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SPARSE MIXTURE MODELS INSPIRED BY ANOVA DECOMPOSITIONS∗

JOHANNES HERTRICH†, FATIMA ANTAROU BA†, AND GABRIELE STEIDL†

Abstract. Inspired by the analysis of variance (ANOVA) decomposition of functions, we propose a Gaussian-
uniform mixture model on the high-dimensional torus which relies on the assumption that the function that we
wish to approximate can be well explained by limited variable interactions. We consider three model approaches,
namely wrapped Gaussians, diagonal wrapped Gaussians, and products of von Mises distributions. The sparsity of
the mixture model is ensured by the fact that its summands are products of Gaussian-like density functions acting
on low-dimensional spaces and uniform probability densities defined on the remaining directions. To learn such a
sparse mixture model from given samples, we propose an objective function consisting of the negative log-likelihood
function of the mixture model and a regularizer that penalizes the number of its summands. For minimizing this
functional we combine the Expectation Maximization algorithm with a proximal step that takes the regularizer into
account. To decide which summands of the mixture model are important, we apply a Kolmogorov-Smirnov test.
Numerical examples demonstrate the performance of our approach.

Key words. sparse mixture models, ANOVA decomposition, wrapped Gaussian distribution, von Mises distribu-
tion, approximation of high-dimensional probability density functions, Kolmogorov-Smirnov test
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1. Introduction. Most high-dimensional real-world systems are dominated by a small
number of low-complexity interactions [55]. This is the background of extensive research on
how to represent functions acting on high-dimensional data by functions defined on lower-
dimensional spaces. Approaches include active subspace methods [14, 15, 21] and random
features [11, 26, 37, 48, 57].

This paper was inspired by the analysis of variance (ANOVA) decomposition of func-
tions [10, 25, 28, 34, 38], which decomposes a function uniquely into a sum of functions
depending on the different variable combinations. In practice it can often be assumed that
the significant part of a function can be explained by the simultaneous interactions of only
a small number of variables, which is also in the spirit of [19]. The amazing result of Potts
and Schmischke in [4, 47, 46] shows that high-dimensional functions with a sparse ANOVA
decomposition can be reconstructed using their approximation in the Fourier domain by rather
few samples ti ∈ Td and f(ti) ∈ R, i = 1, . . . , N . While the theory relies mainly on
uniformly sampled points on the high-dimensional torus Td or on [0, 1]d, also real-world data
sets can be approximated in a way that beats state-of-the-art methods such as the gradient
boosting machine [23], random forests [23], sparse random features [26], and local learning
regression neural networks [33].

In this paper, we assume that we are given high-dimensional samples (xi)i from a
distribution with unknown probability density function f rather than interpolation knots
(ti, f(ti))i. Since attribute ranking can, for instance, be used to remove unimportant variables
immediately and to reduce the dimensionality of the problem, we concentrate on functions
where each variable has an influence but not simultaneously with all others. Then, we are
interested in mixture models with sparse components in the sense that they depend only on
the data in smaller dimensions. We propose to learn such a mixture model by minimizing a
penalized negative log-likelihood function in connection with a Kolmogorov-Smirnov test to
find the active variables in the summands of the mixture model. Once a mixture model is fitted,
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a natural way to identify the influence of attributes to the outcome is obtained by adjusting
samples to the appropriate summands of the mixture.

Our model appears to be opposite to some recently introduced mixture models whose com-
ponents rely on projections into sparse subspaces of the high-dimensional data space, such as
mixtures of probabilistic PCAs (MPPCA) [54], high-dimensional data clustering (HDDC) [7],
high-dimensional mixture models for unsupervised image denoising (HDMI) [30], and PCA-
GMMs [27]. For more information, see Remark 2.4.

The paper is organized as follows: in Section 2, we first recall the sparse ANOVA
decomposition on the d-dimensional torus. Then, we introduce appropriate sparse mixture
models having components that are products of a Gaussian-like density function on the n-
dimensional torus (n� d) and a uniform density on the (d−n)-dimensional torus. We propose
three Gaussian-like settings, namely the wrapped normal distribution, the diagonal wrapped
normal distribution, and products of von Mises distributions. Further, we discuss the ANOVA
decomposition of the mixture models based on the notion of identifiable parameterized families
of functions. Section 3 deals with the learning of the sparse mixture model. Based on an
objective function consisting of the negative log-likelihood function penalized by a sparsity
term for the number of coefficients, we propose to apply an Expectation Maximization (EM)
algorithm in combination with a proximal step and a Kolmogorov-Smirnov test. Section 4
demonstrates the performance of our model by several examples. The code is available
online1. Appendix A summarizes the EM algorithms for tree Gaussian-like mixture models,
and Appendix B briefly shows how the Kolmogorov-Smirnov test works.

2. ANOVA decomposition and mixture models. Let [d] := {1, . . . , d}, with the con-
vention that [0] = ∅, and let P([d]) be the power set of [d]. Furthermore, for u ⊆ [d], we write
uc := [d]\u and xu := (xi)i∈u. By Td = Rd/Zd = [0, 1[d, we denote the d-dimensional
torus and by Id the d× d identity matrix.

We are interested in the additive decomposition of integrable functions f : Td → R into
lower-dimensional components

f(x) =
∑
u⊆[d]

fu(xu), fu : T|u| → R.(2.1)

In general, such a decomposition is not unique. We rely on two special decompositions,
namely the ANOVA decomposition, which was the motivation for this work, and sparse
mixture models. In the following we introduce both concepts and explain their relation.

ANOVA decomposition. For any integrable function f : Td → R, there exists a unique
decomposition of the form (2.1), the so-called analysis of variance (ANOVA) decomposition
determined by

fu := (Puf)−
∑
v u

fv =
∑
v⊆u

(−1)|u|−|v|Pvf,(2.2)

where

(Puf)(x) :=

∫
Td−|u|

f(x) dxuc .

The following proposition recalls that the ANOVA decomposition of a function that is the
sum of lower-dimensional functions can only contain summands acting on the same subspaces.

PROPOSITION 2.1. Let W ⊆ P([d]). Then, a function f of the form

(2.3) f(x) =
∑
w∈W

gw(xw)

1https://github.com/johertrich/Sparse_Mixture_Models
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has an ANOVA decomposition of the form

f =
∑
u∈W̄

fu,

where W̄ denotes the set {u ⊆ w : w ∈W}.
Proof. Let Tu denote the linear operator which maps a function f to its ANOVA compo-

nent fu. Then, we have for the function in (2.3) that

fu = Tuf =
∑
w∈W

Tugw,

and it remains to show that for w not containing u, it holds that Tugw = 0. Let u be not
contained in w. Using (2.2) and the facts that gw = Pwgw and PvPu = Pv∩u, we obtain

Tugw =
∑
v⊆u

(−1)|u|−|v|Pvgw =
∑
v⊆u

(−1)|u|−|v|PvPwgw =
∑
v⊆u

(−1)|u|−|v|Pv∩wgw.

If v ∩ w = ∅, then the assertion follows since
∑
v⊆u(−1)|u|−|v| = 0. Otherwise, for

n := |u \ w| > 0, we obtain that

Tugw =
∑

v1⊆u∩w

∑
v2⊆u\w

(−1)|u|−(|v1|+|v2|)Pv1gw

=
∑

v1⊆u∩w

(−1)|u|−|v1|Pv1gw
∑

v2⊆u\w

(−1)|v2|

=
∑

v1⊆u∩w

(−1)|u|−|v1|Pv1
gw

n∑
j=0

(
n

j

)
(−1)j = 0,

which proves the thesis.
In real-world applications, it is often the case that the decomposition (2.1) does not contain

all subsets of [d] but only a smaller number of subsets U ⊂ P([d]) which have cardinality
not larger than some n� d or that f can be at least well approximated by a sparse ANOVA
decomposition ∑

u⊆U

fu(xu).

Several authors examined the reconstruction of functions having such a sparse ANOVA
approximation from values

(
ti, f(ti)

)
, i = 1, . . . , N , of f . The setting in this paper is

different.
REMARK 2.2 (Setting of this paper). We deal with non-negative functions f : Td → R on

the d-dimensional torus Td fulfilling ‖f‖L1(Td) = 1 and consider them as probability density
functions of a certain random variable X : Ω→ Td. Instead of sampled function values, we
assume that we are given samples xi, i = 1, . . . , N , of the distribution with density f , i.e.,
realizations of the random variable X . This means that in contrast to the ti, the samples xi

inherit the properties of f . If the ti, i = 1, . . . , N , are uniformly sampled, then clearly f(ti)
times ti may serve as samples, i.e., the ti must be weighted with the values f(ti).

Sparse mixture models. In this paper, we aim to find an approximation of f ∈ L1(Td) by
a mixture model from samples of the corresponding distribution; see [43] for an introduction
to mixture models. To this end, let ∆K := {α ∈ RK≥0 : αT1K = 1}, with 1K the vector
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consisting of K entries equal to 1, be the probability simplex, and let SPD(d) be the cone of
symmetric, positive definite matrices. Assume that f can be approximated by mixture models
of the form

(2.4) p(x|α, ϑ) =

K∑
k=1

αkpuk
(xuk
|ϑk),

where uk ∈ U ⊂ P([d]), α = (αk)Kk=1 ∈ ∆K , ϑ = (ϑk)Kk=1, and the puk
are probability

density functions on Tn, n = |uk|. Note that the index sets uk are in general not pairwise
different, i.e., uk = ul can appear for k 6= l. If U contains only sets of small cardinality, then
we call (2.4) a sparse mixture model. Indeed, the density pu determines the distribution of a
Td-valued random variable X = (Xu, Xuc) characterized by

(Xu, Xuc) ∼ pu(·|ϑ)× UTd−|u| .

This class of distributions includes for u = ∅ the uniform distribution on Td.
In this paper, we need the (absolutely continuous) normal or Gaussian distribution on Rn

having the density function

N (x|µ,Σ) = (2π)−
n
2 |Σ|−

1
2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
with mean µ ∈ Rn and Σ ∈ SPD(n). This distribution has many characterizing properties,
which unfortunately cannot be transferred to a “normal distribution” on manifolds; see,
e.g., [36]. In this paper, we restrict our attention to the normal-like distributions puk

on the
(n = |uk|)-dimensional torus Tn listed in the following example.

EXAMPLE 2.3. We focus on mixture models on Td with low-dimensional components
from one of the following distributions on Tn, n� d:

i) the wrapped normal distribution

pG(x|µ,Σ) =
∑
l∈Zn
N (x+ l|µ,Σ) = Nw(x|µ,Σ),

where µ ∈ Tn, Σ ∈ SPD(n). Note thatNw(µ,Σ) is characterized by the distribution
of X − bXc, where X ∼ N (µ,Σ). This formula allows us to easily draw samples
from Nw(µ,Σ).

ii) the diagonal wrapped normal distribution

pdG(x|µ, σ2) = pG(x|µ,diag(σ2))

=
∑
l∈Zn

n∏
j=1

N (xj + lj |µj , σ2
j ) =

n∏
j=1

Nw(xj |µj , σ2
j ),

where (Nw) N is the univariate (wrapped) Gaussian density function and σ2 ∈ Rn>0.
iii) the von Mises distribution on Tn with parameters µ ∈ Tn and κ ∈ Rn>0 is the

restriction of the probability density function of an isotropic normal distribution to
the unit circle, and it has the probability density function

pM (x|µ, κ) =

n∏
j=1

1
I0(κj) exp

(
κj cos

(
2π(xj − µj)

))
,

where I0 is the modified Bessel function of first kind of order 0.
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The wrapped normal distribution inherits by definition several properties of the normal
distribution in Rn. For example, for independent X ∼ Nw(µ,Σ), Y ∼ Nw(µ′,Σ′), we
directly obtain that X + Y ∼ Nw(µ + µ′,Σ + Σ′). Similarly, we get that any marginal of
X is again a wrapped normal distribution. Other properties of the normal distribution are
not transferred to the wrapped case. For example, on a circle it holds that the von Mises
distribution maximizes the entropy and not the wrapped normal distribution; see [31]. Indeed
the von Mises distribution with parameters (µ, κ) is very similar to the one-dimensional
wrapped normal distribution with parameters (µ, σ2), where the parameters are related via
I1(κ)
I0(κ) = exp(− (2π)2σ2

2 ); see [32]. Thus, the von Mises distribution is often used in place
of the wrapped normal distributions with the benefit of a reduced complexity for evaluating
the density function and estimating the parameters; see, e.g., [8, 20, 35]. Unfortunately,
there is no multivariate counterpart for this approximation. Finally, we mention that there
also exist extensions of the von Mises distribution to the (non-tensor) multivariate case
on Td; see [39, 41, 42]. Unfortunately, the normalization constants of these multivariate von
Mises distributions have in general no closed form, and the numerical approximation is very
expensive.

The following remark highlights the difference of our approach to another kind of “sparse”
mixture models in the literature.

REMARK 2.4 (An “opposite” sparse mixture model). In a Gaussian setting, our sparse
mixture model replaces the inverse covariance matrices Σ−1 in the summands of the mixture
model by special matrices of low rank |u|. This is opposite to replacing the covariance
matrices Σ themselves by low-rank matrices as done, e.g., in [24, 50]. In other words, our
paper addresses sparsity in the time domain, while the other authors consider the Fourier
domain.

In [27] (see also [7, 30]), the authors considered the so-called PCA-GMMs. These are
Gaussian mixture models where, up to a rotation, the summand densities are associated with
random variables distributed as

(Xu, Xuc) ∼ N (µ,Σ)×N (0, σ2I),

where σ2 > 0 is a small fixed parameter which may account for noise in the data. Now,
wrapping X around the d-dimensional torus yields that Y = X − bXc is distributed as

(Yu, Yuc) ∼ Nw(µ,Σ)×Nw(0, σ2I).

For σ2 →∞ this distribution converges to

Nw(µ,Σ)× UTd−|u| ,

which is exactly how the components of our model (2.4) are defined. Thus, in contrast to the
PCA-GMM model, we have σ2 →∞ instead of a small or vanishing σ.

Finally, we are interested in the ANOVA decomposition of our mixture models. To this
end, we consider functions hu(·|ϑ) : T|u| → R depending on u ⊆ [d] and ϑ ∈ Θu for some
parameter space Θu. We say that a family of probability density functions

H = {hu(·|ϑ) : u ⊆ [d], ϑ ∈ Θu}

is closed under projections, if for any u, v ∈ [d], ϑ ∈ Θu, there exists ϑ̃ ∈ Θv∩u such that

hv∩u(xv∩u|ϑ̃) = Pv∩uhu(·|ϑ).
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In other words, marginals of functions in H have the same form. As already mentioned,
the family of wrapped Gaussians is closed under projection. Clearly this holds also true for
families of direct products of univariate distributions.

Furthermore, the familyH is called identifiable, if its elements are linearly independent
in the vector space of all functions on Td, i.e., if for any K ∈ N and for α1, . . . , αK ∈ R,∑K
k=1 αkhuk

(xuk
|ϑuk

) = 0 implies that αk = 0 for all k = 1, . . . ,K; see [52, 56]. It
is known that the multivariate Gaussian family on Rd is identifiable [16, 56]. Moreover,
the univariate wrapped normal distribution [29] and the von Mises distribution on T are
identifiable [22]. By the results in [53], also diagonal wrapped normal distributions in ii) and
the products of von Mises distributions in iii) are identifiable. On the other hand, whether the
wrapped normal distribution on Td in i) is identifiable or not appears to be an open problem.

Then, we have the following proposition on the ANOVA decomposition of mixture
models.

PROPOSITION 2.5. Let W ⊆ P([d]) and H = {hu(·|ϑ) : u ⊆ [d], ϑ ∈ Θu} be an
identifiable family of probability density functions that is closed under projections. Further, let
gw, w ∈ W , be a linear combination of functions from {hw(·|ϑ̃l) : ϑ̃l ∈ Θw} with positive
coefficients. Then, a function f of the form

f(x) =
∑
w∈W

gw(xw)

has the ANOVA decomposition

f =
∑
u∈W̄

fu

with fu 6= 0 for all u ∈ W̄ , where W̄ denotes the set {v ⊆ w : w ∈W}.
Proof. By Proposition 2.1 we know already that

f =
∑
u∈W̄

fu,

so it remains to show that none of these summands vanishes. Assume on the contrary that
there exists u ∈ W̄ such that fu = 0. By (2.2) we have

0 = fu = Puf +
∑
v(u

(−1)|u|−|v|Pvf.(2.5)

SinceH is closed under projection and the gw are positive linear combinations of functions
from {hw(·|ϑ) : ϑ ∈ Θw}, we have gw =

∑Kl

l=1 αw,lhw(·|ϑ̃l), αw,l > 0, and therefore

Puf =
∑
w∈W

Pugw =
∑

w∈W,u⊆w

Pugw +
∑

w∈W,u 6⊆w

Pugw

=
∑

w∈W,u⊆w

Kl∑
l=1

αw,lPu(hw(·, ϑ̃l)) + f1

=

K∑
k=1

αkhu(·|ϑk) + f1

for some K ∈ N, positive coefficients αk ∈ R>0, f1 ∈ span{hv(·|ϑ) : v ( u, ϑ ∈ Θv}, and
pairwise distinct ϑk, k = 1, . . . ,K. Since u ∈ W̄ , we have that K > 0. Moreover, for v ( u
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it holds that

Pvf =
∑
w∈W

Pvgw = f2 ∈ span{hṽ(·|ϑ) : ṽ ( u, ϑ ∈ Θṽ}.

Putting the last two formulas together, we obtain in (2.5) that

0 =

K∑
k=1

αkhu(·|ϑk) + f3,

where f3 ∈ span{hv(·|ϑ) : v ( u, ϑ ∈ Θv}. Now the identifiability ofH yields that αk = 0
for all k = 1, . . . ,K, which is a contradiction.

3. Learning sparse mixture models. Our approach for learning a sparse mixture model
consists of three items. First, we need a rough approximation of the involved index sets uk,
which is explained in Section 3.3. Then, we consider an objective function consisting of the
log-likelihood of the corresponding mixture model and an additional term that penalizes a
high number of summands, supporting further sparsity of the mixture model. To minimize this
objective function we propose a combination of a proximal step and the EM algorithm. The
proximal step is considered in Section 3.1 and the EM algorithm in Section 3.2.

Let N observations X = (x1, . . . , xN ) ∈ Rd,N with non-negative real-valued weights
W = (w1, . . . , wN ) be given. For simplicity, we assume that

∑N
i=1 wi = N . Then, the

weighted negative log-likelihood function of the mixture model (2.4) is given by

L(α, ϑ|X ) = −
N∑
i=1

wi log
( K∑
k=1

αkpuk
(xiuk
|ϑk)

)
.(3.1)

Since we intend to obtain a sparse mixture model, we propose to minimize instead of L the
penalized function

Lλ(α, ϑ) := L(α, ϑ|X ) + λ‖α‖0 + ι∆K
(α), λ > 0,(3.2)

with the zero “norm” defined as ‖α‖0 := |{k : αk > 0}| and the indicator function ι∆K
(α)

such that ι∆K
(α) = 0 if α ∈ ∆K and ι∆K

(α) = +∞ otherwise. Here we suppose that the
uk ⊆ [d], k = 1, . . . ,K, are fixed. In Section 3.3, we will suggest a heuristic for determining
appropriate sets uk. We propose to minimize (3.2) by alternating between the EM steps for L
and a proximity step for the function

(3.3) h(α) := ‖α‖0 + ι∆K
(α).

More precisely, we will iterate

(α(r+
1
2 ), ϑ(r+1)) = EM(α(r), ϑ(r)),(3.4)

α(r+1) = proxγh(α(r+
1
2 )), γ > 0,(3.5)

where proxγh(·) is defined according to (3.6).
In the following section, we consider the proximity step before we explain the EM

algorithm for our mixture models with components from Example 2.3.
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3.1. Proximal algorithm. The proximal operator proxγg for a proper, lower semi-
continuous function g : RK → R ∪ {+∞} and γ > 0 is defined as

(3.6) proxγg(x) := arg min
y∈Rd

{ 1
2γ ‖x− y‖

2 + g(y)}.

Note, that for a non-convex function g, a minimizer is not necessarily unique such that the
proximal operator might be set-valued. For the non-convex function g in (3.3), we can compute
a proximum using the following lemma.

LEMMA 3.1. Let α ∈ ∆K , and assume without loss of generality that α1 ≤ · · · ≤ αK .
Let h be defined as in (3.3). Then, the following holds true:

i) An element

α̂ ∈ proxγh(α)

is given by α̂J = 0 and

α̂Jc = αJc +
1

|Jc|
∑
k∈J

αk,

where J = [K0], Jc is defined by Jc = [K]\J , and

K0 ∈ arg min
n∈{0,...,K−1}

g(n), g(n) =
1

2γ

(∑n
k=1 αk

)2

K − n
+

1

2γ

n∑
k=1

α2
k − n.(3.7)

ii) Assume that αi = 0 for some i ∈ {1, . . . ,K}. Then, it holds for any α̂ ∈ proxγh(α) that
α̂i = 0.
Proof. First we note that for α̂ ∈ proxγh(α) it holds that

α̂ ∈ arg min
y∈∆K

{ 1
2γ ‖α− y‖

2 + ‖y‖0}.

With J := {k ∈ [K] : α̂k = 0}, this can be rewritten as

α̂Jc ∈ arg min
y∈∆|Jc|

{ 1
2γ ‖αJc − y‖2},

which is the orthogonal projection of αJc onto ∆|Jc|. Since αk ≥ 0 for all k and ‖αJc‖1 ≤ 1,
this projection is given by

α̂Jc = αJc +
1

|Jc|
∑
k∈J

αk.

In particular, we have that

‖α̂− α‖2 = |Jc|
(∑

k∈J αk

|Jc|

)2

+
∑
k∈J

α2
k =

(∑
k∈J αk

)2

|Jc|
+
∑
k∈J

α2
k.

(a) Thanks to the previous calculations, the definition of proximal operators, and the fact
that J ( [K] (otherwise α̂ = 0 6∈ ∆K), we only have to show that J given by (3.7) is a
minimizer of

min
J([K]

1

2γ

(∑
k∈J αk

)2

|Jc|
+

1

2γ

∑
k∈J

α2
k + |Jc|.(3.8)
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Due to the monotonicity of (3.8) in αk, k ∈ J , and α1 ≤ · · · ≤ αK , there exists a
minimizer of the form J = [K0] for

K0 ∈ arg min
n∈{0,...,K−1}

g(n), g(n) =
1

2γ

(∑n
k=1 αk

)2

K − n
+

1

2γ

n∑
k=1

α2
k − n.

(b) Let αk = 0 and assume that α̂k > 0, where α̂k ∈ proxγ(‖·‖0+ι∆K
)(α). If there exists no

l ∈ [K] with αl > 0 and α̂l = 0, then it holds that

1

2γ
‖α̂− α‖2 + ‖α̂‖0 > ‖α‖0,

which is a contradiction to the definition of the proximal operator. Thus, we can assume
that such an l ∈ [K] exists with αl > 0, α̂l = 0. Now, define α̃ with α̃k = 0, α̃l = α̂k,
and α̃j = α̂j , for j ∈ [K]\{k, l}. Then, it holds by the definition of the proximal operator
that

0 ≥ 1

2γ
‖α̂− α‖2 + ‖α̂‖0 −

1

2γ
‖α̃− α‖2 − ‖α̃‖0

=
1

2γ

(
(α̂k)2 + (αl)

2 − (α̃l − αl)2
)

=
1

2γ

(
(α̂k)2 + (αl)

2 − (α̂k − αl)2
)
.

Since α̂k, αl ∈ (0, 1] we have that |α̂k − αl| < max(α̂k, αl), which implies that the
right-hand side of the above equation is strictly greater than 0. This is a contradiction, and
the proof is completed.
REMARK 3.2. Since sorting the components of the vector α can be done inO(K log(K)),

Lemma 3.1 implies that we can compute an element of proxγh(α) in O(K log(K)). In
particular, the computation of the prox step is very cheap compared with the EM-step.

3.2. EM algorithm. For minimizing the negative log-likelihood function (3.1) we apply
an EM algorithm; see [9, 17] and for a good brief introduction also [36]. We need two different
variants of this algorithm, namely for products of von Mises distributions and for the wrapped
Gaussians.

Let X1, . . . , XN be i.i.d. random variables distributed according to pX(·|α, ϑ), and let
X = (X1, . . . , XN ). Given a realization X = (x1, . . . , xN ) ∈ Rd,N of X, the common idea
of the EM algorithm for finding a maximizer of the log-likelihood function

L(α, ϑ|X ) =

N∏
i=1

pX(xi|α, ϑ)

is to introduce an artificial, hidden random variable Z and to perform the following two steps:

E-Step: For a fixed estimate (α(r), ϑ(r)) of (α, ϑ), we approximate the log-likelihood function
log
(
pX,Z(X ,Z|α, ϑ)

)
of the unknown joint realization (X ,Z) by the so-called Q-function

Q((α, ϑ), (α(r), ϑ(r))) = E(α(r),ϑ(r))(log
(
pX,Z(X, Z|α, ϑ)

)
|X = X ),

where the expectation value is taken with respect to the probability distribution associated with
the mixture model p(·|α(r), ϑ(r)).
M-Step: We update ϑ by maximizing the Q-function

(α(r+1), ϑ(r+1)) ∈ arg max
α,ϑ∈∆K×Θ

{Q((α, ϑ), (α(r), ϑ(r)))}.
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A convergence analysis of the EM algorithm via the Kullback-Leibler proximal point
algorithms was given in [12, 13, 36]. These convergence results apply also to our special
mixture models in the following paragraphs.

PROPOSITION 3.3. Let the sequence (α(r), ϑ(r))r be generated by the above EM steps.
Then, the sequence of negative log-likelihood values L(α(r), ϑ(r)|X ) is decreasing.

The EM algorithm for minimizing the log-likelihood function of the mixture model with
products of von Mises functions as summands can be realized by a standard approach [3, 40] for
mixture models, which uses a special hidden random variable Z. In particular, the maximum
in the M-step can be computed analytically. Unfortunately, with this approach, the M-step
has no analytical solution in the wrapped Gaussians setting, therefore we have to choose the
hidden variable Z in a different way. We describe both approaches in the following.

EM algorithm for products of von Mises distributions. For mixture models, it is common
to choose hidden variables Zik with Zik = 1 if Xi belongs to the k-th component of the
mixture model and Zik = 0 otherwise. Let X = (xi)i and Z = (zik,l)i,k,l be (unknown) joint
realizations.

E-Step: It can be shown (see [17, 36]) that with the so-called complete weighted log-likelihood
function

`(α, ϑ|X ,Z) :=

N∑
i=1

wi

K∑
k=1

zik log(αkpuk
(xiuk
|ϑk)),

the Q function reads as

Q((α, ϑ), (α(r), ϑ(r))) = E(α(r),ϑ(r))

(
`(α, ϑ|X, Z)|X = X

)
=

N∑
i=1

wi

K∑
k=1

β
(r)
i,k log(αkpuk

(xiuk
|ϑk)),

with

β
(r)
i,k =

α
(r)
k puk

(xiuk
|ϑ(r)
k )∑K

j=1 α
(r)
j puj (xiuj

|ϑ(r)
j )

.

Note that β(r)
i,k is an estimate of zik, therefore it can be seen as the probability that xi arises

from the k-th summand of the mixture model.
The optimization in the M-step can be done separately for α and ϑ. This results in the

EM algorithm for mixture models given in Algorithm 1.
It remains to maximize the function in the second M-step. For the von Mises model in

Example 2.3 iii), this can be done analytically as described in the following.

M-Step: For products of von Mises distributions, the log-density functions in each component
of the mixture model are given by

log
(
puk

(xuk
)
)

=
∑
j∈uk

log
(
pM (xj |µj,k, κj,k)

)
.

Then

(µ
(r+1)
k , κ

(r+1)
k ) = arg max

µk,κk

{ N∑
i=1

wi
∑
j∈uk

β
(r)
i,k log(pM (xij |µj,k, κj,k))

}
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Algorithm 1 EM algorithm for mixture models.

Input: (x1, . . . , xN ) ∈ Td,N , (w1, . . . , wN ) ∈ RN and initial estimates α(0), ϑ(0).
for r = 0, 1, . . . do

E-Step: for k = 1, . . . ,K and i = 1, . . . , N , compute

β
(r)
i,k =

α
(r)
k puk

(xiuk
|ϑ(r)
k )∑K

j=1 α
(r)
j puj

(xiuj
|ϑ(r)
j )

M-Step: for k = 1, . . . ,K, compute

α
(r+1)
k =

1

N

N∑
i=1

wiβ
(r)
i,k ,

ϑ
(r+1)
k = arg max

ϑk

{ N∑
i=1

wiβ
(r)
i,k log(puk

(xiuk
|ϑk))

}
.

end for

decouples for j. For the univariate von Mises distribution, the log-maximum likelihood
estimator is well known [31], and we obtain

µ
(r+1)
j,k =

1

2π
arctan∗

(
S

(r)
j,k

C
(r)
j,k

)
, κ

(r+1)
j,k = A−1(R

(r)
j,k),

where

A(κ) := I1(κ)
I0(κ) ,

C
(r)
j,k :=

N∑
i=1

wiβ
(r)
i,k cos(2πxij), S

(r)
j,k :=

N∑
i=1

wiβ
(r)
i,k sin(2πxij),

R
(r)
j,k := 1

Nα
(r+1)
k

√
(S

(r)
j,k )2 + (C

(r)
j,k )2,

and arctan∗ : R× R→ [0, 2π) with (S,C) 7→ arctan∗
(
S
C

)
denotes the "quadrant-specific"

inverse of the tangent defined by

arctan∗
(
S
C

)
=



arctan
(
S
C

)
, if C > 0, S ≥ 0,

π
2 , if C = 0, S > 0,

arctan
(
S
C

)
+ π, if C < 0,

arctan
(
S
C

)
+ 2π, if C > 0, S < 0,

3π
2 , if C = 0, S < 0,

undefined, if C = S = 0.

(3.9)

It is known that A is a strictly increasing, strictly concave function with derivative
A′(κ) = (1− A(κ)

κ −A2(κ)) > 0, and it has the limits A(κ)→ 0 for κ→ 0 and A(κ)→ 1
for κ→∞; see [31]. Thus, we can compute the updates of κ using Newton’s method. The
whole EM algorithm is summarized in Algorithm 4 in the appendix.
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EM algorithm for wrapped Gaussians. For the wrapped Gaussians, the components of
the log-likelihood function (3.1) read as

puk
(xiuk
|ϑk) = Nw(xiuk

|µk,Σk), µk ∈ Tn, Σk ∈ SPD(n),

where n = |uk|. Unfortunately, the maximizer in the second M-step of the EM algorithm,
Algorithm 1, cannot be computed analytically for the wrapped Gaussian distribution. Therefore
we adapt the EM by choosing the variable Z in an appropriate way. Note, that the resulting
EM algorithm is similar to an EM algorithm for non-sparse mixtures of wrapped Gaussians,
which was already sketched, e.g., in [1].

E-step: Let X1, . . . , XN be i.i.d. random variables. We assign to each Xi a label W i
k with

W i
k = 1 if Xi belongs to the k-th component of the mixture model and W i

k = 0 otherwise.
Moreover, recall that for a random variable Y ∼ N (µ,Σ) it holds that Y − bY c ∼ Nw(µ,Σ).
Thus, we assign for each Xi a random variable Y i such that the conditional distribution of
(Y i|W i

k = 1) is given by the distribution N (µk,Σk), and it holds Xi = Y i − bY ic. Now
we use as hidden variables in the EM algorithm the random variables Zik,l, where Zik,l = 1

if bY ic = l and W i
k = 1 for l ∈ Z|uk| and set Zik,l = 0 otherwise. Let X = (xi)i and

Z = (zik,l)i,k,l. Then, with the appropriate complete weighted log-likelihood function

`(α, µ,Σ|X ,Z) :=

N∑
i=1

wi

K∑
k=1

∑
l∈Z|uk|

zik,l log(αkN (xiuk
+ l|µk,Σk)),

the Q-function reads as

Q((α, µ,Σ), (α(r), µ(r),Σ(r)))

= E(α(r),µ(r),Σ(r))(`(α, µ,Σ|X,Z)|X = X )

=

N∑
i=1

wi

K∑
k=1

∑
l∈Z|uk|

E(α(r),µ(r),Σ(r))

(
Zik,l|X = X

)
log(αkN (xiuk

+ l|µk,Σk))

=

N∑
i=1

wi

K∑
k=1

∑
l∈Z|uk|

β
(r)
i,k,l log(αkN (xiuk

+ l|µk,Σk)),(3.10)

where by the definition of conditional probabilities

β
(r)
i,k,l = E(α(r),µ(r),Σ(r))(Z

i
k,l|Xi = xi) = P(α(r),µ(r),Σ(r))(Z

i
k,l = 1|Xi = xi)

=
α

(r)
k N (xiuk

+ l|µ(r),Σ(r))∑K
j=1 α

(r)
j Nw(xiuj

|µ(r),Σ(r))
.

M-step: Analogous to the EM algorithm for Gaussian mixture models, the maximizer of the
Q function is given by

α
(r+1)
k =

1

N

N∑
i=1

wi
∑

l∈Z|uk|

β
(r)
i,k,l,

µ
(r+1)
k =

1

Nα
(r+1)
k

N∑
i=1

wi
∑

l∈Z|uk|

β
(r)
i,k,l(x

i
uk

+ l),

Σ
(r+1)
k =

1

Nα
(r+1)
k

N∑
i=1

wi
∑

l∈Z|uk|

β
(r)
i,k,l(x

i
uk

+ l − µ(r+1)
k )(xiuk

+ l − µ(r+1)
k )T.
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Unfortunately, for every i = 1, . . . , N and k = 1, . . . ,K, there are infinitely many
β

(r)
i,k,l. However, by definition, the β(r)

i,k,l decay exponentially for |l| → ∞ since, again by
definition, the inverse covariance matrix Σ−1 of the wrapped normal distribution is positive
definite, which implies that −1/2 (x+ l − µ)

T
Σ−1 (x+ l − µ) < 0, and this tends to −∞

as |l| → ∞.
Thus, for numerical purposes it suffices to consider l ∈ {−lmax, . . . , lmax}|uk| for some

lmax ∈ N. In other words, we truncate the infinite sum defining the wrapped Gaussian by

puk
(xuk
|µk,Σk) ≈

∑
l∈{−lmax,lmax}|uk|

N (xuk
+ l|µk,Σk).

Nevertheless, the number of coefficients βi,k,l depends exponentially on the dimension |uk| of
the wrapped normal distributions. Therefore, parameter estimation can only be performed for
small |uk| such that the evaluation does not become the bottleneck of the computation.

The whole algorithm is given in Algorithm 2 in the appendix.
EM algorithm for diagonal wrapped Gaussians. Using in the mixture models only

diagonal wrapped normal distributions as in Example 2.3 ii), we get rid of the exponential
dependence of the algorithm on the dimension. This was already observed in [1, 51]. We have
to maximize the log-likelihood function

L(α, µ,Σ|X ) :=

N∑
i=1

wi log
( K∑
k=1

αk
∑

l∈Z|uk|

∏
j∈uk

N (xij + lj |µj,k, σ2
j,k)
)
.

E-step: This step remains basically the same. However, we will see that we can sum up
over appropriate values of β(r)

i,k,l to get the values γ(r)
i,k,m,j . These values can finally be

computed efficiently with a complexity that depends polynomially on the dimension d; see
equation (3.11).
M-step: We rewrite the Q-function in (3.10) as

Q((α, µ,Σ), (α(r), µ(r),Σ(r)))

=

N∑
i=1

K∑
k=1

∑
l∈Z|uk|

wiβ
(r)
i,k,l log(αk)

+

N∑
i=1

K∑
k=1

∑
l∈Z|uk|

∑
j∈uk

wiβ
(r)
i,k,l log(N (xij + lj |µj,k, σ2

j,k))

=

N∑
i=1

K∑
k=1

∑
l∈Z|uk|

wiβ
(r)
i,k,l log(αk)

+

N∑
i=1

K∑
k=1

∑
j∈uk

∑
m∈Z

wiγ
(r)
i,k,m,j log(N (xij +m|µj,k, σ2

j,k)),

where γ(r)
i,k,m,j :=

∑
l∈Z|uk|,lj=m β

(r)
i,k,l.

Then, analogous to Gaussian mixture models, maximizing the Q-function gives that

α
(r+1)
k =

1

N

N∑
i=1

wi
∑

l∈Z|uk|

β
(r)
i,k,l =

1

N

N∑
i=1

wi
∑
m∈Z

γ
(r)
i,k,m,j , for any j ∈ uk,
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and

µ
(r+1)
j,k =

1

Nα
(r+1)
k

N∑
i=1

wi
∑
m∈Z

γ
(r)
i,k,m,j(x

i
j +m),

(σ
(r+1)
j,k )2 =

1

Nα
(r+1)
k

N∑
i=1

wi
∑
m∈Z

γ
(r)
i,k,m,j(x

i
j +m− µ(r+1)

j,k )2.

Further, we can rewrite γ(r)
i,k,m,j as

γ
(r)
i,k,m,j =

α
(r)
k

∑
l∈Z|uk|,lj=m

∏
s∈uk

N (xis + ls|µ(r)
s,k, (σ

(r)
s,k)2)∑K

t=1 α
(r)
t

∏
s∈ut
Nw(xis|µ

(r)
s,t , (σ

(r)
s,t )2)

=
α

(r)
k

∑
l∈Z|uk|,lj=m

∏
s∈uk

N (xis + ls|µ(r)
s,k, (σ

(r)
s,k)2)∑K

t=1 α
(r)
t

∏
s∈ut
Nw(xis|µ

(r)
s,t , (σ

(r)
s,t )2)

=
α

(r)
k N (xij +m|µ(r)

j,k, (σ
(r)
j,k)2)

∏
s∈uk\{j}

(∑
ls∈ZN (xis + ls|µ(r)

s,k, (σ
(r)
s,k)2)

)
∑K
t=1 α

(r)
t

∏
s∈ut
Nw(xis|µ

(r)
s,t , (σ

(r)
s,t )2)

=
α

(r)
k N (xij +m|µ(r)

j,k, (σ
(r)
j,k)2)

∏
s∈uk\{j}Nw(xis|µ

(r)
s,k, (σ

(r)
s,k)2)∑K

t=1 α
(r)
t

∏
s∈ut
Nw(xis|µ

(r)
s,t , (σ

(r)
s,t )2)

.(3.11)

As in the previous algorithm, for any i, k, and j, there are infinitely many γ
(r)
i,k,m,j .

However, with the same justifications as above, the γ(r)
i,k,m,j decay exponentially for |m| → ∞

such that it suffices to consider m ∈ {−mmax,mmax}. While this approximation led to
an exponential dependence of the complexity of the previous EM on maxk=1,...,K |uk|, the
complexity of the EM algorithm depends only polynomially on maxk=1,...,K |uk|.

The whole algorithm is given in Algorithm 3 in the appendix.
Convergence considerations. Finally, we return to the coupled proximum-EM algorithm

in (3.4) and (3.5). In the following theorem, we restrict our attention to the mixture model
with wrapped Gaussians as components, but the statements apply to the other two models in
Example 2.3 as well.

THEOREM 3.4. Let (α(r), µ(r),Σ(r))r be generated by (3.4)–(3.5) with one EM step as
in Algorithm 2. Then, the following holds true.

i) Assume that α(r0)
k = 0. Then, we have that α(r)

k = 0 for any r ≥ r0. In particular, the
number ‖α(r)‖0 of non-zero elements in α is monotonically decreasing.

ii) There exists some λ̃ > 0 such that for all λ > λ̃ the sequence (Lλ(α(r), µ(r),Σ(r)))r is
monotonically decreasing.

iii) Assume that γ < K − 1. Then, there exists r0 ∈ N such that for any r ≥ r0 either

α
(r)
k = 0 or α(r)

k ≥
√

2γ(K0−1)
K0

, k = 1, . . . ,K, where K0 = minr∈N ‖α(r)‖0.

Proof.
i) Assume that α(r)

k = 0. This implies that in Algorithm 2 it holds that β(r)
i,k,l = 0 for all i

and l, and consequently it holds that α(r+1/2)
k = 0. By part ii) of Lemma 3.1 we obtain

that also α(r+1)
k = 0, which by induction proves part i).

ii) By the first part of the proof, we conclude that R := {r ∈ N : ‖α(r+1)‖0 < ‖α(r)‖0} is
finite. Furthermore, by the definition of an EM step it holds that ‖α(r+1/2)‖0 = ‖α(r)‖0
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for any r ∈ N. This in combination with Proposition 3.3 yields that

Lλ(α(r+1/2), µ(r+1),Σ(r+1)) ≤ Lλ(α(r), µ(r),Σ(r))(3.12)

for any λ > 0. Thus, we have for r 6∈ R that ‖α(r+1/2)‖0 = ‖α(r+1)‖0, which by
definition of the proximal operator and of h in (3.3) yields that α(r+1/2) = α(r+1).
Together with (3.12), for any r 6∈ R and λ > 0, we obtain that

Lλ(α(r+1), µ(r+1),Σ(r+1)) ≤ Lλ(α(r), µ(r),Σ(r)).(3.13)

For r ∈ R, we have ‖α(r+1)‖0 < ‖α(r+1/2)‖0. Consequently, we obtain

Lλ(α(r+1/2), µ(r+1),Σ(r+1))− Lλ(α(r+1), µ(r+1),Σ(r+1))

= L(α(r+1/2), µ(r+1),Σ(r+1)|X )− L(α(r+1), µ(r+1),Σ(r+1)|X )

+ λ(‖α(r+1/2)‖0 − ‖α(r+1)‖0).

This is greater or equal to zero, if

λ ≥ λr :=
L(α(r+1), µ(r+1),Σ(r+1)|X )− L(α(r+1/2), µ(r+1),Σ(r+1)|X )

‖α(r+1/2)‖0 − ‖α(r+1)‖0
.

Together with (3.12), for r 6∈ R and λ ≥ λr, we obtain that

Lλ(α(r+1), µ(r+1),Σ(r+1)) ≤ Lλ(α(r), µ(r),Σ(r)).(3.14)

Finally, we set λ̃ := maxr∈R λr, which is finite since R is finite. Combined with (3.13)
and (3.14) this yields the thesis.

iii) As in the previous part of the proof, the set R := {r ∈ N : ‖α(r+1)‖0 < ‖α(r)‖0} is
finite, and for r 6∈ R it holds that α(r+1) = α(r+1/2). Now, let r0 := maxr∈R r + 1,

and assume that there exists r ≥ r0 with α(r)
k ∈

(
0,
√

2γ(K0−1)
K0

)
. Then, it holds that

‖α(r)‖0 = K0 and

α(r) = proxγh(α(r−1/2)) = proxγh(α(r)).(3.15)

Moreover, define α̃ ∈ ∆K by α̃k = 0 and

α̃j =

0, if α(r)
j = 0,

α
(r)
j +

α
(r)
k

K0−1 , otherwise.

This yields

1

2γ
‖α̃− α(r)‖2 + ‖α̃‖0 =

1

2γ

(
(α

(r)
k )2 + (K0 − 1)

( α
(r)
k

K0 − 1

)2)
+ ‖α(r)‖0 − 1

=
1

2γ

K0

K0 − 1
(α

(r)
k )2 + ‖α(r)‖0 − 1 < ‖α(r)‖0,

which is a contradiction to (3.15), and the proof is completed.
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3.3. Model selection. The model and optimization algorithm in the previous section
assumed that the uk, k = 1, . . . ,K, are known. In the following, we propose a heuristic for
selecting the uk.

The underlying assumption is that the distribution of the samples (xi)i can be represented
by a sparse mixture model

p(x) =

K∑
k=1

p(xuk
|ϑk)

with a small number of variable interactions, i.e., |uk| ≤ ds, k = 1, . . . ,K, for some small
ds ∈ {1, . . . , d}. Here, we assume that the number ds is known a priori. Furthermore, we
assume that the number K of required components in the sparse mixture model is small.

For our heuristic, we start with K = 1 and u1 = ∅, and then we extend our model
iteratively by repeating the following steps ds times.

1. For every k = 1, . . . ,K, we first compute the probability that the sample xi belongs
to component k of the sparse mixture model. This probability is given by

βi,k =
αkp(x

i
uk
|ϑk)∑K

j=1 αjp(x
i
uj
|ϑj)

.

For m ∈ [d]\uk, we want to test if we can fit the weighted samples (xi)i with impor-
tance weights (wiβi,k)i better by a density function p(xiuk∪{m}|µ̃k, Σ̃k) than by the
density function p(xuk

|µk,Σk). If the distribution p(xuk
|µk,Σk) fits the samples

perfectly, then we have that for any m ∈ [d]\uk the samples (xim)i with impor-
tance weights (wiβi,k)i are uniformly distributed and independent from (xiuk

)i with
weights (wiβi,k)i. Consequently, we apply two tests. First, we apply a Kolmogorov-
Smirnov test described in Appendix B for the hypothesis

H0 : the samples (xim)i with weights (wiβik)i are uniformly distributed

against the alternative

H1 : the samples (xim)i with weights (wiβik)i are not uniformly distributed.

The hypothesis H0 is accepted if the Kolmogorov-Smirnov test statistic (see equa-
tion (B.2)) fulfills KS((wiβi,k)i, (x

i
m)i) < c1 for some a priori fixed c1 ∈ R>0.

Since it is difficult to test for independence, our second test is based on the correla-
tion. Here, we test the hypothesis

H̃0 : (wiβi,k, x
i
m)i and (wiβi,k, x

i
uk

)i are uncorrelated

against the alternative

H̃1 : (wiβi,k, x
i
m)i and (wiβi,k, x

i
uk

)i are correlated.

The hypothesis H̃0 is accepted, if the correlation coefficient satisfies

|Corr((wiβi,k, x
i
m)i, (wiβi,k, x

i
j)i)| < c2

for all j ∈ uk and some a priori fixed c2 ∈ R>0. Now, we set

Uk := {uk} ∪ {uk ∪ {m} : m ∈ [d]\uk with H0 is rejected or H̃0 is rejected}
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and define a new sparse mixture model with K̃ =
∑K
k=1 |Uk| components, where

the new ui are given by the elements of the Uk, k = 1, . . . ,K. For wrapped normal
distributions, we initialize the parameters of uk ∪ {m} by the following procedure:
first, we estimate the parameters (µ̂, σ̂2) of a univariate wrapped normal distribution
based on the samples (xim)i with importance weights (wiβi, k)i. Then, we initialize
the component with indices uk ∪ {m} by the parameters of the distribution of a
random variable X characterized by

(Xuk
, Xm) ∼ Nw(µk,Σk)×Nw(µ̂, σ̂2),

where (µk,Σk) are the old parameters corresponding to uk.
2. As a second step, we estimate the parameters (α, ϑ) of the new sparse mixture model

using the iterations (3.4) and (3.5).
3. Finally, we reduce the number of components of the sparse mixture model by

i) removing all components k with weight αk = 0 and
ii) replacing the components k and l with uk = ul by one component uk with

weight αk + αl, µk, and Σk if the corresponding distributions are similar. As a
similarity measure, we use here the Kullback-Leibler divergence, which can be
approximated by the Monte Carlo method as

KL(p, q) ≈ 1

NMC

NMC∑
i=1

log(p(si))− log(q(si)),

where the si are sampled from the probability distribution corresponding to the
density p.

4. Numerical results. In this section, we demonstrate the performance of our algorithm
by four numerical examples. The implementation is done in Tensorflow and Python. The code
is available online2.

In the first two sections, the non-negative density function f : [0, 1]d → R with ‖f‖L1 = 1
is given as ground truth, and we can sample from the corresponding distribution. More
precisely, we consider the following functions:

1. two mixture models,
2. the sum of the tensor products of splines, which was also considered in [4], and
3. the normalized Friedman-1 function, which was also examined in [5, 6, 44].

The samples in the third section are created in a special way, and the underlying density
function is unknown.

Since the reconstruction quality possibly depends on the random choice of the samples,
we repeat this procedure 10 times. In the first example, we can directly sample from the
distribution, while we use rejection sampling for the two other ones; see, e.g., [2, 49]. This
works as follows.

Let M ≥ supx∈[0,1]d f(x). Now, we generate a candidate by drawing x from the uniform
distribution on U[0,1]d and z from U[0,1]. Then, we accept x as a sample if z < f(x)/M and
reject x otherwise. It can be shown that the samples xi, i = 1, . . . , N , generated by this
procedure correspond to the distribution given by the density f ; see, e.g, [49, pp. 49].

To evaluate our reconstruction results, we compare
- the value of the log-likelihood function of the original function f with that of the

estimated one p̂, and

2https://github.com/johertrich/Sparse_Mixture_Models
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- the relative Lq-errors, q = 1, 2,

eLq
(p̂, f) =

‖f − p̂‖Lq

‖f‖Lq

.

Since we cannot calculate the high-dimensional integral eLq directly, we approx-
imate it via Monte-Carlo integration, that is, we draw NMC = 100000 samples
s1, . . . , sNMC

from the uniform distribution in [0, 1]d and approximate the Lq-norms
by

‖f‖qLq
≈ 1

NMC

NMC∑
i=1

f(si)
q, ‖f − p̂‖qLq

≈ 1

NMC

NMC∑
i=1

(f(si)− p̂(si))q.

4.1. Samples from mixture models. For d = 9, we consider the ground truth density
function

f(x) :=

6∑
k=1

αkpuk
(xuk
|µk,Σk),

puk
(xuk
|µk,Σk) :=

∑
l∈Z|uk|

N (xuk
+ l|µk,Σk)

(4.1)

with

(u1, . . . , u6) := ({0, 1}, {2, 3}, {4, 5, 6}, {6, 7}, {8, 9}, {2}),
α := (0.2, 0.2, 0.2, 0.2, 0.1, 0.1),

µ :=
1

2

(
(1, 1)T, (1, 1)T, (1, 1, 1)T, (1, 1)T, (1, 1)T, 1

)
,

and the following settings of covariance matrices:
a) Diagonal matrices: for k = 1, . . . , 6,

Σk = σ2I|uk|, σ2 = 0.01.

b) Non-diagonal matrices: for k = 1, 2, 4, 5,

Σk := σ2

[
1 ck
ck 1

]
, c1 = c2 = 0.5, c4 = −0.6, c5 = 0.1,

and

Σ3 := σ2

 1 0.3 0.2
0.3 1 0.1
0.2 0.1 1

 , Σ6 = σ2, σ2 = 0.01.

We perform all computations forN = 10000 andN = 50000 samples. We iterate the heuristic
from Section 3.3 for ds = 3 times. Then, the average relative Lq-errors, q = 1, 2, as well as the
log-likelihood values are given for the three settings from Example 2.3 in Table 4.1. Figure 4.1
displays a diagram with the weights of the recovered couplings uk. More precisely, the value
of the bar with label u is given by the sum of all αk, where uk = u in the reconstruction.

We observe that the couplings uk are reconstructed exactly. Furthermore, the log-
likelihood value for the sparse mixture model with full wrapped Gaussian covariance matrices
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TABLE 4.1
Approximation of f in (4.1) with a) and b) by the three sparse mixture models in Example 2.3. Average value of

the log-likelihood function and the relative Lq-errors , q = 1, 2. Top: N = 10000, bottom: N = 50000.

Truth Method Lf (x1, . . . , xN ) Lp̂(x1, . . . , xN ) eL1 (p̂, f) eL2 (p̂, f)

a) wrapped 7185.2± 119.3 7244.8± 126.7 0.0727± 0.0062 0.0879± 0.0125
a) comp. wrapped 7185.2± 119.3 7227.0± 121.0 0.0614± 0.0048 0.0728± 0.0064
a) von Mises 7185.2± 119.3 7215.1± 115.9 0.0706± 0.0036 0.0793± 0.0062

b) wrapped 7825.5± 97.6 7879.0± 94.3 0.0675± 0.0083 0.0824± 0.0136
b) comp. wrapped 7825.5± 97.6 7764.0± 96.2 0.1165± 0.0021 0.1128± 0.0043
b) von Mises 7825.5± 97.6 7754.1± 94.4 0.1182± 0.0028 0.1135± 0.0035

Truth Method Lf (x1, . . . , xN ) Lp̂(x1, . . . , xN ) eL1 (p̂, f) eL2 (p̂, f)

a) wrapped 35956± 167 35852± 254 0.0484± 0.0154 0.0701± 0.0313
a) comp. wrapped 35956± 167 35864± 170 0.0446± 0.0161 0.0684± 0.0317
a) von Mises 35956± 167 35945± 179 0.0387± 0.0024 0.0390± 0.0035

b) wrapped 39206± 272 39088± 295 0.0507± 0.0109 0.0781± 0.0191
b) comp. wrapped 39206± 272 38719± 285 0.0971± 0.0032 0.0912± 0.0046
b) von Mises 39206± 272 38722± 271 0.0966± 0.0072 0.0897± 0.0064
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FIG. 4.1. Weights of the recovered couplings uk for the approximation of f in (4.1) with a) and b) by the three
mixture models in Example 2.3 for N = 10000 samples. Top: model a), bottom: model b).

is in all cases larger than for the ground truth function. Thus, the approximation error is due
to the estimation error of the maximum likelihood estimator and therefore due to the lack of
information contained in the samples and not due to the approximation method. Moreover,
the sparse mixture model with full wrapped Gaussian covariances admits in all cases a larger
log-likelihood value than those with the diagonal wrapped Gaussians. This should not be
surprising since the sparse mixture model with the wrapped Gaussian covariance matrices
contains the other setting.

4.2. Samples from functions. Next, we approximate the functions fi/‖fi‖L1 , i = 1, 2,
where f1 : [0, 1]9 → R and f2 : [0, 1]10 → R are given by

f1(x) = B2(x1)B4(x3)B6(x8) +B2(x2)B4(x5)B6(x6) +B2(x4)B4(x7)B6(x9),(4.2)

f2(x) = 10 sin(πx1x2) + 20(x3 + 0.5)2 + 10x4 + 5x5.(4.3)
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TABLE 4.2
Approximation of the fi in (4.2) and (4.3) by the three sparse mixture models in Example 2.3 for N = 10000

samples. Average value of the log-likelihood function and the relative Lq-errors, q = 1, 2. Top: spline function f1,
bottom: Friedmann-1 function f2.

Method Lf (x1, . . . , xN ) Lp̂(x1, . . . , xN ) eL1(p̂, f) eL2(p̂, f)

full 7009.8± 59.4 7026.7± 79.2 0.0971± 0.0053 0.0963± 0.0056
diagonal 7009.8± 59.4 7001.9± 52.0 0.0828± 0.0030 0.0828± 0.0037

von Mises 7009.8± 59.4 6932.4± 56.4 0.1292± 0.0034 0.1272± 0.0041

Method Lf (x1, . . . , xN ) Lp̂(x1, . . . , xN ) eL1(p̂, f) eL2(p̂, f)

full 630.0± 43.9 566.1± 43.0 0.1150± 0.0131 0.1419± 0.0142
diagonal 630.0± 43.9 558.6± 53.8 0.1175± 0.0135 0.1444± 0.0139

von Mises 630.0± 43.9 549.8± 56.4 0.1220± 0.0124 0.1490± 0.0128
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FIG. 4.2. Weights of the recovered couplings uk for the approximation of the fi in (4.2) and (4.3) by the three
sparse mixture models in Example 2.3 for N = 10000 samples. Top: spline function f1, bottom: Friedmann-1
function f2.

Here B2, B4, and B6 are the L2-normalized B-splines of order 2, 4, and 6 supported on [0, 1].
Note, that the spline function f1 was also used in [4] for numerical evaluations. The function
f2 is the so-called Friedmann-1 function. We use ds = 3 iterations within the heuristic of
Section 3.3 for f1 and ds = 2 iterations for f2. The results are given in Table 4.2. Figure 4.2
displays a diagram with the weights of the recovered couplings uk. We observe that all
recovered couplings uk with a significant weight match the definitions of the functions fi,
i = 1, 2.

The estimated parameters achieve a slightly worse log-likelihood value than the original
function f . Thus, the original function fits the samples slightly better than the estimated sparse
mixture model. This should not be surprising since the function f/‖f‖L1 is not contained in
the class of sparse mixture models. Nevertheless, for the spline function f1 the relative L1−
and L2-errors are still comparable with the results from [4].
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FIG. 4.3. Three samples from each class.

4.3. A synthetic image example. In this example, we consider gray-valued images
consisting of 7× 10 pixels that are sampled from five different classes. Each class contains
noisy piecewise constant images with one straight edge in a fixed position. In the following
we learn a sparse mixture model for the semi-supervised classification of images into one of
these classes. Here we assume that not the whole image is given but only the orientations of
some of the gradients within the images.

Image generation. We generate an image y = (yi,j)i,j ∈ R7×10 using the following
procedure:

• Class 1: we draw a from N (0.1, 0.052) and b from N (0.9, 0.12) and set yi,j = a
for j = 1, 2 and yi,j = b otherwise.

• Class 2: we draw a from N (0.9, 0.12) and b from N (0.1, 0.052) and set yi,j = a
for j = 1, . . . , 4 and yi,j = b otherwise.

• Class 3: we draw a from N (0.2, 0.0252) and b from N (0.6, 0.052) and set yi,j = a
for j = 1, . . . , 6 and yi,j = b otherwise.

• Class 4: we draw a from N (0.7, 0.12) and b from N (0.1, 0.052) and set yi,j = a
for j = 1, . . . , 8 and yi,j = b otherwise.

• Class 5: we draw a from N (0.2, 0.12) and b from N (0.9, 0.0252) and set yi,j = a
for i = 1, . . . , 4 and yi,j = b otherwise.

Finally, we add Gaussian white noise with standard deviation 0.2 to each of the images.
Figure 4.3 illustrates one sample from each class.

Gradient orientations and data generation. We assume that not the full images are
given but only the orientations of some of the gradients within the images. For an image
y = (yi,j)i,j ∈ Rm×n, the central discrete gradient at position (i, j) ∈ {2, . . . ,m − 1} ×
{2, . . . , n− 1} is defined as the vector (yi+1,j − yi−1,j , yi,j+1 − yi,j−1). Consequently, the
orientation of the gradient at position (i, j) is given by

ωi,j :=
1

2π
arctan∗(

yi+1,j−yi−1,j

yi,j+1−yi,j−1
),

where arctan∗ again denotes the quadrant-specific inverse of the tangent as defined in (3.9).
Finally, we assume that not all of the gradient orientations are given but only the ωij with
(i, j) ∈ I, where

I := {(2, 2), (2, 3), (2, 6), (2, 7), (4, 4), (4, 5), (4, 8), (4, 9), (6, 2), (6, 3), (6, 6), (6, 7)}.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

SPARSE MIXTURE MODELS INSPIRED BY ANOVA 163

FIG. 4.4. The black marked pixels represent the positions (i, j) ∈ I.
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FIG. 4.5. Histograms of the components of (ωij)(i,j)∈I for 10000 samples from class 2.

Figure 4.4 visualizes the pixels corresponding to the positions (i, j) ∈ I.
Now, we generate Ntrain = 10000 training samples and Ntest = 1000 test samples, where

each sample x ∈ T12 is generated by the following steps: first, we randomly choose a class
c ∈ {1, . . . , 5} accordingly to some fixed (but unknown for the classification) probabilities α.
Second, we generate an image y from a class c as described above and compute the gradient
orientations ωij . Finally, we define our sample x ∈ T12 as x := (ωij)(i,j)∈I .

We visualize the components of (ωij)(i,j)∈I by histograms of 10000 samples from class 2
in Figure 4.5.

REMARK 4.1. Let us briefly comment why the above sampling generation fits into our
model setting. If the Yi,j are i.i.d. Gaussian distributed (noise on constant areas), then the
components of their centered gradients are also i.i.d. Gaussian distributed for (i, j) ∈ I. Note
that the special set I is needed to ensure independence of the random variables in the gradient.
Finally, it follows from the transformation theorem that the random variables where these ωi,j
are sampled from, are uniformly distributed; see, e.g., [18]. Thus, in our samples x, most of
the components will arise from a uniformly distributed random variable (constant areas), and
only few ones (phases of the gradients at edges) have to be approximated by a Gaussian-like
mixture.

Semi-supervised classification. In the following, assume that we have given Ntrain unla-
beled training samples x1, . . . , xNtrain (i.e., it is unknown which sample belongs to which class).
Additionally, we have given 3 labeled samples x1,c, . . . , x3,c from each class c = 1, . . . , 5.
Based on this, we would like to classify the samples from the test set into the five classes. For
this, we perform three steps.
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• First, we estimate the components uk and the parameters (α, µ,Σ) of a sparse mixture
model as described in Section 3, where we use ds = 4 steps within the heuristic from
Section 3.3.

• In general, this mixture model will have K > 5 classes, and we have to assign the
components to the different classes. For this we assume that we have additionally
given three labeled samples x1,c, . . . , x3,c from each class c = 1, . . . , 5. Then, we
assign k to class c(k) ∈ {1, . . . , 5} by

c(k) := arg max
c=1,...,5

3∑
i=1

log(puk
(xi,cuk
|ϑk)).

• Finally, we predict for a data point x from the test set the appropriate class by

ĉ := arg max
c=1,...,5

∑
k∈[K],ck=c

αkpuk
(xuk
|ϑk).

Using this procedure, we achieve an accuracy of 93.6% on the test set.

Acknowledgments. Funding by the BMBF 01|S20053B project SA`E and by the Ger-
man Research Foundation (DFG) within the project STE 571/16-1 SUPREMATIM is gratefully
acknowledged.

Appendix A. EM algorithm for distributions in Example 2.3. We summarize the EM
algorithms for the mixture models with components from Example 2.3 i)–iii) in this order.

Algorithm 2 EM algorithm for MMs with wrapped normal distribution.

Input: x = (x1, . . . , xN ) ∈ Rd,N , initialization α(0), ϑ(0) = (µ(0),Σ(0)).
for r = 0, 1, . . . do

E-Step: for k = 1, . . . ,K, i = 1, . . . , N , and l ∈ Z|u|, compute

β
(r)
i,k,l =

α
(r)
k N (xiuk

+ l|µ(r)
k ,Σ

(r)
k ))∑K

j=1 α
(r)
j p(xiuj

|µ(r)
j ,Σ

(r)
j )

M-Step: for k = 1, . . . ,K, compute

α
(r+1)
k =

1

N

N∑
i=1

wi
∑

l∈Z|uk|

β
(r)
i,k,l,

µ
(r+1)
k =

1

Nα
(r+1)
k

N∑
i=1

wi
∑

l∈Z|uk|

β
(r)
i,k,l(x

i
uk

+ l),

Σ
(r+1)
k =

1

Nα
(r+1)
k

N∑
i=1

wi
∑

l∈Z|uk|

β
(r)
i,k,l(x

i
uk

+ l − µ(r+1)
k )(xiuk

+ l − µ(r+1)
k )T.

end for
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Algorithm 3 EM algorithm for MMs with diagonal wrapped normal distribution.

Input: x = (x1, . . . , xN ) ∈ Rd,N , initialization α(0), ϑ(0) = (µ(0), (σ
(0)
j,k )2).

for r = 0, 1, . . . do
E-Step: for k = 1, . . . ,K, i = 1, . . . , N , j ∈ uk, and m ∈ Z, compute

γ
(r)
i,k,m,j =

α
(r)
k N (xij +m|µ(r)

j,k, (σ
(r)
j,k)2)

∏
s∈uk\{j}Nw(xis|µ

(r)
s,k, (σ

(r)
s,k)2)∑K

t=1 α
(r)
t

∏
s∈ut
Nw(xis|µ

(r)
s,t , (σ

(r)
s,t )2)

M-Step: for k = 1, . . . ,K, compute

α
(r+1)
k =

1

N

N∑
i=1

wi
∑
m∈Z

γ
(r)
i,k,m,j , for any j ∈ uk

µ
(r+1)
j,k =

1

Nα
(r+1)
k

N∑
i=1

wi
∑
m∈Z

γ
(r)
i,k,m,j(x

i
j +m),

(σ
(r+1)
j,k )2 =

1

Nα
(r+1)
k

N∑
i=1

wi
∑
m∈Z

γ
(r)
i,k,m,j(x

i
j +m− µ(r+1)

j,k )2.

end for

Algorithm 4 EM algorithm for MMs with products of von Mises distributions.

Input: x = (x1, . . . , xN ) ∈ Rd,N , initialization α(0), ϑ(0) = (µ
(0)
j,k, κ

(0)
j,k).

for r = 0, 1, . . . do
E-Step: for k = 1, . . . ,K, i = 1, . . . , N , compute

β
(r)
i,k =

α
(r)
k

∏
j∈uk

pM (xij |µ
(r)
j,k, κ

(r)
j,k)∑K

t=1 α
(r)
t

∏
j∈ut

pM (xij |µ
(r)
j,t , κ

(r)
j,t )

M-Step: for k = 1, . . . ,K and j ∈ uk, compute

α
(r+1)
k =

1

N

N∑
i=1

wiβ
(r)
i,k , µ

(r+1)
j,k = arctan∗

(
S

(r)
j,k

C
(r)
j,k

)
, κ

(r+1)
j,k = A−1(R

(r)
j,k),

where

C
(r)
j,k =

N∑
i=1

wiβ
(r)
ik cos(2πxij), S

(r)
j,k =

N∑
i=1

wiβ
(r)
ik sin(2πxij),

R
(r)
j,k = 1

Nα
(r+1)
k

√
(S

(r)
j,k )2 + (C

(r)
j,k )2.

end for

Appendix B. The weighted Kolmogorov-Smirnov test. We briefly review the weighted
Kolmogorov-Smirnov (KS) test. The following definition and facts about the KS test can be
found in [45]. Given univariate samples x1, . . . , xN ∈ [0, 1] and a probability distribution
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defined by its cumulative distribution function f : [0, 1]→ [0, 1], we test the hypothesis

H0 : (xi)i belong to the distribution f

against the alternative

H1 : (xi)i belong not to the distribution f.

We define the empirical cumulative density function fN : [0, 1]→ [0, 1] of the samples (xi)i
by

fN =
1

N

N∑
i=1

1[xi,1].

Then, the hypothesis H0 is accepted, if the test statistic

KS((xi)i) :=
√
N‖fN − f‖L∞(B.1)

is smaller or equal than some constant c, which is fixed a priori and controls the significance
level of the test. It is shown that, for X1, . . . , XN being i.i.d. random variables with cumula-
tive distribution function f , the KS test statistic KS((Xi)i) converges in distribution to the
Kolmogorov distribution as N →∞.

The test can be extended for weighted samples (w1, x
1), . . . , (wN , x

N ) ∈ R>0 × [0, 1]
by replacing the empirical cumulative distribution function by

fN =
1∑N
i=1 wi

N∑
i=1

wi1[xi,1].

Furthermore, one has to replace
√
N in (B.1). Here, as suggested in [45], we replace N by(∑N

i=1 wi)
)2∑N

i=1 w
2
i

. Thus, the weighted KS test statistic reads as

KS((wi, x
i)i) =

√√√√(∑N
i=1 wi)

)2∑N
i=1 w

2
i

‖fN − f‖L∞ .(B.2)

REMARK B.1. Note that for two cumulative distribution functions f and g, the term
d(f, g) = ‖f − g‖L∞ defines a metric on the probability measures on [0, 1]. In particular,
for fixed weights wi, the weighted KS test statistic can be interpreted as the distance of the
measure induced by f to the measure 1∑N

i=1 wi

∑N
i=1 wiδxi , where δx is the Dirac-measure

in x.
REMARK B.2. For the uniform distribution, the weighted KS test statistic can be easily

computed. Assume that the xi are sorted, i.e., x1 ≤ · · · ≤ xN , and define si =
∑i

j=1 wj∑N
j=1 wj

.

Then, the statistic in (B.2) is given by

KS((wi, x
i)i) =

√√√√(∑N
i=1 wi)

)2∑N
i=1 w

2
i

max
i=1,...,N

{max(si − xi, xi − si−1)}.
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