fact that Qj =
∏j
i=1 Q

(j+1)
j−i+1 and the structure of the

orthogonal transformations in (3.30).
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Let us denote with ] (U1,U2) the set of principle angles between the subspaces U1 and
U2. Following [11], we can compute a product of matrices whose singular values are the sines
of the principal angles ] (R (F0) ,AKj(A,F0)).

LEMMA 3.25. The principal angles ] (R (F0) ,AKj(A,F0)) are the singular values of
the product

∏j
i=1 Q

(21)
j−i+1.

Proof. We have the equalities

] (R (F0) ,AKj(A,F0)) = ]
(
R(QjE

[(j+1)L]
1 S0),R(Wj+1Q

∗
j+1Rj)

)
= ]

(
R
(
QjE

[(j+1)]
1

)
,R
(
Rj

))
.

Under the assumptions in this paper for the non-breakdown case, the range R
(
Rj

)
=

R
([

Rj

0

])
is isomorphic with C(j+1)L (due to the nonsingularity of Rj) with basis{

e
[(j+1)L]
1 , e

[(j+1)L]
2 , . . . , e

[j+1)L]
jL

}
, i.e., the last L coordinates are zero. It is clear that

QjE
[(j+1)L]
1 has orthonormal columns. Let

QjE
[(j+1)L]
1 =

[
Q1

Q2

]
be a block partitioning with Q1 ∈ CjL×L and Q2 ∈ CL×L. With this partitioning,
QjE

[(j+1)]
1 admits a skinny CS-decomposition (see, e.g., [16, Section 2.5.4]) yielding the

simultaneous singular value decompositions

C = U∗1Q1V and S = U∗2Q2V

with U1 ∈ CjL×jL, U2 ∈ CL×L, V ∈ CL×L, and

C =

[
I(j−1)L

diagLi=1 {ci}

]
∈ CjL×jL and S = diagLi=1 {si} ∈ CL×L.

Since
[

IjL
0L×jL

]
has orthonormal columns spanningR

(
Rj

)
, the cosines of the sought-after

principal angles are given by the singular values of Q1 =

[
IjL
0L

]∗ (
QjE

[(j+1)]
1

)
, i.e., the

entries of C. Many of these cosines are equal to 1 (i.e., θi = 0 for i = 1, 2, . . . (j − 1)L).
However, the L nontrivial angles are also represented by their sines in the entries of S which
are the singular values of Q2, and this proves the lemma.

Using similar techniques, we can prove the following result.
THEOREM 3.26. The angles represented by the sines and cosines of the

CS-decomposition of the jth orthogonal transformation (3.19) are the principal angles be-
tween the column space of the previous block GMRES residual F(G)

j−1 and the jth constraint
space AKj(A,F0).

Proof. As has already been discussed, the columns of Wi+1Q
∗
i

[
IiL
0L

]
are an orthonormal

basis for AKi(A,F0) for all i. Let Pj−1 be the orthogonal projector onto AKj−1(A,F0),
which means we can write F

(G)
j−1 = (I − Pj−1)F0. Using the orthonormal basis of

AKj−1(A,F0), we can write

Pj−1F0 = WjQ
∗
j−1

[
I(j−1)L

0L×(j−1)L

] [
I(j−1)L 0(j−1)L×L

]
Qj−1E

[jL]
1 S0.
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It is then straightforward to show that

F
(G)
j−1 = (I−Pj−1)F0 = WjQ

∗
j−1

(
I−

[
I(j−1)L

0L×(j−1)L

] [
I(j−1)L 0(j−1)L×L

])
Qj−1E

[jL]
1 S0.

Observe that
(
I−

[
I(j−1)L

0L×(j−1)L

] [
I(j−1)L 0(j−1)L×L

])
is the orthogonal projector onto the

last L coordinate directions, i.e., onto span
{
e
[jL]
(j−1)L+1, e

[jL]
(j−1)L+2, . . . , e

[jL]
jL

}
. Combining

this with (3.31), we can rewrite

(I−Pj−1)F0 = WjQ
∗
j−1

 0(j−1)L×L∏j−1
i=1 Q

(21)
i

S0.

The principal angle calculation can then be simplified,

]
(
R
(
F

(G)
j−1

)
,AKj(A,F0)

)
= ]

R
WjQ

∗
j−1

 0(j−1)L×L∏j−1
i=1 Q

(21)
i

S0

 ,R
(
Wj+1Q

∗
jRj

)
= ]

R
Wj+1

[
IjL

0L×jL

]
Q
∗
j−1

 0(j−1)L×L∏j−1
i=1 Q

(21)
i

 ,R
(
Wj+1Q

∗
jRj

)
= ]

R
[Q∗j−1

0L×jL

] 0(j−1)L×L∏j−1
i=1 Q

(21)
i

 ,R
(
Q
∗
j

[
IjL

0L×jL

])

= ]

R

Q∗j−1

 0(j−1)L×L∏j−1
i=1 Q

(21)
i


0L


 ,R

(
Q
∗
j

[
IjL

0L×jL

]) .

Observe now that using the structure of Q(j+1)∗
j , we can rewrite

Q
∗
j

[
IjL

0L×jL

]
= Q

(j+1)∗
1 · · ·Q(j+1)∗

j


IL

IL
. . .

IL
0L 0L · · · 0L



= Q
(j+1)∗
1 · · ·Q(j+1)∗

j−1



IL
IL

. . .
IL

Q
(11)∗
j

0L 0L · · · 0L Q
(12)∗
j


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=

[
Q
∗
j−1

IL

]


IL
IL

. . .
IL

Q
(11)∗
j

0L 0L · · · 0L Q
(12)∗
j


,

and similarly we haveQ∗j−1
 0(j−1)L×L∏j−1

i=1 Q
(21)
i


0L

 =

[
Q
∗
j−1

IL

] 0(j−1)L×L∏j−1
i=1 Q

(21)
i

0L

 .
Thus we have

]

R

Q∗j−1

 0(j−1)L×L∏j−1
i=1 Q

(21)
i


0L


 ,R

(
Q
∗
j

[
IjL

0L×jL

])

= ]


R

 0(j−1)L×L∏j−1
i=1 Q

(21)
i

0L

 ,R





IL
IL

. . .
IL

Q
(11)∗
j

0L 0L · · · 0L Q
(12)∗
j






.

We finish the proof by noting that under the assumptions of this paper, we have that Q(21)
i is

nonsingular for 1 ≤ i ≤ j − 1 and thus

R

 0(j−1)L×L∏j−1
i=1 Q

(21)
i

0L

 = R

0(j−1)L×L
IL
0L

 .

Thus the cosines of the principal angles are the singular values of

[
0L×(j−1)L IL 0L

]


IL
IL

. . .
IL

Q
(11)∗
j

0L 0L · · · 0L Q
(12)∗
j


=
[
0L×(j+1)L Q

(11)∗
j

]
,

which are indeed the CS-decomposition cosines, which are the diagonal entries of C from
(3.19), completing the proof.

4. Numerical examples. We constructed two toy examples using a matrix considered,
e.g., in [5], to demonstrate stagnation properties. Let Ast ∈ Rn×n be defined as the matrix
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which acts upon the Euclidean basis as follows,

(4.1) Aste
[n]
i =

{
e
[n]
1 if i = n

e
[n]
i+1 otherwise

.

From this matrix and appropriately chosen right-hand sides, we can generate problems for
which block GMRES is guaranteed to have certain stagnation properties.

In order to obtain some example convergence results in a less non-pathological case,
we also applied block GMRES and FOM to a block diagonal matrix built from Ast and the
sherman4 matrix from a discretized oil flow problem, downloaded from the University of
Florida Sparse Matrix Library [9]. The latter matrix is 1104× 1104 and nonsymmetric.

1 12 25 37 50
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t
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e
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a
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0
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0.6

0.8

1

s
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θ
i

sin θ1

sin θ2

sin θ3

sin θ4

FIG. 4.1. Left: Relative two-norm residual curves for stagnating block GMRES and block FOM for the
200 × 200 shift matrix for four right-hand sides, namely e1, e50, e100, and e150. The solid and dashed curves
correspond respectively to the block FOM and GMRES residuals, with each shade of gray representing a different
right-hand side. Similarly, the gray solid and dashed curves, respectively, correspond to the second right-hand side.
Right: Sines of principal angles betweenR

(
F

(G)
j−1

)
and AKj(A,F0) for each j.

4.1. Total stagnation of block GMRES. Using the shift matrix Ast with n = 200, we
can construct a problem with four right-hand sides which will stagnate for 50 iterations before
converging exactly. Let the four right-hand sides be the canonical basis vectors e[200]1 , e[200]50 ,
e
[200]
100 , and e

[200]
150 . If we let B ∈ R200×4 be the matrix with these right-hand sides as columns,

we know that

A−1st B =
[
e
[200]
200 e

[200]
49 e

[200]
99 e

[200]
149

]
.

Due to the stagnating nature of block GMRES for this problem, we compute the generalized
FOM approximation so as to have an iterate at each step. The total stagnation for all four
right-hand sides can be seen in Figure 4.1.

If we arrest the iteration at a stagnating step, e.g., the 40th step, we can construct the
matrices C̃40, C40, Ĉ40, N40, and N̂40 (all of which are 4 × 4 matrices) to see how such
matrices, used to verify theoretical results, actually look for a small problem. For the first
three matrices, we have the following,

Ĉ40 = C̃40 =


1
−1

−1
−1

 and C40 = 04,
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and for the last two matrices we have,

N40 = −I4 and N̂40 = 04.

It should be noted that this agrees with what we have proven about block GMRES in the case
of total stagnation in Theorem 3.16 and trivially with Theorem 3.22.
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FIG. 4.2. Left: relative two-norm residual curves for stagnating block GMRES and block FOM for the 30× 30
shift matrix. The black solid and dashed curves correspond respectively to the block FOM and GMRES residuals
for the first right-hand side. Similarly, the gray solid and dashed curves, respectively, correspond to the second
right-hand side. Right: sines of principal angles betweenR

(
F

(G)
j−1

)
and AKj(A,F0) for each j.

4.2. Partial stagnation/convergence of block GMRES. In Figure 4.2, we demonstrate
the behavior of block GMRES and block FOM applied to a linear system for which block
GMRES is guaranteed to stagnate but also have earlier convergence for one right-hand side.
Here, the coefficient matrix is Ast defined in (4.1) for n = 30. The block right-hand side is
B =

[
e
[30]
1 e

[30]
25

]
. From the definition of Ast, we have that A−1st B =

[
e
[30]
30 e

[30]
24

]
. From

this we see that at iteration 5, we will achieve exact convergence for the first right-hand side.
In the absence of replacing the dependent Arnoldi vector with a random one, the iteration
will not produce any improvement for the second right-hand side until iteration 23, at which
point we again have convergence to the exact solution. However, in accordance with our block
Arnoldi breakdown strategy, we do replace the the dependent basis vector, meaning we cannot
exactly predict stagnation after iteration 5, though we do see near-stagnation until convergence
at iteration 15.

Again, at particular iterations, we can inspect various quantities arising which were used
in our analysis. We choose three iterations, j = 5, 6, 11, to see what happens at breakdown
and dependent vector replacement. Indeed we have,

C̃5 =

[
1 0
0 −1

]
, C5 =

[
0 0
0 0

]
, and Ĉ5 =

[
1 0
0 −1

]
,

C̃6 =

[
0 0
−1 0

]
, C6 =

[
0 0
−1 0

]
, and Ĉ6 =

[
1 0
0 −1

]
,

C̃11 ≈
[
0.97 0
−0.22 0

]
, C11 ≈

[
4.16× 10−17 0
−2.22× 10−16 0

]
, and Ĉ11 =

[
0 0
−1 0

]
,
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and we also have

N5 ≈
[
−1.00 0

0 −1

]
and N̂5 ≈

[
0 0
0 0

]
,

N6 ≈
[
−1.00 0

0 −1

]
and N̂6 ≈

[
0 1
0 0

]
,

N11 ≈
[
−1.00 −0.02

0 −0.96

]
and N̂11 ≈

[
−0.30 0.79

0 −1.11× 10−16

]
.
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FIG. 4.3. In the left-hand figure, we have the 2-norm residual curves of block GMRES and FOM for a linear
system with two right-hand sides using a block diagonal matrix with the sherman4 matrix from [9] as one block
and the shift matrix from the other examples as the other block. Right-hand sides are chosen to produce wanted
near-stagnation. In the right-hand figure, we have the squares of the sines

{
s21, s

2
2

}
coming from the orthogonal

transformations as discussed in our analysis.

4.3. A less pathological example with sine computation. To stimulate some slightly
more interesting near stagnation behavior, we created a block diagonal matrix in which
one block is sherman4 matrix and the other block is the shift matrix Ast used in earlier
experiments, this time with n = 200. The two right-hand sides are chosen to produce perfect
stagnation in the shift-matrix block but convergence in the sherman4 block. Therefore, in
the blocks associated to Ast, the subvectors of the right-hand sides were e

[200]
50 and e

[200]
150 . For

the sherman4 matrix, the subvectors of the right-hand sides were the vector packaged with
the matrix and a random vector scaled to have norm on the order of 107. The exaggerated
scaling was done only to produce visually significant convergence prior to stagnation. In
Figure 4.3, we show the individual 2-norm block FOM and block GMRES residual curves as
well as the sines from the analysis in Section 3.3.

5. Conclusions. In this paper, we have analyzed the relationship of block GMRES and
block FOM and specifically characterized this relation in the case of block GMRES stagnation.
These results generalize previous results, particularly those in [5] for single vector GMRES
and FOM. We have seen that the relationship can be a bit more complicated for block methods
than in the single-vector method case due to interaction between approximations for different
right-hand sides and due to block Arnoldi breakdown. We close by noting that one can
implement block GMRES so that these sines and cosines are cheaply computable simply by
following the strategy advocated in [19] observing that one could implement a version of block
GMRES which also cheaply generates the block FOM approximation.
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