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A SPACE-TIME ISOGEOMETRIC METHOD FOR THE PARTIAL
DIFFERENTIAL-ALGEBRAIC SYSTEM
OF BIOT’S POROELASTICITY MODEL∗

JEREMIAS ARF† AND BERND SIMEON†

Abstract. Biot’s equations of poroelasticity contain a parabolic system for the evolution of the pressure, which
is coupled with a quasi-stationary equation for the stress tensor. Thus, it is natural to extend the existing work on
isogeometric space-time methods to this more advanced framework of a partial differential-algebraic equation (PDAE).
A space-time approach based on finite elements has already been introduced. We present a new weak formulation
in space and time that is appropriate for an isogeometric discretization and analyze its convergence properties. Our
approach is based on a single variational problem and hence differs from the iterative space-time schemes considered
so far. Further, it enables high-order convergence. Numerical experiments that have been carried out confirm the
theoretical findings.
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1. Introduction. Poroelasticity describes the coupling of mechanical deformation with
the flow of a fluid in a porous medium, which has numerous applications in engineering. In
the quasi-static case, which is most widely adopted, the model takes the form of a partial
differential-algebraic equation (PDAE) that calls for appropriate discretizations in space and
time. The conventional approach so far relies on the method of lines, starting with a semi-
discretization by finite elements in space followed by a time integration of the resulting
differential-algebraic system. We here introduce a novel scheme that treats space and time
simultaneously and that applies isogeometric analysis (IGA) as discretization. In this way, we
extend the framework of space-time methods to PDAE problems and show how the powerful
algorithmic machinery of IGA with its spline-based function spaces can be applied to such
coupled models.

For more background on poroelasticity, we refer to the example of reservoir engineering,
where oil and gas reservoirs as well as more sustainable energy resources like geothermal
reservoirs are the subject of research [2, 3, 42]. This includes the problem of induced
seismicity caused by the injection or extraction of fluids in the subsurface of the earth, leading
to anthropogenic earthquakes [25, 37]. Further references on poroelasticity in earthquake
engineering are [15, 17, 41]. The works of Karl von Terzaghi [36] and Maurice Anthony
Biot [10, 11, 12] laid the foundation for poroelasticity and were triggered by the observation of
consolidation, which means the volume decrease of a fluid-saturated soil caused by an applied
loading and fluid discharge. Today, biophysics and biomedicine also make use of poroelastic
models; see, e.g., [28] for the mechanical modelling of living tissues and [38] for a model of
the fluid-structure interaction in the human brain.

Our article concentrates on the quasi-static Biot system where the deformation is assumed
to be much slower than the fluid flow rate. The corresponding coupled model and its numerical
solution has been studied before. Without aiming at completeness, we mention the finite
element methods (FEM) for the Biot equations introduced in [30], where Lagrange, Taylor-
Hood, and MINI elements are applied. The authors in [32, 33] favor a method involving
Raviart-Thomas elements. Further finite element approaches can be found in [9, 27, 40] and
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in the dissertations [8, 31]. Note that there are different versions of the Biot model in the sense
that the underlying set of primary unknown variables might differ. For example, in [22] the
Biot two-field system, in [27] a Biot three-field, and in [40] a four-field formulation are used.
The two main reasons for the varying systems are, on the one hand, the possibility to improve
stability properties of the numerical method. On the other hand, sometimes specific variables
like the fluid flux are of exceptional interest, and a formulation in which such variables are
incorporated is preferred. But three- or four-field formulations suffer from the drawback of an
increased number of degrees of freedom.

A different class of methods are the ones based on IGA. In IGA, geometric approximations
are avoided, and at the same time the underlying spline spaces offer various properties, includ-
ing increased global smoothness. Isogeometric methods for the Biot system are considered in
[7, 24]. An iterative method for solving Biot’s model numerically based on a finite element
discretization is introduced in [4]. In the latter reference, the authors analyze a space-time
scheme, i.e., the time variable itself is discretized with continuous or discontinuous finite
elements.

In this paper we also follow the idea of space-time discretizations and use the approach
of [26] for a parabolic evolution equation as the starting point. The extension to the Biot
two-field system is not straightforward since we are facing here several challenges. Firstly, an
appropriate weak formulation for both pressure and displacement variables has to be derived.
Secondly, the treatment of the elastic momentum balance requires special care as it represents
a constraint with respect to the time axis. Thirdly and finally, the pressure variable is known
to be sensitive to oscillations that call for additional measures. A space-time method directly
leads to a linear system that includes all time steps and hence is much larger than a spatial
discretization alone. However, by a closer inspection of the linear system, one notices a
staircase structure that reflects the propagation of the solution over time and that results in a
very sparse matrix. With appropriate fast iterative and parallel solvers, the linear system can
be tackled as a whole, but in our work, the focus is on the discretization itself. We also point
out that in principle the space-time scheme can be employed to introduce full adaptivity in
space and time, which comprises in particular local time step changes in combination with
local spatial refinement.

The outline of the paper is as follows: In Section 2 the Biot system is explained briefly
while in Section 3 we introduce the space-time method and the underlying space-time dis-
cretization. Section 4 presents a convergence result, and in the last part we discuss numerical
examples.

The notation that we use is fairly standard. We write the scalar Sobolev spaces over an
open domain D as Hk(D) for some k ∈ N, with L2(D) = H0(D). The standard scalar
product of the Lebesgue space L2(D) is denoted by 〈·, ·〉L2(D). In case of vector-valued
Sobolev spaces we use a bold-type notation, for example,Hk(D) := (Hk(D), . . . ,Hk(D)),
etc. Moreover, ‖·‖L2(D) , ‖·‖L2(D) , ‖·‖Hk(D) , ‖·‖Hk(D) represent the norms induced by
the inner products in the respective spaces. Finally, ∇x denotes the classical nabla operator in
the spatial coordinates.

2. The Biot system. In this section we outline the coupled model of Biot, following the
references [3, 32, 34]. The porous medium consists of a solid skeleton and permeable voids
(pores) that are filled with some fluid. The medium is identified with a bounded Lipschitz
domain Ω ⊂ Rd, d ∈ {1, 2, 3}. The model variables are the time-dependent mechanical
displacement field u(t) : Ω → Rd as well as the fluid pore pressure p(t) : Ω → R and the
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fluid flux q(t) : Ω→ Rd, with t as time. Flux and pressure are connected via Darcy’s law

q = −K
ηf

(
∇xp− ρfg

)
,

which gives a linear relation between the pressure gradient and the flux. In the last equation,
K denotes the permeability tensor represented by a spd (symmetric positive-definite) matrix,
ηf denotes the fluid viscosity, ρf the fluid density, and g some body force. For simplicity, we
ignore the body force in the sequel.

The first governing equation of the Biot system can be derived by means of the balance of
momentum and linear elasticity, namely

−∇x · σ̃(u, p) = f ,(2.1)

where f is a given force distribution. In this equation, σ̃ = σ − b p I denotes the total stress
tensor, and b is the so-called Biot-Willis coefficient. Assuming a linear-elastic behavior, the
solid phase satisfies Hooke’s law σij = Cijklεkl (Einstein’s notation) withC = (Cijkl) being
the elasticity tensor, ε(u) = (∇xu + ∇xut)/2 the strain tensor, and σ the stress tensor.
Furthermore, we assume a quasi-static behavior, where second-order time derivatives are
neglected. For the special case of an isotropic and homogeneous solid, we can simplify the
elasticity tensor to Cijkl = λ (δijδkl) + µ (δikδjl + δilδjk), where λ and µ are the Lamé
constants and δ the Kronecker delta.

The second governing equation is obtained from a conservation law for the fluid phase,
which reads

∂t
(
c0p+ b∇x · u

)
+∇x · q = g.(2.2)

Here, we can interpret c0p + b∇x · u as the fluid content and g as a fluid source term. The
constant c0 is the constrained specific storage coefficient, and in applications it is often close
to zero. Both, (2.1) and (2.2) together with Darcy’s law lead to the Biot two-field system:

−∇x · σ̃(u, p) = f ,(2.3)

∂t
(
c0p+ b∇x · u

)
−∇x ·

K

ηf
∇xp = g.(2.4)

As initial conditions we require p(0) = 0 and u(0) = 0, i.e., pressure and displacement
are zero at the initial time t = 0. For the boundary conditions, we introduce two partitions
Γu ∪Γt = ∂Ω and Γp ∪Γf = ∂Ω of the boundary ∂Ω of the spatial domain with Γu ∩Γt = ∅
and Γp ∩ Γf = ∅. Then we choose

σ̃ · nx = tn on Σt := Γt × (0, T ), (tension BC)(2.5)
K∇xp · nx = vf on Σf := Γf × (0, T ), (flux BC)(2.6)

u = 0 on Σu := Γu × (0, T ),(2.7)
p = 0 on Σp := Γp × (0, T ).(2.8)

Here we set K := η−1
f K. Moreover, nx denotes the outer unit normal vector. A study of the

existence of (weak) solutions to the Biot system can be found in [34]; cf. the following remark.

REMARK 2.1. Showalter’s study of the existence and uniqueness of solutions in [34]
utilizes the theory of implicit evolution equations and an underlying weak formulation based
on equations in the dual spaces V ′ and V ′, where V := {v ∈ H1(Ω) |v = 0 on Γp},
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TABLE 2.1
Material parameters.

Parameter phy. unit Explanation

K [m2] permeability tensor

0 < ηf [N s/m2] viscosity of the fluid

0 < ρf [kg/m3] density of the fluid

0 < b [1] Biot-Willis coefficient

0 ≤ c0 [m2/N ] constrained specific storage

TABLE 2.2
Model quantities.

Variable phy. unit Explanation

σ̃ [N/m2] total stress tensor

C [N/m2] elasticity tensor

ε [1] lin. strain tensor

q [m/s] volumetric flux

u [m] displacement

p [N/m2] fluid pressure

and V := {v ∈ H1(Ω)| v = 0 on Γu}. For a detailed explanation we refer to [34, Sec-
tion 3]. Showalter considers Neumann-type boundary conditions that differ from those
assumed here, and furthermore, he allows for more general initial conditions accompanied
by some compatibility condition. Then, in view of [34, Theorem 3.1], one can guarantee
a weak solution under relatively mild assumptions. Namely, if all the source and boundary
functions are at least of class Cα([0, T ];L2), i.e., Hölder continuous in time, then one ob-
tains a unique weak solution p : (0, T ] → V and u : (0, T ] → V provided that

∫
Γp

1ds >

0. Additionally, Showalter shows the regularity u ∈ C0([0, T ];V ) ∩ C1((0, T ];V ) and
‖p(t)‖H2(Ω) , ‖u(t)‖H2(Ω) ≤ C/t, 0 < t ≤ T , for some constant C. Furthermore, for c0 > 0

we have p ∈ C0([0, T ];L2(Ω)) ∩ C1((0, T ];L2(Ω)), and at least in the case of a smoothly
bounded domain Ω together with smooth boundary conditions and source functions, one
obtains the smoothness of the pressure p in space and time, even for c0 = 0. Below, for
the derivation of the space-time formulation, we consider solutions in space-time Sobolev
spaces, and in order to stay on the safe side, we suppose that p ∈ H2(Ω × (0, T ))) and
u ∈H3(Ω× (0, T )). Thus, our assumptions go beyond the theoretical foundations laid by
Showalter. Nevertheless, the numerical tests at the end of this article and the fact that the
analysis presented here is still valid for less regular functions imply that we get a meaning-
ful method despite the mentioned difference in the boundary conditions and the mentioned
regularity issue.

To show the existence of discrete solutions within the scope of our proposed method, we
have to postulate the next assumption.

ASSUMPTION 2.2. Let the boundary parts Γu and Γp have positive measure, meaning
that 0 <

∫
Γu

1 ds,
∫

Γp
1 ds. Besides, let the tensor K(x) be uniformly elliptic and bounded in

Ω, and without loss of generality, we assume c0 ≤ 1.
The most important model and material parameters are summarized in the Tables 2.1

and 2.2 below.

3. The space-time discretization and the discrete variational formulation. Regard-
ing the discretization of the Biot system, we first look at the basics of isogeometric analysis
and proceed with the derivation of a corresponding discrete space-time variational method.

3.1. Isogeometric analysis. Introduced by Hughes et al. [23], the concept of IGA was
developed in the last 15 years into a powerful tool in numerical analysis. The basic idea is
the simultaneous use of spline functions for the geometric modelling and the definition of
the discrete spaces. IGA is able to represent various complex and curved-boundary domains
exactly, and furthermore one has the possibility to easily increase or lower the smoothness of
functions in the discrete spaces. Following [5, 6, 14] for a brief exposition, we call for some
r ∈ N an increasing sequence of real numbers Ξ := {ξ1 ≤ ξ2 ≤ · · · ≤ ξn+r+1} a knot vector,
where we assume that 0 = ξ1 = ξ2 = · · · = ξr+1, ξn+1 = ξn+2 = · · · = ξn+r+1 = 1,
and we call such knot vectors r-open. Further, the multiplicity of the j-th knot is denoted by
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m(ξj). Then the univariate B-spline functions B̂j,r(·) of degree r corresponding to a given
knot vector Ξ is defined recursively by the Cox-DeBoor formula:

B̂j,0(ζ) :=

{
1, if ζ ∈ [ξj , ξj+1),

0, else,

and if r ∈ N≥1, then we let

B̂j,r(ζ) :=
ζ − ξj

ξj+r − ξj
B̂j,r−1(ζ) +

ξj+r+1 − ζ
ξj+r+1 − ξj+1

B̂j+1,r−1(ζ),

where one sets 0/0 = 0 to obtain well-definedness.
The multivariate extension of the last spline definition is achieved by a tensor prod-

uct construction. In other words, for a given tensor knot vector Ξ := Ξ1 × · · · × Ξd,
where the Ξl = {ξl1, . . . , ξlnl+rl+1}, l = 1, . . . , d, are rl-open, and a given degree vector
r := (r1, . . . , rd), we set for the multivariate case

B̂i,r(ζ) :=

d∏
l=1

B̂il,rl(ζl), ζ := (ζ1, . . . , ζd), ∀ i ∈ I,

with d being the underlying dimension of the parametric domain Ω̂ = (0, 1)d and I the
multi-index set I := {(i1, . . . , id) | 1 ≤ il ≤ nl, l = 1, . . . , d}. To enlarge the possibilities
of the representation of geometric objects, one can generalize the definition of B-splines to
rational B-splines. Namely, choosing strictly positive weights 0 < wi, i ∈ I, and exploiting
the notation from above, we introduce the weight function

W (ζ) :=
∑
i∈I

wi B̂i,r(ζ).

We define the non-uniform rational B-spline (NURBS) basis functions N̂i,r(ζ) with respect to
the weight function W as follows:

N̂i,r(ζ) := wi B̂i,r(ζ)
(
W (ζ)

)−1
, ∀ i ∈ I.

B-splines (and the same holds for NURBS) fulfil several properties, and for our purposes the
most important ones are:

• If for all internal knots the multiplicity satisfies 1 ≤ m(ξlj) ≤ m ≤ r ≤ rl, for all l,
then the B-spline basis functions B̂i,r are globally Cr−m-continuous.

• The B-splines {B̂i,r | i ∈ I} are linearly independent.
Back to the Biot problem, the aim is the definition of a space-time discretized variational

formulation. Consequently, we consider as in [26] the space-time cylinder Q = Ω× (0, T ).
This so-called physical domain is assumed to be parametrized by means of NURBS or B-
splines, respectively. More precisely, we have a parametrization of the form

Φ̃ : (0, 1)d+1 =: Q̂ → Q , ζ̃ 7→
∑
ĩ∈Ĩ

C̃ĩ N̂ĩ,r̃(ζ̃) ,

where the C̃ĩ = (Ci, tid+1
) ∈ Rd+1 are the control points and

Ĩ = {(i1, . . . , id, id+1) ∈ I× It}, ζ̃ = (ζ, ζd+1), and r̃ = (r, rd+1),
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for suitable index sets I and It. Due to the product structure of the space-time cylinder, we can
assume that the parametrization can be written as

Φ̃ : Q̂ → Ω× (0, T ) , ζ̃ 7→
(
Φ(ζ) , Φ(ζd+1)

)
,(3.1)

with

Φ(ζ) =
∑
i∈I

Ci N̂i,r(ζ) and Φ(ζd+1) =
∑
i∈It

ti B̂i,rd+1
(ζd+1) = T ζd+1.

Given such a parametrization, the knots stored in the knot vector Ξ̃ := Ξ × Ξd+1

corresponding to the underlying NURBS and splines determine a mesh in the parametric
domain Q̂, namely

M̂ :={Kj := (ψ1
j1 , ψ

1
j1+1)×· · ·×(ψd+1

jd+1
, ψd+1

jd+1+1) | j = (j1, . . . , jd+1), with 1 ≤ ji < Ni},

and with

Ψ̃ = {ψ1
1 , . . . , ψ

1
N1
} × · · · × {ψd+1

1 , . . . , ψd+1
Nd+1
}

being the knot vector Ξ̃ without knot repetitions.
The image of this mesh under the mapping Φ̃, i.e.,M := {Φ̃(K̂) | K̂ ∈ M̂}, gives us a

mesh structure in the physical domain. By inserting knots without changing the parametriza-
tion, we can refine the mesh, which yields the concept of h-refinement [14, 23]. Actually,
in the IGA framework, two additional techniques for enlarging the basis function spaces are
common. On the one hand there is the p-refinement, meaning the elevation of the underlying
polynomial degrees, and on the other hand we have k-refinement, which can be interpreted as a
combination of h- and p-refinement. The latter refinement procedure is composed of a degree
elevation step followed by the insertion of single knots. This leads to increased smoothness at
the new knot, whereas for classical p-refinement, the interelement regularity is kept. Again we
refer to [23] for more information on refinement strategies. Here we focus on h-refinement
in the sense that the polynomial degrees and global regularity of the basis functions are
considered to be given, and the approximation estimates below will be stated with respect to
the mesh size h, which is defined by h := max{hK | K ∈ M}, where hK = diam(K) is the
diameter of the mesh element K. In particular, we assume for the h-refinement or the mesh
refinement, respectively, a preservation of the inner knot multiplicities. For the rest of this
article, we assume the mesh to be regular as defined next:

ASSUMPTION 3.1 (Regular mesh). The parametrization mapping is smooth on the closure
of each mesh element K̂, K̂ ∈ M̂ , and has a smooth inverse, meaning that Φ̃| ∈ C∞(K̂),

Φ̃
−1

| ∈ C∞(Φ̃(K̂)). Further, there is a constant 0 < cM < ∞ independent of the mesh
refinement such that for the element sizes it holds that hK ≤ h ≤ cMhK for all mesh elements
K ∈M. Additionally, for the coarsest mesh, the boundary segments Σu and Σp are the unions
of full boundary mesh faces.

Clearly the global mesh is composed of a spatial mesh and a mesh in the time interval
(0, T ) as consequence of the product structure. Therefore, one can introduce a spatial mesh
size hS and a mesh size in the time domain hT in an analogous manner. Although the mesh
sizes hS , hT are more convenient for our considerations, we also keep the global mesh size h
to shorten the notation.

Lastly, we define the discrete spaces, following the isogeometric paradigm, which are
used below for the discretized variational formulation via

Vh,r̃ := span{vh = N̂ĩ,r̃ ◦ Φ̃
−1 | ĩ ∈ Ĩ},
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Φ̃
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ζ3 x2

x1

t

Φ

Q̂ Q

FIG. 3.1. We exploit the tensor product structure ofQ for parametrizing the space-time cylinder.

spanned by the push-forwards of the NURBS basis functions. Although we stated the test
spaces using NURBS, many geometries can be represented accurately already by means of
B-splines, and in this case we obtain a constant weight function W . This can reduce the
computational effort in applications significantly, and indeed in the IGA context, B-splines
are often the preferred basis functions. Nevertheless, in this article we allow for NURBS
push-forwards as well.

For simplicity we assume the same polynomial degree in each spatial coordinate direction
and write rT for the polynomial degree with respect to the time parameter. Based on this we
can define the test spaces for the pressure p and the displacement u. Let rS ∈ N≥1. We set

Vh,rS ,rT := Vh,r̃ with r̃ = (rS , . . . , rS , rT ).

Let ru and rp denote the underlying spatial polynomial degrees for the displacement and the
pressure. Then the discrete displacement and pressure spaces are

Vh,ru,rT :=
(
Vh,ru,rT

)d ∩ {v ∈ (C0(Q)
)d | v = 0 on Σu ∪ Σ0},

Wh,rp,rT := Vh,rp,rT ∩ {q ∈ C0(Q) | q = 0 on Σp ∪ Σ0},

with Σ0 := Ω× {0}. We remark that it is possible to write these function spaces as product
spaces, namely

Vh,ru,rT = V hS ,ru ⊗ VhT ,rT and Wh,rp,rT = WhS ,rp ⊗ VhT ,rT ,(3.2)

where V hS ,ru , WhS ,rp are NURBS-based approximation spaces corresponding to the spatial
discretization and VhT ,rT is the finite-dimensional space for the time discretization.

3.2. The discrete space-time variational formulation. She starting point for the dis-
cretized variational formulation is the classical Biot two-field model. For the derivation we
consider the solution to satisfy p ∈ H2(Q) and u ∈H3(Q) while the right-hand sides fulfil
f ∈H1(Q), g ∈ L2(Q). Since the Biot equations define a PDAE, we combine the original
Biot system with the differentiated first equation

−hT ∂t∇x · σ̃(u, p) = hT ∂tf .(3.3)

This last differentiation step is inspired by the differentiation procedure used in DAE (differ-
ential algebraic equation) theory in order to obtain underlying ODEs (ordinary differential
equations); see, e.g., [35]. To be more precise, we choose a differentiated test function

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

SPACE-TIME IGA FOR THE BIOT MODEL 317

∂tvh, vh ∈ Vh,ru,rT , and multiply the sum of equations (2.3) and (3.3) by this test function.
Integration over the whole space-time cylinder yields

〈−∇x · (σ − b pI)− hT ∂t[∇x · (σ − b pI)] , ∂tvh〉L2(Q) = 〈f + hT∂tf , ∂tvh〉L2(Q),

and integration by parts along with the Einstein summation convention leads to∫
Q
Cijkl εkl(u+ hT∂tu) εij(∂tvh) dxdt− b

∫
Q

(p+ hT∂tp)∇x · ∂tvh dxdt

+

∫
∂Q

(
(−σ + b pI)︸ ︷︷ ︸

=−σ̃

+hT∂t(−σ + b pI)
)
· nx ∂tvh ds

= 〈f + hT∂tf , ∂tvh〉L2(Q).

(3.4)

On the other hand, the multiplication of the evolution equation (2.4) for the pressure by a
time-upwind test function qh + hT ∂tqh gives, again using integration by parts,∫

Q
c0 ∂tp (qh + hT∂tqh) dxdt+ b

∫
Q
∇x · ∂tu (qh + hT∂tqh) dxdt

−
∫
∂Q

(
K∇xp (qh + ∂tqh)

)
· nx ds+

∫
Q

K∇xp ∇x(qh + hT ∂tqh) dxdt

= 〈g, qh + hT∂tqh〉L2(Q).

(3.5)

REMARK 3.2. For the derivation above, the product structure of the parametrization
and the smoothness of the isogeometric basis functions in each mesh element K lead to the
well-definedness of the mixed derivatives ∂xi

∂tvh, ∂xi
∂tqh. The operators ∂xi

, i = 1, . . . , d ,
denote the derivatives with respect to the spatial coordinates. Both equations (3.4) and (3.5)
are in some sense the blueprints for the next definition.

DEFINITION 3.3 (Discrete variational formulation).
Find uh ∈ Vh,ru,rT and ph ∈ Wh,rp,rT such that

ẽ(uh + hT ∂tuh , ∂tvh)− b〈ph + hT ∂tph , ∇x · ∂tvh〉L2(Q)

= l1(∂tvh),
(3.6)

c0〈∂tph , qh + hT ∂tqh〉L2(Q) + b〈∇x · ∂tuh , qh + hT ∂tqh〉L2(Q)

+ ã(ph , qh + hT ∂tqh) = l2(qh + hT ∂tqh),
(3.7)

for all vh ∈ Vh,ru,rT and qh ∈ Wh,rp,rT ,
with the linear forms

l1(v) := 〈f + hT∂tf , v〉L2(Q) + 〈tn + hT∂ttn , v〉L2(Σt),

l2(q) := 〈g , q〉L2(Q) + 〈vf , q〉L2(Σf ),

and the bilinear forms

ẽ(u,v) :=

∫
Q
Cijklεkl(u)εij(v) dxdt,

ã(p, q) := 〈K∇xp , ∇xq〉L2(Q).

For later considerations, we use instead of (3.6)–(3.7) the following equivalent formula-
tion:
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Find uh, ph such that

bST ([uh,ph], [vh, qh]) = l([vh, qh]), ∀ vh ∈ Vh,ru,rT , qh ∈ Wh,rp,rT ,(3.8)

with

bST ([u, p], [v, q]) := ẽ(u+ hT ∂tu , ∂tv)− b〈p+ hT ∂tp , ∇x · ∂tv〉L2(Q)

+ c0〈∂tp , q + hT ∂tq〉L2(Q)

+ b〈∇x · ∂tu , q + hT ∂tq〉L2(Q)

+ ã(p , q + hT ∂tq),

(3.9)

l([v, q]) := l1(∂tv) + l2(q + hT ∂tq).

In fact, the variational formulation (3.8) is obtained by adding up the contributions of the two
equations (3.6) and (3.7). The discrete formulation is consistent in the following way:

LEMMA 3.4. Assume that there exists a solution to (2.3)–(2.4) satisfying u ∈ H3(Q)
and p ∈ H2(Q), and let vf ∈ L2(Σf ) and tn ∈ L2(Σt) be the restriction of a function in
te ∈H1(∂Q). Moreover, let f ∈H1(Q), g ∈ L2(Q). Then

bST ([u, p], [vh, qh]) = l([vh, qh]) for all vh ∈ Vh,ru,rT , qh ∈ Wh,rp,rT .

Proof. This is clear due to the equations (3.4) and (3.5), the assumed boundary conditions,
and the fact that for the Lipschitz domain Q, the trace operator restricted to H2(Q) defines a
linear and continuous operator γ0 : H2(Q)→ H1(∂Q); see, e.g., [19].

3.3. Uniqueness and existence of the IGA solution. Next, we investigate whether there
exists a unique solution to the discrete problem (3.8). For this purpose we prove the coercivity
of the bilinear form bST (·, ·) with respect to the space Vh,ru,rT ×Wh,rp,rT endowed with the
auxiliary norm

‖[v, q]‖2h := hT ‖∂tv‖2H1(Q) + ‖v‖2H1(ΣT ) + hT c0 ‖∂tq‖2L2(Q)

+ c0 ‖q‖2L2(ΣT ) + ‖∇xq‖2L2(Q) , where
(3.10)

‖v‖2H1(Q) :=

∫
Q

∑
i,j

(
∂xivj

)2
dxdt+ ‖v‖2L2(Q) , v = (v1, . . . , vd),

and where ΣT = Ω× {T}. Exploiting continuity, the piecewise smoothness, and the bound-
ary conditions of the test functions, one can verify easily that ‖[·, ·]‖h is indeed a norm in
Vh,ru,rT ×Wh,rp,rT . Before we prove coercivity, we insert here two auxiliary results.

LEMMA 3.5. Let the elasticity tensor C satisfy

µ(C)
∑
i,j

x2
ij ≤

∑
i,j,k,l

Cijkl xijxkl

for all xmn ∈ R, m, n ∈ {1, . . . , d}, and some constant 0 < µ(C). Then the bilinear form

e(·, ·) : V × V → R , (u,v) 7→
∫

Ω

Cijklεkl(u)εij(v) dx

is symmetric and coercive with respect to theH1-norm in V := {v ∈H1(Ω) | v = 0 on Γu}.
Thus, there exists a constant 0 < ce such that

e(v,v) ≥ ce ‖v‖2H1(Ω) , ∀ v ∈ V .(3.11)

The constant depends only on Ω, Γu, and C.
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Proof. The inequality (3.11) follows from [1, Corollary 5.9] for both cases d = 2, 3. The
one-dimensional case is a consequence of the Poincaré inequality; see [20, Example 3]. The
symmetry of e(·, ·) is obvious due to the symmetry properties of the elasticity tensor.

LEMMA 3.6. There exist constants 0 < ca, Ca <∞ that depend only on K, Γp, and Ω
such that

a(q, q) ≥ ca ‖q‖2H1(Ω) and |a(p, q)| ≤ Ca ‖p‖H1(Ω) ‖q‖H1(Ω) ,

for all p, q ∈W := {w ∈ H1(Ω) | w = 0 on Γp} and with

a : W ×W → R , (p, q) 7→ 〈K∇xp , ∇xq〉L2(Ω).

Proof. An application of the Poincaré inequality and the assumption that the K(x) are
uniformly elliptic and bounded symmetric positive definite matrices yields the assertion.

REMARK 3.7. In the context of the space-time discretization, we interpret the derivatives
∂xi , ∂t etc., as weak derivatives with respect to the domain Q. Nevertheless, due to the
piecewise smoothness of the test functions and their continuity, we obtain that the weak
derivatives are in fact piecewisely defined classical derivatives, and in particular one can
assume for s ∈ [0, T ] that vh(·, s) ∈ V and qh(·, s) ∈ W . The product structure of
the parametrization and hence of the test spaces further gives us that ∂tvh(·, s) ∈ V and
∂tqh(·, s) ∈W ; see (3.2).

Now we arrive at the mentioned coercivity result.
LEMMA 3.8. The bilinear form bST defined by (3.9) is coercive in the sense that there

exists a constant 0 < µc independent of the mesh sizes such that

µc ‖[uh, ph]‖2h ≤ bST ([uh, ph], [uh, ph]), ∀ [uh, ph] ∈ Vh,ru,rT ×Wh,rp,rT .

The constant µc can be chosen independently of c0.
Proof. For reasons of clarity we estimate the different terms in the definition of bST ,

i.e., (3.9), separately, starting with the non-mixed terms in which either only u and v or only
p, q occur.

1. Consider the term ẽ(·, ·), and note that uh(·, t = 0) = 0. Observe the symmetry of
the bilinear form ẽ(·, ·), which is obvious by the symmetry of e(·, ·) ; see Lemma 3.5.
By means of these properties and Green’s formula we can write

ẽ(uh, ∂tuh) =

∫
Q
Cijklεkl(uh)εij(∂tuh)dxdt =

=
1

2

∫
Q
∂t
(
Cijklεkl(uh)εij(uh)

)
dtdx

=
1

2

∫
∂Q

Cijklεkl(uh)εij(uh) · nt ds

=
1

2

∫
L2(ΣT )

Cijklεkl(uh)εij(uh) dx

=
1

2
e(uh(·, T ),uh(·, T )) ≥ ce

2
‖uh(·, T )‖2H1(Ω) .

Here we used the piecewise smoothness of the test functions, i.e., uh(·, t) ∈ V , and
the coercivity of the elasticity form e(·, ·) (Lemma 3.5 ) with (nx, nt) denoting the
outer unit normal vector of the space-time domain.
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2. In view of Remark 3.7 and the coercivity of e(·, ·), it holds that

hT ẽ(∂tuh, ∂tuh) = hT

∫
Q
Cijklεkl(∂tuh)εij(∂tuh)dxdt

= hT

∫ T

0

e(∂tuh(·, t), ∂tuh(·, t)) dt

≥ hT
∫ T

0

ce ‖∂tuh(·, t)‖2H1(Ω) dt

= hT ce

∫ T

0

∫
Ω

∑
i,j

(∂xi
∂tuh,j)

2 +
∑
j

(∂tuh,j)
2 dxdt

= hT ce ‖∂tuh‖2H1(Q) .

One notices Fubini’s theorem and the notation uh,i for the i-th component of uh.
3. By the chain rule and the zero initial conditions, we get

〈c0 ∂tph, ph〉L2(Q) =

∫
Q

c0
2
∂t
(
p2
h

)
dtdx =

c0
2

∫
∂Q

p2
h · nt ds =

c0
2
‖ph‖2L2(ΣT ) .

4. Obviously,

hT 〈c0 ∂tph, ∂tph〉L2(Q) = hT c0 ‖∂tph‖2L2(Q) .

5. Moreover, with Remark 3.7 as well as with Lemma 3.6 and Fubini’s theorem, one
can estimate

ã(ph, ph) =

∫
Ω

∫ T

0

K∇xph ∇xph dtdx =

∫ T

0

a(ph(·, t), ph(·, t)) dt

≥ ca ‖∇xph‖2L2(Q) .

6. Finally, by the symmetry of a(·, ·), the last non-mixed term yields

hT ã(ph, ∂tph) = hT

∫ T

0

a(ph(·, t), ∂tph(·, t)) dt

=
hT
2

∫ T

0

∂ta(ph(·, t), ph(·, t)) dt =
hT
2
a(ph(·, T ), ph(·, T )) ≥ 0.

For the first, third, and last point above, we used the assumption that ph = 0,uh = 0 on Σ0.
Next we sum up all the remaining terms in the definition of bST ([uh, ph], [uh, ph]), i.e., in
the sum of the right-hand side of (3.9). We get

b

[
− 〈ph,∇x · ∂tuh〉L2(Q) − hT 〈∂tph,∇x · ∂tuh〉L2(Q)

+ 〈∇x · ∂tuh, ph〉L2(Q) + hT 〈∇x · ∂tuh, ∂tph〉L2(Q)

]
= 0.

Thus, the mixed terms vanish. So it is obvious by the above estimates that

bST ([uh, ph], [uh, ph]) ≥ µc
(
‖uh‖2H1(ΣT ) + hT ‖∂tuh‖2H1(Q) + c0 ‖ph‖2L2(ΣT )

+ hT c0 ‖∂tph‖2L2(Q) + ‖∇xph‖2L2(Q)

)
= µc ‖[uh, ph]‖2h ,

for µc := min{ ce2 , ca,
1
2}.
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If we now choose bases {ψi | i = 1, . . . , Np
h} and {φj | j = 1, . . . , Nu

h } of the test
spacesWh,rp,rT and Vh,ru,rT , respectively, then the coefficient vectors Ph := (p̂1, . . . , p̂Np

h
),

Uh := (û1, . . . , ûNu
h

), with

u ≈ uh :=

Nu
h∑

j=1

ûj φj , p ≈ ph :=

Np
h∑

i=1

p̂i ψi,

which define the discretized solution uh, ph, are obtained by solving one linear system of the
type

Sh
[
Uh

Ph

]
=

[
R1

R2

]
.

The shown coercivity of the bilinear form bST implies the positive definiteness of the system
matrix Sh . Thus, the existence of a unique solution is clear.

THEOREM 3.9 (Uniqueness and existence of the IGA solution). There exists a unique
solution to the variational problem (3.8).

The latter theorem guarantees the well-definedness of our numerical scheme, but for a
useful method, a convergence statement is an important aspect too. Consequently, we face this
issue in the next part.

4. Discretization error analysis. The main objective of this section is the derivation of
an a priori discretization error estimate for the numerical approximation of the displacement
u and the pressure p in the setting of Lemma 3.4. For reasons of simplification, we set in
the whole section without loss of generalty b = 1 and remark that 0.5 ≤ b ≤ 1 in most
applications. We start with a result from the IGA theory that will be used below.

LEMMA 4.1 (Inverse inequality). Let the space-time mesh be regular with polynomial
degrees rT , rS greater than zero. Then, for i = 1, . . . , d, it holds that

hT ‖∂t∂xi
vh‖L2(Q) ≤ Cinv,1 ‖∂xi

vh‖L2(Q) ,(4.1)

hT ‖∂tvh‖L2(Q) ≤ Cinv,2 ‖vh‖L2(Q) , vh ∈ Vh,rS ,rT ∩ C0(Q),(4.2)

where Cinv,j are constants independent of the mesh sizes and vh.
Proof. We remark that ∂xi

vh is piecewise smooth and that for x ∈ Q the function
∂xi

vh(x, ·) is continuous in time. By the product structure of the space Vh,r̃ and Q, one sees
that ∂xivh(x, ·) is an element of a univariate spline space VhT ,rT with mesh size hT . Due to
the regularity of the mesh and as a consequence of [5, Theorem 4.2], we find a constant C
independent of x such that the estimate

hT ‖∂t∂xivh(x, ·)‖L2((0,T )) ≤ C ‖∂xivh(x, ·)‖L2((0,T )) .

is fulfilled. Integration over Ω yields the assertion for inequality (4.1). The second esti-
mate (4.2) can be proven analogously.

Next we define the auxiliary spaces

V0 := {v = (v1, . . . , vd) ∈H1(Q) | ∇x∂tvi ∈ L2(Q), vi = 0 on Σu ∪ Σ0, ∀ i},
W0 := {q ∈ H1(Q) | ∇x∂tq ∈ L2(Q), q = 0 on Σp ∪ Σ0}

and a corresponding norm

‖[u, p]‖2h,? := ‖∂tu‖2H1(Q) +
1

hT

(
‖u‖2H1(Q) + ‖p‖2L2(Q)

)
+ ‖∂tp‖2L2(Q) + ‖∇xp‖2L2(Q) ,

(4.3)
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and we note the well-definedness of the terms on the right-hand side of (3.9) provided that u,
v ∈ V0, and p, q ∈ W0. Using the latter norm we can state now a boundedness result for bST .

LEMMA 4.2. The bilinear form bST is continuous with respect to the norms ‖·‖h and
‖·‖h,? in the sense that

bST ([u, p], [uh, ph]) ≤ µb ‖[u, p]‖h,? ‖[uh, ph]‖h

for all [u, p] ∈ V0×W0 and [uh, ph] ∈ Vh,ru,rT ×Wh,rp,rT and some constant µb indepen-
dent of c0 and the mesh size.

Proof. We first look at the different terms appearing in the definition of bST and estimate
them separately. Doing so, we also introduce some auxiliary constants C1, . . . , C8.

1. By the definition of the elasticity bilinear form ẽ(·, ·) (see Definition 3.3) and the
Cauchy-Schwarz inequality, we have

S1(u, p,uh, ph) := ẽ(u, ∂tuh) =

∫
Q
Cijklεkl(u)εij(∂tuh) dxdt

=

∫
Q

1

4
Cijkl

(
∂xk

ul ∂xi
∂tuh,j + ∂xl

uk ∂xi
∂tuh,j

+ ∂xk
ul ∂xj

∂tuh,i + ∂xl
uk ∂xj

∂tuh,i

)
dxdt

≤ Cẽ
1√
hT
‖u‖H1(Q)

√
hT ‖∂tuh‖H1(Q)

≤ C1 ‖[u, p]‖h,? ‖[uh, ph]‖h .

Above we can set Cẽ :=
∑
i,j,k,l |Cijkl|. Here, ui denotes the i-th component of u.

2. The Cauchy-Schwarz inequality yields

S2(u, p,uh, ph) := −〈p,∇x · ∂tuh〉L2(Q) ≤ ‖p‖L2(Q) ‖∇x · ∂tuh‖L2(Q)

≤ 1√
hT
‖p‖L2(Q)

√
3hT ‖∂tuh‖H1(Q)

≤ C2 ‖[u, p]‖h,? ‖[uh, ph]‖h .

3. In an analogous manner to the first point it holds that

S3(u, p,uh, ph) := hT ẽ(∂tu, ∂tuh) ≤ Cẽ hT ‖∂tu‖H1(Q) ‖∂tuh‖H1(Q)

≤ Cẽ
√
hT ‖∂tu‖H1(Q)

√
hT ‖∂tuh‖H1(Q)

≤ C3 ‖[u, p]‖h,? ‖[uh, ph]‖h .

4. A further term can be bounded similarly as in the second point:

S4(u, p,uh, ph) := −hT 〈∂tp,∇x · ∂tuh〉L2(Q)

≤ hT ‖∂tp‖L2(Q) ‖∇x · ∂tuh‖L2(Q)

≤
√
hT ‖∂tp‖L2(Q)

√
3hT ‖∂tuh‖H1(Q)

≤ C4 ‖[u, p]‖h,? ‖[uh, ph]‖h .
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5. Then we have by the assumption c0 ≤ 1 and by means of the Poincaré inequality
(see, e.g., [20, Example 3]) for some constant CP that

S5(u, p,uh, ph) := 〈c0 ∂tp+∇x · ∂tu, ph〉L2(Q)

≤ (c0 ‖∂tp‖L2(Q) +
√

3 ‖∂tu‖H1(Q)) ‖ph‖L2(Q)

≤ CP (c0 ‖∂tp‖L2(Q) +
√

3 ‖∂tu‖H1(Q)) ‖∇xph‖L2(Q)

≤ C5 ‖[u, p]‖h,? ‖[uh, ph]‖h .

6. Since K is a symmetric positive-definite matrix, one further obtains by Definition 3.3
that

S6(u, p,uh, ph) := ã(p, ph) ≤ µK ‖∇xp‖L2(Q) ‖∇xph‖L2(Q)

≤ C6 ‖[u, p]‖h,? ‖[uh, ph]‖h ,

where the positive number µK < ∞ is the supremum over all eigenvalues of the
matrices K(x).

7. We proceed with the seventh term. Again the Cauchy-Schwarz inequality along
with (4.2) yields

S7(u, p,uh, ph) := hT 〈c0 ∂tp+∇x · ∂tu, ∂tph〉L2(Q)

≤ c0
√
hT ‖∂tp‖L2(Q)

√
hT ‖∂tph‖L2(Q)

+ ‖∇x · ∂tu‖L2(Q) hT ‖∂tph‖L2(Q)

≤
√
c0 hT ‖∂tp‖L2(Q)

√
c0 hT ‖∂tph‖L2(Q)

+
√

3 ‖∂tu‖H1(Q) Cinv,2 ‖ph‖L2(Q)

≤ C7 ‖[u, p]‖h,? ‖[uh, ph]‖h .

Note that in order to obtain the last inequality sign, we again applied the Poincaré
inequality ‖ph‖L2(Q) ≤ CP ‖∇xph‖L2(Q).

8. Finally, for the last term and with µK defined in point 6, we have

S8(u, p,uh, ph) := hT ã(p, ∂tph)

≤ hT µK ‖∇xp‖L2(Q) ‖∇x∂tph‖L2(Q)

≤ µK Cinv,1 ‖∇xp‖L2(Q) ‖∇xph‖L2(Q)

≤ C8 ‖[u, p]‖h,? ‖[uh, ph]‖h .

Here the forelast inequality sign follows by using the adapted inverse estimate (4.2)
in Lemma 4.1 and the regular mesh assumption.

Summarizing, we obtain the original form bST as the sum of the different terms Si , i.e.,

8∑
i=1

Si(u, p,uh, ph) = bST ([u, p], [uh, ph]).

By adding up the above inequalities, the statement follows with µb :=
∑
i Ci.

Next we introduce NURBS projections, i.e., projections onto NURBS spaces, which can
be used to measure the approximation properties of the test function spaces.

LEMMA 4.3. Let v ∈ Hs(Q), s ≥ max{s1, s2}, with 1 ≤ s1 ≤ rT +1, 1 ≤ s2 ≤ rS+1,
and Vh,rS ,rT the space-time NURBS space with an underlying regular mesh.
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Then there exists a projection Πh : H1(Q)→ Vh,rS ,rT and constants CΠ,j not depending
on hS , hT , and v such that

‖Πhv − v‖L2(Q) ≤ CΠ,1(hs1T + hs2S ) ‖v‖Hs(Q) ,∥∥∂xi

(
Πhv − v

)∥∥
L2(Q)

≤ CΠ,2(hs1−1
T + hs2−1

S ) ‖v‖Hs(Q) ,∥∥∂t(Πhv − v
)∥∥
L2(Q)

≤ CΠ,3(hs1−1
T + hs2−1

S ) ‖v‖Hs(Q) .

If additionally s ≥ max{s1 + 1, s2 + 1}, it moreover holds that∥∥∂xi
∂t
(
Πhv − v

)∥∥
L2(Q)

≤ CΠ,4(hs1−1
T + hs2−1

S ) ‖v‖Hs(Q) ,∥∥∂xi

(
Πhv − v

)∥∥
L2(Q)

≤ CΠ,5(hs1T + hs2−1
S ) ‖v‖Hs(Q) .

The approximation results are also valid in case of homogeneous Dirichlet boundary conditions
on the whole or on a part of the boundary.

Proof. In the following, C denotes a constant that depends only on the parametrization
but may change at different occurrences. The main idea of the proof is the application of
IGA approximation results presented in [14, Part 3]. For a better understanding we define the
auxiliary derivatives

Ds
Φ̃
u :=

(
∂s1ζ1 . . . ∂

sd
ζd
∂
sd+1

ζd+1
(u ◦ Φ̃)

)
◦ Φ̃
−1
, s = (s1, . . . , sd+1) ∈ Nd+1,(4.4)

for sufficiently regular mappings u. Here ∂ζi stands for the derivative with respect to the
i-th coordinate in the parametric domain Q̂. The latter definition is analogous to [14, (56) in
Part 3]. Let v ∈ H2(K) and K be an element of the physical meshM. The next step relates
the weak derivatives to the definition (4.4). By the chain rule and the regularity of Φ̃ we have

∂tv = ∂t
[(
v ◦ Φ̃

)
◦ Φ̃
−1]

= ∇̂
(
v ◦ Φ̃

)
◦ Φ̃
−1 · ∂tΦ̃

−1
.

We denote by ∇̂ the gradient with respect to the coordinates ζ1, . . . , ζd+1 of the parametric
domain Q̂. Further rearrangements yield with the structure of Φ̃ (see (3.1)),

∂tv =
1

T
∂ζd+1

(
v ◦ Φ̃

)
◦ Φ̃
−1

=
1

T
D

(0,...,0,1)

Φ̃
v.(4.5)

Moreover, using again the chain rule it holds that

∂xi
∂tv =

1

T
∂xi

[
∂ζd+1

(
v ◦ Φ̃

)
◦ Φ̃
−1]

=
1

T
∇̂
[
∂ζd+1

(
v ◦ Φ̃

)]
◦ Φ̃
−1 · ∂xi

Φ̃
−1

=
1

T

d∑
j=1

[
∂ζj∂ζd+1

(
v ◦ Φ̃

)
◦ Φ̃
−1] (

∂xiΦ̃
−1)

j
.

Let ej ∈ Nd+1 be the j-th canonical basis vector. Then we can choose a constantC = C(Φ̃
−1

)
such that

|∂xi
∂tv| ≤ C

d∑
j=1

∣∣∂ζj∂ζd+1

(
v ◦ Φ̃

)
◦ Φ̃
−1∣∣ = C

d∑
j=1

∣∣Dej+(0,...,0,1)

Φ̃
v
∣∣.(4.6)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

SPACE-TIME IGA FOR THE BIOT MODEL 325

Consequently, (4.5) and (4.6) imply for some (new) constant C only depending on the
parametrization that

‖∂tv‖L2(K) ≤ C
∥∥∥D(0,...,0,1)

Φ̃
v
∥∥∥
L2(K)

,(4.7)

‖∂xi
∂tv‖L2(K) ≤ C

d∑
j=1

∥∥∥Dej+(0,...,0,1)

Φ̃
v
∥∥∥
L2(K)

.(4.8)

Similarly one gets

‖∂xi
v‖L2(K) ≤ C

d∑
j=1

∥∥∥Dej
Φ̃
v
∥∥∥
L2(K)

,(4.9)

‖v‖L2(K) =
∥∥∥D(0,...,0)

Φ̃
v
∥∥∥
L2(K)

.(4.10)

Again by the chain rule and an induction argument one gets a reverse estimate, namely∥∥Ds
Φ̃
u
∥∥
L2(K)

≤ C ‖v‖Hs(K) , for v ∈ Hs(K) with s = s1 + · · ·+ sd+1.(4.11)

Observing the regularity of the mesh and that hT and hS denote the mesh sizes in the
spatial domain and in the time interval, the assertion follows from the inequalities (4.7)–(4.10)
and (4.11) together with [14, Theorem 7 in Part 3]. Therein the proof is only shown in detail for
the two-dimensional case, i.e., in our setting for the case Q ⊂ R2. But the authors remark the
possibility to generalize the proofs and the results straightforwardly also to higher-dimensional
spaces. For the case of homogeneous boundary conditions one gets similar estimates due
to [14, Remark 14 in Part 3]. This finishes the proof.

REMARK 4.4. In view of the last lemma we can incorporate homogeneous Dirichlet
boundary conditions on the whole or on part of the boundary without changing the approxi-
mation behavior of the NURBS spaces or NURBS projections, respectively. Thus, we find
projections

ΠWh : W0 →Wh,rp,rT ,(4.12)

ΠV
h : V0 → Vh,ru,rT ,(4.13)

with ΠV
h acting componentwise, i.e.,

(
ΠV
h u
)
i

:= ΠVhui, where ΠWh , ΠVh satisfy the same
estimates as Πh in the last lemma, potentially with new constants.

Now we can state an approximation result for the NURBS spaces in the norms ‖·‖h
and ‖·‖h,?.

LEMMA 4.5. Let s1, s2, s3 ∈ N≥1, s1 ≤ rT + 1, s2 ≤ rp + 1, s3 ≤ ru + 1, where rp,
ru denote the polynomial degrees in the spatial coordinates and rT the polynomial degree in
the temporal parameter. Moreover, let l1 ≥ max{s1, s2} and l2 ≥ max{s1 + 1, s3 + 1}.

If p ∈ W0 ∩H l1(Q) and u ∈ V0 ∩H l2(Q), then it holds that

‖Π[u, p]− [u, p]‖h,? ≤ CΠ,1

(
hs1−1
T + hs2−1

S + h−0.5
T (hs2S + hs3−1

S )
)
Cl1,l2(u, p),(4.14)

‖Π[u, p]− [u, p]‖h ≤ CΠ,2 (hs1−1
T + hs2−1

S + hs3−1
S ) Cl1,l2(u, p),(4.15)

where

Cl1,l2(u, p) :=
√
‖u‖2Hl2 (Q) + ‖p‖2Hl1 (Q).
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Here, the constants CΠ,1, CΠ,2 are independent of the mesh sizes hT , hS and the mappings p
and u and also independent of c0, and we used the notation

Π[u, p]− [u, p] := [ΠV
h u− u,ΠWh p− p].

Proof. We prove the statement for the norm ‖·‖h at first and consider each term in its
definition (3.10) separately. Doing so we use several times the estimates of Lemma 4.3 and
Remark 4.4. Besides, we indicate by C a constant which might change at different occurrences
but is independent of the mesh sizes hT , hS and the functions u, p.

1. The first summand without the prefactor hT gives us with a suitable constant C and
Lemma 4.3,∥∥∥∂t(ΠV

h u− u
)∥∥∥2

H1(Q)
≤
∑
i,j

∥∥∥∂xi
∂t(Π

V
huj − uj)

∥∥∥2

L2(Q)

+
∑
i

∥∥∥∂t(ΠVhui − ui)∥∥∥2

L2(Q)

≤ C(hs1−1
T + hs3−1

S )2 ‖u‖2Hl2 (Q) .

2. For the second term we use integration by parts, the chain rule, and Lemma 4.3:∥∥∥ΠV
h u− u

∥∥∥2

H1(ΣT )
=
∑
i

∥∥∥ΠVhui − ui∥∥∥2

H1(ΣT )

=
∑
i,j

∫
Q
∂t
[ (
∂xj (ΠVhui − ui)

)2 ]
dxdt

+
∑
i

∫
Q
∂t
[ (

ΠVhui − ui)2
]
dxdt

≤ C
∥∥∥∂t(ΠV

h u− u)
∥∥∥
H1(Q)

∥∥∥ΠV
h u− u

∥∥∥
H1(Q)

≤ C(hs1−1
T + hs3−1

S )2 ‖u‖2Hl2 (Q) .

In the second line, we assumed ∂xj
u = 0 on Σ0 in the sense of the trace theorem.

This is indeed correct due to theH2-regularity of u and the condition u = 0 on Σ0.
3. In an analogous fashion, one has∥∥ΠWh p− p

∥∥2

L2(ΣT )
≤ C (hs1−1

T + hs2−1
S )2 ‖p‖2Hl1 (Q) ,

where we again used Lemma 4.3.
4. Furthermore, we obtain with the above lemma that∥∥∂t(ΠWh p− p)∥∥2

L2(Q)
+
∥∥∇x(ΠWh p− p)∥∥2

L2(Q)

≤ C(hs1−1
T + hs2−1

S )2 ‖p‖2Hl1 (Q) .

The last four estimates yield

‖Π[u, p]− [u, p]‖2h ≤ C
[(
hT (hs1−1

T + hs3−1
S )2 + (hs1−1

T + hs3−1
S )2

)
‖u‖2Hl2 (Q)

+
(

(hs1−1
T + hs2−1

S )2 + (hs1−1
T + hs2−1

S )2
)
‖p‖2Hl1 (Q)

]
≤ C (hs1−1

T + hs2−1
S + hs3−1

S )2(‖u‖2Hl2 (Q) + ‖p‖2Hl1 (Q)).(4.16)
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This implies (4.15). One notes the assumption c0 ≤ 1.
For the ‖·‖h,?-norm it is sufficient to consider the parenthesized term in (4.3), which gives

with a prefactor, using again Lemma 4.3 and Remark 4.4,

1

hT

∥∥∥ΠV
h u− u

∥∥∥2

H1(Q)
+

1

hT

∥∥ΠWh p− p
∥∥2

L2(Q)

≤ C 1

hT
(hs1T + hs3−1

S )2 ‖u‖2Hl2 (Q) + C
1

hT
(hs1T + hs2S )2 ‖p‖2Hl1 (Q)

≤ C 1

hT
(hs1T + hs2S + hs3−1

S )2(‖u‖2Hl2 (Q) + ‖p‖2Hl1 (Q)).

The last three lines and the already shown inequalities give us the desired bound (4.14) for the
norm ‖·‖h,?.

Finally, we are ready to prove a convergence estimate for the space-time method.
THEOREM 4.6 (Convergence for smooth solutions). Let the assumptions of Lemma 4.5

be fulfilled, where l2 ≥ 3, l1 ≥ 2. Moreover let u ∈ V0 ∩H l2(Q), p ∈ W0 ∩H l1(Q) be
the exact solution of the Biot system (2.3)–(2.4) with initial-boundary conditions (2.5)–(2.8).
Then we have for the error between u, p and the solution uh, ph of the finite-dimensional
variational problem (3.8) that

‖[u, p]− [uh, ph]‖h ≤ C
(
hs1−1
T + hs2−1

S + h−0.5
T (hs2S + hs3−1

S )
)
Cl1,l2(u, p),(4.17)

where C is some constant that does not depend on c0 and the mesh sizes hT , hS .
Proof. We make use of the coercivity and continuity of bST shown in Lemma 3.8 and

Lemma 4.2 and obtain with the NURBS projections

Π[u, p] := [ΠV
h u,Π

W
h p], ΠWh : W0 →Wh,rp,rT and ΠV

h : V0 → Vh,ru,rT

that

µc ‖Π[u, p]− [uh, ph]‖2h ≤ bST
(
Π[u, p]− [uh, ph] , Π[u, p]− [uh, ph]

)
= bST

(
Π[u, p]− [u, p] , Π[u, p]− [uh, ph]

)
≤ µb ‖Π[u, p]− [u, p]‖h,? ‖Π[u, p]− [uh, ph]‖h .

Note that we used the consistency result of Lemma 3.4. The above inequality chain implies

‖Π[u, p]− [uh, ph]‖h ≤
µb
µc
‖Π[u, p]− [u, p]‖h,? .

We remark for the above inequality that Π[u, p]− [uh, ph] ∈ Vh,ru,rT ×Wh,rp,rT . By the
previous inequality and Lemma 4.5 it follows that

‖[u, p]− [uh, ph]‖h ≤ ‖Π[u, p]− [uh, ph]‖h + ‖Π[u, p]− [u, p]‖h
≤ µb
µc
‖Π[u, p]− [u, p]‖h,? + ‖Π[u, p]− [u, p]‖h

≤ µb
µc
CΠ,1

(
hs1−1
T + hs2−1

S + h−0.5
T (hs2S + hs3−1

S )
)
Cl1,l2(u, p)

+ CΠ,2 (hs1−1
T + hs2−1

S + hs3−1
S ) Cl1,l2(u, p)

≤ C
(
hs1−1
T + hs2−1

S + h−0.5
T (hs2S + hs3−1

S )
)
Cl1,l2(u, p),

for some constant C, e.g., C =
(
µb

µc
CΠ,1 + CΠ,2

)
if hT ≤ 1.
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How does this convergence result compare with the vertical method of lines? In the latter
case, the spatial discretization leads to an ODE or DAE in time which is then solved by specific
integration schemes. In Theorem 4.6, the spatial and temporal influences show up in terms
of haS , haT , respectively. If we assume hS being of order O(hT ) and require a regular exact
solution, then the error in the norm ‖·‖h is of order

O(hrTT + h
rp
S + h−0.5

T (h
rp+1
S + hruS )) = O(hrTT + h

rp
S + hru−0.5

S ).

Error estimates for the method of lines typically have the form error ≤ const. ·
(
∆tm + hkS

)
,

where m denotes the convergence order of the time integrator, ∆t the step size, and k the
approximation order of the spatial discretization.

From a theoretical point of view it is possible to obtain high orders of convergence in
both ways, but for the space-time method, increasing the convergence order can be achieved
by raising the polynomial degrees, which becomes very efficient in the context of IGA.
Variable-order multistep formulae also allow one to do this, in particular the BDF method,
while for implicit and linear-implicit one-step methods such as the Runge-Kutta scheme,
the order is fixed. Besides, for multistep methods the choice of good starting values is
of relevance, and order reduction problems might occur for Runge-Kutta-type algorithms;
compare [18, Remark 6 and 7].

The case of the continuous P1-B-spline discretization in time within the space-time
method deserves a further remark. For illustration, we apply the method based on the time-
upwind test functions introduced in [26], which is similar to our discretization of the Biot
system, to the semi-discretized homogeneous heat equationMh∂tw = Ahw. Here we have
an spd mass matrixMh and a semi-definite right-hand side matrixAh. More precisely, we
make the ansatz w =

∑
kwkφk(t), where φk are P1-B-splines, and multiply the system

by test functions
(
φk(t) + ∆t∂tφk(t)

)
ei, where ei denotes the i-th canonical basis vector,

and integrate with respect to time. Instead of a simultaneous space-time discretization, we
split the procedure thus into two discretization steps and obtain, after some straightforward
computations, the recursion formula

(4.18) Mh

(
−3

4
wk−1 +wk −

1

4
wk+1

)
= ∆tAh

(
1

3
wk−1 +

1

3
wk −

1

6
wk+1

)
for the time steps k = 1, 2, . . . We observe the structure of an implicit 2-step method, and
the consistency order is readily verified to be m = 3. The difference to a classical multistep
approach that would proceed step by step lies in the first step k = 1, where both w1 and w2

are unknowns as there is no starting procedure for w1. If we arrange all time steps in a large
linear system, then it has a tridiagonal staircase block structure that reflects the propagation
of information. Thus, the P1-B-spline temporal discretization is inappropriate for a simple
sequential processing in time. The same reasoning applies to the full space-time method for
the Biot system. It is thus natural to treat the fully discretized system en bloque by suitable
sparse direct or iterative methods that in the end take implicitly advantage of the staircase
structure.

Finally, the factor h−0.5
T in the estimate (4.17) suggests an order reduction effect. The

appearance of this factor is due to the use of the norm ‖·‖h,? in the boundedness estimate
for bST (see Lemma 4.2), where in the defining equation (4.3) a factor 1/hT appears. Our
numerical experiments below, however, did not reveal this order reduction, which indicates
that our estimate might be too pessimistic. For clarification, we come back to the issue of the
norm ‖·‖h,? in the following numerics part.

5. Numerical examples. In this section we focus on numerical examples for validat-
ing the convergence behaviour, but also instability issues are considered. The numerical
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experiments are performed by means of the powerful GeoPDEs package [16, 39], which is a
MATLAB [29] implementation of IGA. We write IG-ST as an abbreviation for the space-time
method introduced above. Further, the following test examples have also been computed by
means of a method-of-lines ansatz, namely a spatial isogeometric discretization combined
with a BDF time-stepping. The obtained results are not documented here but were used to
verify the plausibility of the IG-ST solutions. The overall linear system of the space-time
method is solved by MATLAB’s sparse direct solver. This means that we concentrate here on
verifying convergence and treat the linear algebra as a black box. Of course, in this regard,
there is room for substantial adaptation and tuning.

5.1. Numerical convergence analysis. By manufacturing the right-hand sides, we con-
struct the smooth strong solution

u1(x, t) = sin(π x) sin(π y) sin(π t), u2(x, t) = sin(π x) sin(π y) (exp(t)− 1),

p(x, t) = sin(π x) sin(π y) sin(0.5π t), (x, y) := x,

of the Biot system, where the spatial domain is the unit square and the time interval is
[0, T ] = [0, 1]. Hence, the space-time cylinder Q is the three-dimensional unit cube. Uniform
meshesMh are obtained by dividing the cube into equally smaller cubes with edge lengths
h = 2−k, k = 1, . . . , 5. In other words we ignore here the difference between spatial and
temporal mesh sizes and have h = hT = hS . We assume homogeneous initial-boundary
conditions on the surface of the space-time cylinder. For the coefficients and parameters,
respectively, we set c0 = 1, λ = 1, µ = 1,K = I, b = 1. For the underlying discrete NURBS
spaces we use simple inner knots, and in order to save computational costs, we apply basis
functions that are also rT − 1-times continuously differentiable in time.

First we choose a mixed ansatz in space for the polynomial degrees, namely rp = rT
and ru = rp + 1. Due to the regularity of the strong solution and the choice of the boundary
conditions, we expect the error in the norm ‖·‖h to be of the order O(hrp + hru−0.5);
see Theorem 4.6. We compute the errors in the ‖·‖h-norm for the different meshes Mh,
h = 1/2, . . . , 1/32, and the polynomial degrees rp = 1, 2, 3. The result is presented in
Figure 5.1(a).

Additionally we display in Figure 5.1(b) the computed ‖·‖h-norm errors but with equal
degrees rp = rT = ru, for rp = 1, 2, 3. One observes a similar convergence behaviour as
for the mixed-degrees case although our convergence estimate indicates an order reduction.
Thus, one might conjecture that the convergence estimates are not yet optimal. As mentioned
before, the factor h−0.5

T in the error estimate of Theorem 4.6 arises from the definition of
the norm ‖·‖h,?, which is needed to state a boundedness inequality for bST . To highlight the
influence of hT , we repeat the above convergence example with a fixed spatial mesh size;
more precisely, we set hS = 0.25, but we decrease hT = 2−k with k = 1, . . . , 8. The errors
in both norms ‖·‖h and ‖·‖h,? are displayed in Figure 5.2(a)–(b). Indeed we can observe an
error increase of approximately of order O(h−0.5

T ) with respect to the ?-norm, whereas the
errors in the ‖·‖h-norm stagnate. To demonstrate the convergence behaviour for the extreme
case c0 = 0, we display in Figure 5.1(c)–(d) the ‖·‖h-norm errors for the above test problem
with c0 set to zero.

5.2. Terzaghi’s problem and the problem of Barry and Mercer. Next, we give two
examples from the literature for which an analytical solution is known. Terzaghi’s problem is
a one-dimensional model with an analytical pressure solution that describes the coupling of
the fluid pressure and the deformation of a porous medium pipe completely filled with some
fluid if one end is fixed and at the other end a uniform normal surface load F = (F, 0) is
applied; see Figure 5.3. We require the displacement and the fluid flow to be restricted parallel
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(a) rp = rT , ru = rp + 1, and c0 = 1. (b) rp = rT = ru and c0 = 1.

(c) rp = rT , ru = rp + 1, and c0 = 0. (d) rp = rT = ru and c0 = 0.

FIG. 5.1. Errors in the norm ‖·‖h for mixed and non-mixed polynomial degrees as well as for the two cases
c0 = 1 and c0 = 0.

(a) The ‖·‖h-errors for fixed hS , rp = rT ,
ru = rp + 1, and c0 = 1.

(b) The ‖·‖h,?-errors for fixed hS , rp = rT ,
ru = rp + 1, and c0 = 1.

FIG. 5.2. Errors for mixed polynomial degrees and fixed spatial mesh size hS = 1/4.
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to the pipe such that the problem can be reduced to a one-dimensional setting. The governing
equations are given by the 1D Biot system, where the physical domain Ω reduces to some
interval Ω = (0, L) and the permeability tensor is given by some positive constant k. The

x

F

x = 0 x = L

fixed boundary part

constant load

FIG. 5.3. Terzaghi’s problem: Saturated porous medium deformed by some loading.

boundary and initial conditions are set to

p = 0, tn = F, 0 < F <∞ at x = 0,

∂xp = 0, u = 0 at x = L, 0 < L <∞,
p(t = 0) = u(t = 0) = 0.

The exact pressure solution can be found in [31]. We set the parameters to c0 = 0.2,
λ = 1, µ = 1, k = 0.2, b = 1, ηf = 1, and F = L = 1, and the space-time cylinder is
Q = (0, 1) × (0, 2). We use a uniform mesh with mesh sizes hT = 0.01, hS = 0.05 and
polynomial degree 1 in each coordinate. In Figure 5.4(a), the numerical solution is displayed.
The approximate values fit the exact solution quite well. One observes that the deviation is at a
maximum for t = 0.05, which can be explained by the following reasoning: The exact solution
converges for t→ 0 pointwisely to some discontinuous function x 7→ p0 χ(0,1](x), where χ
is the indicator function. However, the IG-ST method is used with zero initial conditions and
yields only globally continuous solutions. Thus, the non-smooth limit behavior can not be
reproduced by the IG-ST method, and the deviation between exact and numerical solution
grows for t→ 0 as exemplified in Figure 5.4(b) for t = 0.01. This drawback can be alleviated

(a) Results for hT = 0.01, hS = 0.05 . (b) Early time solution at t = 0.01 .

FIG. 5.4. Comparison between the exact solution of the Terzaghi test problem and the approximate solutions.
The deviation grows for t→ 0.

by using finer meshes. At first glance, degree elevation for the time parameter seems to be
another way for improving the solution at early times. But numerical tests not shown here
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p = u1 = ∂yu2 = 0

p = u1 = ∂yu2 = 0

p = u2 = ∂xu1 = 0 p = u2 = ∂xu1 = 0

x0

Ω

ShS

γ

0

1

y

1 x
0

FIG. 5.5. Boundary conditions for the problem of Barry and Mercer. Above, the dotted lines and the highlighted
square indicate the spatial mesh for the case hS = 1/6 and the square ShS

for the point source approximation,
respectively.

indicate that p-refinement in time without mesh refinement essential does not lead to better
results since we still need continuity in time for our numerical method, which does not fit to
the mentioned limit behavior of the exact solution as t→ 0 .

We proceed with a two-dimensional test problem, the problem of Barry and Mercer, which
is taken from [18]. This problem describes the pressure and displacement in a rectangular
porous medium under the influence of an oscillating fluid point source. Though it has an
analytical solution, it is only available in the form of an infinite double series. Moreover,
the source term is actually given by a distribution and not by a function. This implies the
necessity to approximate the source term by a proper function. Clearly, this test problem
does not really fit into the mathematical framework needed for the establishment of the error
estimates and the existence statements in the previous sections of the article. Nevertheless,
since the number of non-manufactured test cases for the Biot system with analytical solution
is small, the Barry and Mercer problem is often addressed in the literature as a test to study
different numerical methods. Here we focus on the plausibility of the approximate solution
rather than on a convergence study.

More precisely, we have the setting Ω = (0, 1)2, and the only source distribution is
g(x, t) = 2βδ(x − x0) sin(βt), where δ(x − x0) denotes the Dirac delta distribution at
x0 := (x0, y0) and β = (λ + 2µ)k. Further, we use homogeneous Dirichlet boundary
conditions for the pressure variable and a mixture of homogeneous Neumann and Dirichlet
boundary conditions for the displacement variables; see Figure 5.5. The analytical solution of
the problem is stated in [31, Section 4.2.1]. The corresponding parameters taken from [18] are
c0 = 0, λ = 104/0.88, µ = 105/2.2, K = k · I, k = 0.01, b = 1, and x0 = (0.25, 0.25).
Note that the approximation of the Dirac delta is realized in the following way: We partition
Ω into equal squares by means of the spatial IGA mesh, and for the edge length hS of the
squares, we denote with ShS

the mesh element for which it holds that x0 ∈ ShS
. In Figure 5.5

we illustrate such a partition indicated by dotted lines for the case hS = 1/6 . Using this, we
approximate δ(x − x0) by δh(x − x0) = h−2

S if x ∈ ShS
and δh(x − x0) = 0 otherwise.

As spatial mesh sizes we consider hS = 1/34 and hS = 1/66, i.e., a coarser and a finer
mesh. The underlying polynomial degrees are one. Then we choose as space-time cylinder
Q = (0, 1)2 × (0, 3π

2 β ) with mesh size in time being hT = 3π
36 β . One notes that the spatial

mesh size is much larger than the temporal mesh size. Hence, the distinction between spatial
and temporal step size for the space-time variational formulation seems to be reasonable.
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(a) Pressure at t = 0.5π/β. (b) Pressure at t = 1.5π/β.

(c) x-displacement at t = 0.5π/β. (d) x-displacement at t = 1.5π/β.

FIG. 5.6. Comparison between the exact solution and the numerical solutions along the diagonal line γ from
(0, 0) to (1, 1).

We compare the numerical solution with a reference solution1, which is actually very close
to the analytical one and hence suitable for comparisons, and we refer to it as exact solution.
For reasons of comparability we plot the exact and numerical solutions of the pressure p
and displacement u1 along the diagonal line (0, 0)–(1, 1) (see γ in Figure 5.5) of the domain
at the times t1 = 0.5π/β and t2 = 1.5π/β in Figure 5.6. The approximate and reference
solutions of the displacement in x-direction match quite well. The pressure solution deviates
near the point source x0 due to the coarseness of the mesh and the related approximation of
the Dirac delta. For a finer spatial mesh, the results are clearly better near x0. We can further
exploit the possibility of higher polynomial degrees to achieve better results. For example in
Figure 5.7(a)–(b), we illustrate again the numerical pressure and the x-displacement solution
along the diagonal γ at t2 but with hS = 1/14 and linear degrees, as well as for rp = ru = 3,
rT = 1. One can see a clear improvement for the higher degrees. If we increase the degree in
the time parameter, i.e., we set rT = 3 and keep ru = rp = 1, then we observe improvements
especially for small times t as Figure 5.7(c)–(d) demonstrate.

5.3. A 3D geometry with curved boundary. Next, we demonstrate that our space-time
method also works for 3D domains with curved boundary, which underlines the advantages

1The reference solution is computed by means of the analytical solution formula in [31, Section 4.2.1], where we
take all summands into account for which both running indices are equal or smaller than 1500.
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(a) Pressure at t = 1.5π/β. (b) x-displacement at t = 1.5π/β.

(c) Pressure at t = 0.015π/β. (d) x-displacement at t = 0.015π/β.

FIG. 5.7. We observe improvements for higher polynomial degrees. In the upper row we illustrate the change if
the spatial degree is increased from 1 to 3. In the bottom row we increase the time parameter degree and display the
solution for a small time t. Above it is set to hS = 1/14.

of an IGA approach. One notes the fact that for the 3D case, the space-time cylinder is a
four-dimensional object. The crescent-shaped geometry with spatial mesh in Figure 5.8(a) is
inspired by the porous structure of a human meniscus. From a biomedical viewpoint, the poor
vascularization of the meniscus is one reason for premature osteoarthritis in knee joints. On the
other hand, the meniscus tissue is highly hydrated (70–75% water), and the frequent pressure
changes during walking and running are essential for the flow of nutrients and for fostering
the regeneration capabilities. We prescribe the following parameter values to approximate the
behaviour of such a fibro-cartilaginous material: c0 = 2.7 · 10−10, λ = 472689, µ = 183824,
K = 1.5 ·10−12 ·I, b = 1. The method parameters are rp = ru = 2, rT = 1 and hT = 1/18,
T = 0.5. As boundary conditions we set the pressure to be zero on the whole boundary except
for the flat bottom part of the meniscus, which can move in horizontal directions but is fixed
with respect to vertical movements. Both ends of the C-shaped domain are fixed too, and a
loading

σ · nx = f(t, z) (
x√

x2 + y2
,

y√
x2 + y2

,−1)t,

with f(t, z) = 30000 sin(πt) sin
(
(1/0.0072)π z) is applied onto the upper surface.
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(a) Spatial mesh of the 3D meniscus model. (b) Numerical pressure inside the deformed domain
at time t = 0.5.

FIG. 5.8. Mesh and numerical pressure for the case of a meniscus-type domain with curved boundaries.

Figure 5.8 displays the isogeometric mesh and a snapshot of the pressure distribution
inside the fibro-cartilaginous material. Here we want to remark that for our used 3D mesh,
the problem of a singular Jacobian on two curves on the boundary occurs. In fact, these
problematic points are located near the outer radius of the meniscus shape, but due to our
relative coarse mesh and the fact that for the numerical computations we only need the Jacobian
entries at interior quadrature points, the linear system is still solvable. Presumably, additional
stabilization or a different mesh structure is needed for smaller mesh sizes.

5.4. Pressure oscillations and elastic locking. A major issue in solving Biot’s equa-
tions is the occurrence of spurious pressure oscillations, mainly for low permeability, i.e., if
‖K‖ << 1. To simplify the discussion, we set K = kI with a constant k. Our numerical
experiments show that especially small constrained specific storage coefficients along with
low permeability may lead to a nonphysical behaviour. To illustrate this, in Figure 5.9 we plot
the approximate solutions to Terzaghi’s problem for small parameters c0 = 10−7, k = 10−7.
As a result, one observes oscillations despite the relatively fine spatial mesh (hS = 0.025)
for equal polynomial degrees rp = ru = 1. These pressure oscillations are well-known
and can be handled by an additional stabilization or discontinuous finite element methods.
There is also a connection to the locking effect in elasticity [13, Chpt. 6]. In the context of
poroelasticity, the pressure variable is more critical, but volumetric locking, i.e., the blocking
of the displacements in regions of low-compressible media, can be detected for the Biot system
too. Although we can not present a profound theoretical explanation for the instability issue,
we want to remark the dependence of the constant C on the permeability in the estimate of
Theorem 4.6. More precisely, in view of the coercivity estimate in Lemma 3.8, we can see
that for ‖K‖ → 0, the value µc tends to zero, an thus, the mentioned constant in Theorem 4.6
blows up to infinity. We see in the latter blow-up a hint for problems in the nearly impermeable
case.

The pressure variable can be stabilized by means of a mixed ansatz [7, 21]. For standard
IGA combined with an implicit Euler method in time, one can show (using [5, Theorem 5.2.])
that Taylor-Hood mixed spaces satisfy a Babuška-Brezzi inf-sup condition. We follow this
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FIG. 5.9. The Terzaghi problem with small per-
meability and storativity leads to massive oscillations
in the equal-degree case.

λ = 1, k = 1

λ = 1,

k = 10−8

λ = 1, k = 1

pl
ot

lin
e

1

0

y

10 x

γ

= u · nx

= 0

σ · nx = −nx

∇xp · nx

p = 0

σ · nx = 0,

p = 0

FIG. 5.10. Boundary conditions and parameters
for the low-permeable layer. For the second test case,
i.e., the low-compressible layer, the layer parameters
are changed to λ = 108 and k = 1.

idea of mixed spaces and increase the polynomial degree in the displacement variable by
one. In Figure 5.9 we display the result of the above Terzaghi test case for ru = rp + 1 in
comparison with equal polynomial degrees. The Taylor-Hood ansatz results in an overshooting
numerical solution, but it approximates the exact solution quite precisely away from the
problematic boundary point x = 0. Other numerical tests further show that using equal
but higher polynomial degrees for both pressure and displacement is not really leading to a
substantial improvement. Hence, a significant reduction of the oscillations without the need of
very small mesh sizes can only be achieved by a mixed ansatz.

We further illustrate the effect of a mixed ansatz also for the displacement variable by
solving two test problems from [21]. In both cases the spatial domain is Ω = (0, 1)2. At
first, we place a low-permeable layer inside a material with moderate parameters, and for the
second case, we place there a low-compressible layer. More precisely, in the first case we
have a region in which k << 1 is very small, and in the other case we analogously have a
large Lamé coefficient λ >> µ = 1. We set c0 = 0, µ = 1, b = 1; see also Figure 5.10. For
the case with a low-compressible layer, we change the parameter in the layer from λ = 1,
k = 10−8 to λ = 108, k = 1.

The first test case verifies the reduction of pressure oscillations, and the second one
analyzes the elastic locking effect. On the top edge of the domain we apply a constant
non-uniform normal load, namely

σ · nx = 0 for x < 0.5 and σ · nx = −nx for x ≥ 0.5.

The computed solutions at t = 1 for zero initial conditions and the two scenarios 1 = rp = ru
and 2 = rp + 1 = ru are summarized in Figure 5.11. Here we used a relatively fine uniform
mesh with spatial mesh size hS = 1/40 as well as hT = 0.2, rT = 1, and we plott the solution
along the line (0.75, 0)–(0.75, 1). As already observed for Terzaghi’s problem, we get a better
result for the pressure solution and the low-permeable layer if we use mixed polynomial
degrees. The displacement is similar for the mentioned layer. A look at the low-compressible
layer case verifies the smoothness of the pressure solution and the absence of oscillations. But
the displacement variables differ for both cases. For degrees rp = ru = 1, the displacement in
the layer region is nearly constant. Consequently, the displacement is locked, and we have
the presence of elastic locking. However, for the case of choosing ru = rp + 1 = 2, the
vertical displacement is more plausible. Thus, the locking phenomenon is also damped for
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(a) Pressure for low-permeable layer. (b) Pressure for low-compressible layer.

(c) y-displacement for low-permeable layer. (d) y-displacement for low-compressible layer.

FIG. 5.11. The results for the IG-ST method and the test cases of low-permeable and a low-compressible layer
along the plot line (0.75, 0)–(0.75, 1) at the final time T = 1. Numerical solutions for mixed degrees are plotted in
red and for equal degrees in blue, respectively. Mixed degrees reduce the pressure oscillations and the locking effect.

mixed degrees. Another possibility of adapting the spaces for more stability is to play with
the smoothness of the test functions spaces, especially for the displacement variable. Indeed,
in experiments we observe a similar behavior of the numerical solutions for the latter two
stability test examples in case of an increased C1-continuity for the displacement test functions
if ru = 2. However, requiring even more regularity for u causes a more unstable pressure
solutions; compare Figure 5.12. Besides this, the tests show that an increased regularity in
the pressure variable for rp > 1 can lead to stable and adequate approximations too, even if
ru = rp as shown in Figure 5.12. This indicates that a more detailed study of the stability
issue is reasonable to obtain a more mathematical criterion of which degrees and regularities
give stable numerical results.

The conclusion of this section is as follows: For the space-time method, pressure oscil-
lations but also locking may be present, mainly in the case of small permeability and large
Lamé parameters. Mixed polynomial degrees stabilize the numerical solution, but nevertheless,
discontinuous data lead, independent of the polynomial degrees, to local overshoots.

6. Concluding remarks. We have introduced and analyzed a novel isogeometric method
for the Biot two-field system. It is based on a space-time discretization and allows us to use the
spline machinery to achieve arbitrary high convergence order, given sufficient regularity of the
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(a) Terzaghi test problem (c0 = k = 10−7). (b) Pressure for low-permeable layer.

FIG. 5.12. The plots demonstrate the influence of the smoothness of the spatial test function. In the left plot we
see the results for the Terzaghi stability test problem from above for the three cases ru = 2, rp = 1, with C1-regular
displacement test functions (blue curve), ru = 3, rp = 1 with C2-regular displacement (black dotted curve), and
ru = 2, rp = 2 with C1-regular pressure and continuous displacements. On the right, we present the low-permeable
layer example for the same degree and regularity parameters. We can observe a more unstable pressure solution if we
require smooth displacements (C2-regularity), whereas an increase of the pressure regularity leads to a stabilized
pressure solution, although the same polynomial degrees ru = rp = 2 are chosen.

exact solution. By several numerical examples we have validated the theory and demonstrated
the applicability, even for a 3D geometry. Moreover, the well-known problem of pressure
oscillations has been addressed.

In our view, there are two major issues which should be treated in future work. On the one
hand, although mixed methods lead to substantial improvements, a closer look at the pressure
instability from a theoretical point of view might be advisable in the context of the space-time
approach. On the other hand it is desirable to consider the linear algebra for the resulting
large-scale linear system in detail. Eventually, this may make the space-time approach also
quite competitive with respect to computing times, especially, on parallel computers.
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