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Abstract. The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing
the asymptotic spectral distribution of square matrices An arising from the discretization of differential problems.
Indeed, as the mesh fineness parameter n increases to∞, the sequence {An}n often turns out to be a GLT sequence.
In this paper, motivated by recent applications, we further enhance the GLT apparatus by developing a full theory of
rectangular GLT sequences as an extension of the theory of classical square GLT sequences. We also provide two
examples of application as an illustration of the potential of the theory presented herein.
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1. Introduction. Suppose that a linear differential problem is discretized using a mesh
characterized by a fineness parameter n. In this case, the computation of the numerical
solution reduces to solving a linear discrete problem—e.g., a linear system or an eigenvalue
problem—identified by a square matrix An. The size of An grows as n increases, i.e., as the
mesh is progressively refined, and ultimately we are left with a sequence of matrices An such
that size(An)→∞ as n→∞. What is often observed in practice is the following:
• As long as the considered mesh enjoys a certain structure, the sequence {An}n is structured

as well, and, in particular, it falls into the class of generalized locally Toeplitz (GLT)
sequences [4, 6, 7, 21, 22]. Depending on the considered problem, {An}n could be
a traditional scalar GLT sequence [21], a multilevel GLT sequence [22], a block GLT
sequence [6], a multilevel block GLT sequence [7], or a reduced (multilevel block) GLT
sequence [4].

• The eigenvalues of An enjoy an asymptotic distribution described by a function f in the
sense of Definition 2.3. The function f , known as the spectral symbol of {An}n, normally
coincides with the so-called kernel (or symbol) of the GLT sequence {An}n and can be
computed precisely through the theory of GLT sequences.

The theory of GLT sequences is therefore an apparatus—to the best of the authors’ knowledge,
the most powerful apparatus—for computing the spectral symbol f of sequences of matrices
{An}n arising from the discretization of differential problems. The spectral symbol in turn is
useful for several purposes, ranging from the design of appropriate solvers for the considered
discretization matrices to the analysis of the spectral approximation properties of the considered
discretization method; see [6, Section 1.2] and [21, Section 1.1] for more details.

Nowadays, the main references for the theory of GLT sequences and the related appli-
cations are the books [21, 22] and the review papers [4, 6, 7]. We therefore refer the reader
to these works for a comprehensive treatment of the topic, whereas for a more concise in-
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troduction to the subject, we recommend the papers [13, 20, 23, 24]. From a theoretical
point of view, among the main recent developments not included in [4, 6, 7, 21, 22], we
mention the equivalence between GLT sequences and measurable functions [2], the normal
form of GLT sequences [3], the perturbation results for GLT sequences [8], the analysis of the
connections between the spectral symbol and the spectrum of the operator associated with the
considered differential problem [10, 11, 25], and the first “bridge” between spectral symbols
and spectral analysis of graphs/networks [1]. From an applicative point of view, among the
main recent developments not included in [4, 6, 7, 21, 22], we mention the application to
fractional differential equations [16, 17] and incompressible Navier-Stokes equations [19, 28].

Despite the remarkable development that the theory of GLT sequences has reached
nowadays, recent applications [18, 28] suggested the need for a notion of rectangular GLT
sequences in order to further enhance the GLT apparatus. In this paper, we introduce such
a notion and develop a full theory of rectangular (multilevel block) GLT sequences as an
extension of the theory of classical square (multilevel block) GLT sequences. We also provide
two examples of application as an illustration of the potential of the theory presented herein.

To give an a priori flavor of the relevance of the theory of rectangular GLT sequences,
consider the applications that inspired this paper, i.e., the Taylor-Hood stable finite element
(FE) discretization of the linear elasticity equations [18] and the staggered discontinuous
Galerkin approximation of the incompressible Navier-Stokes equations [28]. In these cases,
the numerical solution is computed by solving a linear system whose coefficient matrix has a
saddle-point structure of the form

An =

[
An(1, 1) An(1, 2)
An(2, 1) An(2, 2)

]
.

An efficient solution of this system relies on block Gaussian elimination and essentially reduces
to solving a linear system whose coefficient matrix is the Schur complement

Sn = An(2, 2)−An(2, 1)(An(1, 1))−1An(1, 2);

see [9, Section 5]. What is relevant to us is that the sequences {An(i, j)}n are, up to minor
transformations, square GLT sequences for i = j and rectangular GLT sequences for i 6= j.
As a consequence, the spectral distributions of {An}n and {Sn}n can be computed through
the theory of rectangular GLT sequences, and especially through properties GLT 4 and GLT 6
in Section 5, which allow us to “connect” GLT sequences with symbols of different size.
In [18, 28], the authors computed the spectral distributions of {An}n and {Sn}n by either
resorting to the complicated technique of “cutting matrices” employed in the convergence
analysis of multigrid methods or using specific results that are special cases of the theory
developed herein. These approaches were adopted as workarounds to remedy the lack of a
theory of rectangular GLT sequences; they are somehow application dependent, and ultimately
they are intrinsically “wrong”. The “right” approach—more natural, more general, and
simpler—is the one we will present in Section 6, which fully exploits the theory of rectangular
GLT sequences.

The paper is organized as follows. In Section 2, we collect some background material
along with preliminary notations and results. In Section 3, we introduce and study the extension
operator, i.e., the key tool for transferring results about square GLT sequences to rectangular
GLT sequences. In Section 4, we develop the theory of rectangular GLT sequences, which is
then summarized in Section 5. In Sections 6–7, we provide two illustrative applications of the
presented theory. We draw conclusions in Section 8.
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2. Preliminaries.

2.1. General notation and terminology.
• If α1, . . . , αn ∈ R, we define α1 ∧ · · · ∧ αn = min(α1, . . . , αn) and α1 ∨ · · · ∨ αn =

max(α1, . . . , αn).
• We denote by e

(n)
1 , . . . , e

(n)
n the vectors of the canonical basis of Cn.

• Om,n, On, and In denote, respectively, the m× n zero matrix, the n× n zero matrix, and
the n× n identity matrix. Sometimes, when the sizes can be inferred from the context, O is
used instead of Om,n, On, and I is used instead of In.

• For every r, s ∈ N = {1, 2, . . .} and every α = 1, . . . , r and β = 1, . . . , s, we denote by
E

(r,s)
αβ the r×smatrix having 1 in position (α, β) and 0 elsewhere, and we setE(s)

αβ = E
(s,s)
αβ .

• The eigenvalues of a matrix X ∈ Cn×n are denoted by λi(X), i = 1, . . . , n. The singular
values of a matrix X ∈ Cm×n are denoted by σi(X), i = 1, . . . ,m ∧ n. The maximum
and minimum singular values of X are also denoted by σmax(X) and σmin(X).
• For every X ∈ Cm×n, we denote by ‖X‖ = σmax(X) the spectral (Euclidean) norm of X ,

by X∗ the conjugate transpose of X , and by X† the Moore-Penrose pseudoinverse of X .
• Cc(C) (resp., Cc(R)) is the space of complex-valued continuous functions defined on C

(resp., R) with bounded support.
• µk denotes the Lebesgue measure in Rk. Throughout this work, unless stated otherwise, all

the terminology from measure theory (such as “measurable set”, “measurable function”,
“a.e.”, etc.) is always referred to the Lebesgue measure.
• Let D ⊆ Rk. An r × s matrix-valued function f : D → Cr×s is said to be measurable

(resp., continuous, a.e. continuous, bounded, in Lp(D), in C∞(D), etc.) if its components
fαβ : D → C, α = 1, . . . , r, β = 1, . . . , s, are measurable (resp., continuous, a.e.
continuous, bounded, in Lp(D), in C∞(D), etc.).

• Let fm, f : D ⊆ Rk → Cr×s be measurable. We say that fm converges to f in measure
(resp., a.e., in Lp(D), etc.) if (fm)αβ converges to fαβ in measure (resp., a.e., in Lp(D),
etc.) for all α = 1, . . . , r and β = 1, . . . , s.

• We use a notation borrowed from probability theory to indicate sets. For example, if
f, g : D ⊆ Rk → Cr×s, then {f has full rank} = {x ∈ D : f(x) has full rank},
µk{‖f − g‖ ≥ ε} is the measure of the set {x ∈ D : ‖f(x)− g(x)‖ ≥ ε}, etc.

2.2. Multi-index notation. A multi-index i of size d, also called a d-index, is simply a
vector in Zd.
• 0,1,2, . . . are the vectors of all zeros, all ones, all twos, . . . (their size will be clear from

the context).
• For any vector n ∈ Rd, we set N(n) =

∏d
i=1 ni, and we write n → ∞ to indicate that

min(n)→∞.
• If h,k ∈ Rd, then an inequality such as h ≤ k means that hi ≤ ki for all i = 1, . . . , d.
• If h,k are d-indices such that h ≤ k, then the d-index range {h, . . . ,k} is the set
{i ∈ Zd : h ≤ i ≤ k}. We assume for this set the standard lexicographic ordering:[

. . .
[

[ (i1, . . . , id) ]id=hd,...,kd

]
id−1=hd−1,...,kd−1

. . .
]
i1=h1,...,k1

.

For instance, in the case d = 2, the ordering is

(h1, h2), (h1, h2 + 1), . . . , (h1, k2),

(h1 + 1, h2), (h1 + 1, h2 + 1), . . . , (h1 + 1, k2),

. . . . . . . . . , (k1, h2), (k1, h2 + 1), . . . , (k1, k2).
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• When a d-index i varies in a d-index range {h, . . . ,k} (this is often written as i = h, . . . ,k),
it is understood that i varies from h to k following the lexicographic ordering.

• If h,k are d-indices with h ≤ k, then the notation
∑k
i=h indicates the summation over all

i = h, . . . ,k.
• Operations involving d-indices (or general vectors with d components) that have no meaning

in the vector space Rd must always be interpreted in the componentwise sense. For instance,
ij = (i1j1, . . . , idjd), i/j = (i1/j1, . . . , id/jd), etc.

2.3. Multilevel block matrices. If n ∈ Nd and X = [xij ]
n
i,j=1, where each xij is a

matrix of size r × s, then X is a matrix of size N(n)r × N(n)s whose “entries” xij are
r × s blocks indexed by a pair of d-indices i, j, both varying from 1 to n according to the
lexicographic ordering. Following Tyrtyshnikov [32, Section 6], a matrix of this kind is
referred to as a d-level (r, s)-block matrix (with level orders n = (n1, . . . , nd)).

For every n ∈ Nd and every i, j = 1, . . . ,n, we denote by E(n)
ij the N(n) × N(n)

matrix having 1 in position (i, j) and 0 elsewhere. If X = [xij ]
n
i,j=1 is a d-level (r, s)-block

matrix, then

(2.1) X = [xij ]
n
i,j=1 =

n∑
i,j=1

E
(n)
ij ⊗ xij ,

where ⊗ denotes the tensor product; see (2.2).
Two fundamental examples of multilevel block matrices are given by multilevel block

Toeplitz matrices and multilevel block diagonal sampling matrices. We provide below the
corresponding definitions.

DEFINITION 2.1 (Multilevel block Toeplitz matrix). Let f : [−π, π]d → Cr×s be in
L1([−π, π]d), and let {fk}k∈Zd be the Fourier coefficients of f defined as follows:

fk =
1

(2π)d

∫
[−π,π]d

f(θ) e−ik·θdθ ∈ Cr×s, k ∈ Zd,

where k · θ = k1θ1 + . . .+ kdθd and the integrals are computed componentwise. For every
n ∈ Nd, the nth (d-level (r, s)-block) Toeplitz matrix generated by f is the d-level (r, s)-block
matrix defined as

Tn(f) = [fi−j ]
n
i,j=1 =

n∑
i,j=1

E
(n)
ij ⊗ fi−j .

DEFINITION 2.2 (Multilevel block diagonal sampling matrix). Let a : [0, 1]d → Cr×s.
For every n ∈ Nd, the nth (d-level (r, s)-block) diagonal sampling matrix generated by a is
the d-level (r, s)-block diagonal matrix defined as

Dn(a) = diag
i=1,...,n

a
( i
n

)
=

n∑
i=1

E
(n)
ii ⊗ a

( i
n

)
.

2.4. Multilevel block matrix-sequences. Throughout this paper, a sequence of matrices
is a sequence of the form {An}n, where n varies in some infinite subset of N and An is
a dn × en matrix such that both dn and en tend to ∞ as n → ∞. A d-level (r, s)-block
matrix-sequence is a special sequence of matrices of the form {An}n, where:
• n varies in some infinite subset of N;
• n = n(n) is a d-index in Nd which depends on n and satisfies n→∞ as n→∞;
• An is a matrix of size N(n)r ×N(n)s.
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If {An}n is a d-level (r, s)-block matrix-sequence, then An can be seen as a d-level (r, s)-
block matrix and can be written in block form as in (2.1):

An = [a
(n)
ij ]ni,j=1 =

n∑
i,j=1

E
(n)
ij ⊗ a

(n)
ij ,

where a(n)ij is an r × s matrix. A d-level (s, s)-block matrix-sequence is also referred to as a
d-level s-block matrix-sequence.

2.5. Tensor products. If X,Y are matrices of any dimension, say X ∈ Cm1×n1 and
Y ∈ Cm2×n2 , then the tensor (Kronecker) product of X and Y is the m1m2 × n1n2 matrix
defined by

(2.2) X ⊗ Y = [xijY ]j=1,...,n1

i=1,...,m1
=

 x11Y · · · x1n1
Y

...
...

xm11Y · · · xm1n1
Y

 .
The properties of tensor products that we need in this paper are collected below. For further
properties, we refer the reader to [22, Section 2.5]; see also [7, Section 2.2.2].

For all matrices X,Y, Z, we have

(X ⊗ Y )T = XT ⊗ Y T ,(2.3)
X ⊗ (Y ⊗ Z) = (X ⊗ Y )⊗ Z.(2.4)

For all matrices X,Y, Z and all scalars α, β ∈ C, we have

(2.5)

{
(αX + βY )⊗ Z = α(X ⊗ Z) + β(Y ⊗ Z),

X ⊗ (αY + βZ) = α(X ⊗ Y ) + β(X ⊗ Z).

Whenever X1, X2 are multipliable and Y1, Y2 are multipliable, we have

(2.6) (X1 ⊗ Y1)(X2 ⊗ Y2) = (X1X2)⊗ (Y1Y2).

For every k1, k2 ∈ N, let ζ = [ζ(1), ζ(2), . . . , ζ(k1k2)] be the permutation of [1, 2, . . . , k1k2]
given by

ζ =
[
1, k2 + 1, 2k2 + 1, . . . , (k1 − 1)k2 + 1,

2, k2 + 2, 2k2 + 2, . . . , (k1 − 1)k2 + 2,

. . . . . . . . . ,

k2, 2k2, 3k2 . . . , k1k2
]
,

i.e.,

ζ(i) = ((i− 1) mod k1)k2 +

⌊
i− 1

k1

⌋
+ 1, i = 1, . . . , k1k2,

and let Pk1,k2 be the permutation matrix associated with ζ , i.e., the k1k2 × k1k2 matrix whose
rows are (e

(k1k2)
ζ(1) )T , . . . , (e

(k1k2)
ζ(k1k2)

)T (in this order). Then,

(2.7) Pk1,k2 =


Ik1 ⊗ (e

(k2)
1 )T

Ik1 ⊗ (e
(k2)
2 )T

...

Ik1 ⊗ (e
(k2)
k2

)T

 =

k2∑
i=1

e
(k2)
i ⊗ Ik1 ⊗ (e

(k2)
i )T ,
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and

(2.8) Y ⊗X = Pm1,m2
(X ⊗ Y )PTn1,n2

for all matrices X ∈ Cm1×n1 and Y ∈ Cm2×n2 .

2.6. Singular value and spectral distributions of a sequence of matrices.
DEFINITION 2.3 (Singular value and spectral distributions of a sequence of matrices).

• Let {An}n be a sequence of matrices with An of size dn×en, and let f : D ⊂ Rk → Cr×s
be measurable with 0 < µk(D) < ∞. We say that {An}n has a (asymptotic) singular
value distribution described by f , and we write {An}n ∼σ f , if

lim
n→∞

1

dn ∧ en

dn∧en∑
i=1

F (σi(An)) =
1

µk(D)

∫
D

∑r∧s
i=1 F (σi(f(x)))

r ∧ s
dx, ∀F ∈ Cc(R).

In this case, the function f is referred to as the singular value symbol of {An}n.
• Let {An}n be a sequence of matrices with An of size dn×dn, and let f : D ⊂ Rk → Cs×s

be measurable with 0 < µk(D) <∞. We say that {An}n has a (asymptotic) spectral (or
eigenvalue) distribution described by f , and we write {An}n ∼λ f , if

lim
n→∞

1

dn

dn∑
i=1

F (λi(An)) =
1

µk(D)

∫
D

∑s
i=1 F (λi(f(x)))

s
dx, ∀F ∈ Cc(C).

In this case, the function f is referred to as the spectral (or eigenvalue) symbol of {An}n.
Note that Definition 2.3 is well-posed by [7, Lemma 2.5], which ensures that the functions

x 7→
∑r∧s
i=1 F (σi(f(x))) and x 7→

∑s
i=1 F (λi(f(x))) are measurable. We refer the reader

to [6, Remark 2.9] for the informal meaning behind the singular value and spectral distributions
of a sequence of matrices. The next lemma will be used (only) in the proof of Theorem 4.6.

LEMMA 2.4. Let {An}n be a sequence of matrices with An of size dn × en, and let
f : D ⊂ Rk → Cr×s be measurable with 0 < µk(D) < ∞. If {An}n ∼σ f and f has full
rank a.e., then

lim
n→∞

#{i ∈ {1, . . . , dn ∧ en} : σi(An) = 0}
dn ∧ en

= 0.

We remark that the set {f has full rank} = {σmin(f) 6= 0} is measurable because the
function x 7→ σmin(f(x)) is measurable by [7, Lemma 2.5].

Proof. Suppose that {An}n ∼σ f . For every M > 0, take FM ∈ Cc(R) such that
FM (y) = 1−My for 0 ≤ y ≤ 1/M and FM (y) = 0 for y ≥ 1/M . Since FM (0) = 1 and
FM is a non-negative decreasing function on [0,∞), for every M > 0 we have

#{i ∈ {1, . . . , dn ∧ en} : σi(An) = 0}
dn ∧ en

≤ 1

dn ∧ en

dn∧en∑
i=1

FM (σi(An))(2.9)

n→∞−−−−→ 1

µk(D)

∫
D

∑r∧s
i=1 FM (σi(f(x)))

r ∧ s
dx

≤ 1

µk(D)

∫
D

FM (σmin(f(x)))dx.

Since FM (0) = 1 and FM → 0 pointwise on (0,∞) as M →∞, the dominated convergence
theorem yields

1

µk(D)

∫
D

FM (σmin(f(x)))dx
M→∞−−−−→ µk{σmin(f) = 0}

µk(D)
,
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which is equal to 0 by the assumption that f has full rank a.e. By taking first the (upper) limit
as n→∞ and then the limit as M →∞ in (2.9), we get the thesis.

We conclude this section with the definition of zero-distributed sequences.
DEFINITION 2.5 (Zero-distributed sequence). A sequence of matrices {Zn}n with Zn of

size dn × en is said to be zero-distributed if {Zn}n ∼σ 0, i.e.,

lim
n→∞

1

dn ∧ en

dn∧en∑
i=1

F (σi(Zn)) = F (0), ∀F ∈ Cc(R).

Note that, for any r, s ≥ 1, {Zn}n ∼σ 0 is equivalent to {Zn}n ∼σ Or,s.

2.7. Rectangular a.c.s. The notion of (square) approximating class of sequences (a.c.s.)
plays a central role in the theory of GLT sequences and has been investigated in [6, 7, 21, 22];
see also [2, 5]. We here introduce the notion of a.c.s. for sequences of rectangular matrices.

DEFINITION 2.6 (Rectangular a.c.s.). Let {An}n be a sequence of matrices with
An of size dn × en, and let {{Bn,m}n}m be a sequence of sequences of matrices with
Bn,m of size dn × en. We say that {{Bn,m}n}m is an a.c.s. for {An}n, and we write
{Bn,m}n

a.c.s.−−→ {An}n, if the following condition is met: for every m there exists nm such
that, for n ≥ nm,

An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)(dn ∧ en), ‖Nn,m‖ ≤ ω(m),

where nm, c(m), ω(m) depend only on m and limm→∞ c(m) = limm→∞ ω(m) = 0.
In the case where dn = en, Definition 2.6 reduces to the definition of classical square

a.c.s. [7, Definition 2.31].

2.8. GLT sequences. In this section we summarize the theory of square (multilevel
block) GLT sequences, which is the basis for the theory of rectangular (multilevel block) GLT
sequences developed in this paper. The content of this section can be found in [7].

A d-level s-block GLT sequence {An}n is a special d-level s-block matrix-sequence
equipped with a measurable function κ : [0, 1]d × [−π, π]d → Cs×s, the so-called symbol (or
kernel). We use the notation {An}n ∼GLT κ to indicate that {An}n is a d-level s-block GLT
sequence with symbol κ.
GLT 0. If {An}n ∼GLT κ, then {An}n ∼GLT ξ if and only if κ = ξ a.e.

If κ : [0, 1]d × [−π, π]d → Cs×s is measurable and {n = n(n)}n is a sequence of
d-indices such that n→∞ as n→∞, then there exists {An}n ∼GLT κ.

GLT 1. If {An}n ∼GLT κ, then {An}n ∼σ κ. If {An}n ∼GLT κ and the matrices An are
Hermitian, then κ is Hermitian a.e. and {An}n ∼λ κ.

GLT 2. If {An}n ∼GLT κ and An = Xn + Yn, where
• every Xn is Hermitian,
• (N(n))−1/2‖Yn‖2 → 0,
then {P ∗nAnPn}n ∼σ,λ κ for every sequence {Pn}n such that Pn ∈ CN(n)s×δn ,
P ∗nPn = Iδn , δn ≤ N(n)s, and δn/(N(n)s)→ 1.

GLT 3. For every sequence of d-indices {n = n(n)}n such that n→∞ as n→∞,
• {Tn(f)}n ∼GLT κ(x,θ) = f(θ) if f : [−π, π]d → Cs×s is in L1([−π, π]d),
• {Dn(a)}n ∼GLT κ(x,θ) = a(x) if a : [0, 1]d → Cs×s is continuous a.e.,
• {Zn}n ∼GLT κ(x,θ) = Os if and only if {Zn}n ∼σ 0.

GLT 4. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ, then
• {A∗n}n ∼GLT κ

∗,
• {αAn + βBn}n ∼GLT ακ+ βξ for all α, β ∈ C,
• {AnBn}n ∼GLT κξ,
• {A†n}n ∼GLT κ

−1 if κ is invertible a.e.
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GLT 5. If {An}n ∼GLT κ and each An is Hermitian, then {f(An)}n ∼GLT f(κ) for every
continuous function f : C→ C.

GLT 6. If {An,ij}n is a d-level s-block GLT sequence with symbol κij for i, j = 1, . . . , r
and An = [An,ij ]

r
i,j=1, then {(Pr,N(n) ⊗ Is)An(Pr,N(n) ⊗ Is)

T }n is a d-level
rs-block GLT sequence with symbol κ = [κij ]

r
i,j=1, where Pk1,k2 is the permutation

matrix defined in (2.7).
GLT 7. {An}n ∼GLT κ if and only if there exist {Bn,m}n ∼GLT κm such that

{Bn,m}n
a.c.s.−−→ {An}n and κm → κ in measure.

GLT 8. Suppose that {An}n ∼GLT κ and {Bn,m}n ∼GLT κm. Then, {Bn,m}n
a.c.s.−−→ {An}n

if and only if κm → κ in measure.
GLT 9. If {An}n ∼GLT κ, then there exist functions ai,m, fi,m, i = 1, . . . , Nm, such that

• ai,m : [0, 1]d → C belongs to C∞([0, 1]d) and fi,m is a trigonometric monomial
in {eij·θE(s)

αβ : j ∈ Zd, 1 ≤ α, β ≤ s},
• κm(x,θ) =

∑Nm

i=1 ai,m(x)fi,m(θ)→ κ(x,θ) a.e.,

• {Bn,m}n =
{∑Nm

i=1Dn(ai,mIs)Tn(fi,m)
}
n

a.c.s.−−→ {An}n.

3. Extension operator. In this section we introduce the extension operator, which is
essential to relate the theory of rectangular GLT sequences to the theory of square GLT
sequences. We also study some properties of this operator that is needed later on.

3.1. Definition of extension operator. In what follows, if a, t ∈ N and a ≤ t, then we
denote by πa,t the a× t matrix given by πa,t = [ Ia |O ].

DEFINITION 3.1 (Extension operator). Let r, s, t be positive integers such that t ≥ r ∨ s.
• We define the extension operator Etr,s : Cr×s → Ct×t as the linear operator that extends

each r× s matrix to a larger t× t matrix by adding zero columns to the right and zero rows
below:

(3.1) Etr,s(x) =

[
x O
O O

]
= πTr,txπs,t.

• With some abuse of notation, we define the extension operator Etr,s also for multilevel
(r, s)-block matrices. If

X = [xij ]
n
i,j=1 =

n∑
i,j=1

E
(n)
ij ⊗ xij

is a d-level (r, s)-block matrix, then each “entry” xij is an r × s block, and we define
Etr,s(X) as the d-level t-block matrix obtained from X by just adding zero columns to the
right and zero rows below each block xij:

(3.2) Etr,s(X) = [Etr,s(xij)]
n
i,j=1 =

n∑
i,j=1

E
(n)
ij ⊗ E

t
r,s(xij).

In the case where r = s, we use the notation Ets instead of Ets,s for simplicity.
By the properties (2.3), (2.6), (2.8) of tensor products, for every d-level (r, s)-block matrix

X =

n∑
i,j=1

E
(n)
ij ⊗ xij = Pr,N(n)

(
n∑

i,j=1

xij ⊗ E(n)
ij

)
PTs,N(n)
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we have

Etr,s(X) =

n∑
i,j=1

E
(n)
ij ⊗ E

t
r,s(xij) = Pt,N(n)

(
n∑

i,j=1

Etr,s(xij)⊗ E
(n)
ij

)
PTt,N(n)

= Pt,N(n)

(
n∑

i,j=1

πTr,txijπs,t ⊗ E
(n)
ij

)
PTt,N(n)

= Pt,N(n)(π
T
r,t ⊗ IN(n))

(
n∑

i,j=1

xij ⊗ E(n)
ij

)
(πs,t ⊗ IN(n))P

T
t,N(n)

= Pt,N(n)

[∑n
i,j=1 xij ⊗ E

(n)
ij O

O O

]
PTt,N(n)

= Pt,N(n)

[
PTr,N(n)XPs,N(n) O

O O

]
PTt,N(n),

i.e.,

Etr,s(X) = Qr,t,N(n)

[
X O
O O

]
QTs,t,N(n),(3.3)

where

Qa,t,N(n) = Pt,N(n)

[
PTa,N(n) O

O IN(n)(t−a)

]
is an N(n)t×N(n)t permutation matrix for any a ∈ N with a ≤ t. Equation (3.3) can be
seen as a definition of Etr,s(X) alternative to (3.2).

3.2. Algebraic properties. As it is clear from (3.1) and (3.3), the extension operator
Etr,s is linear on both Cr×s and the space of d-level (r, s)-block matrices with fixed level
orders n. Moreover, Etr,s changes neither the rank nor the norm of the d-level (r, s)-block
matrix X to which it is applied:

rank(Etr,s(X)) = rank(X), ‖Etr,s(X)‖ = ‖X‖.

If x ∈ Cr×s and X = [xij ]
n
i,j=1 is a d-level (r, s)-block matrix, then, for every t ≥ r ∨ s,

(Etr,s(x))∗ = (πTr,txπs,t)
∗ = πTs,tx

∗πr,t = Ets,r(x
∗),(3.4)

(Etr,s(X))∗ =

(
Qr,t,N(n)

[
X O
O O

]
QTs,t,N(n)

)∗
(3.5)

= Qs,t,N(n)

[
X∗ O
O O

]
QTr,t,N(n) = Ets,r(X

∗).

If u ≥ t ≥ r ∨ s, then, for every x ∈ Cr×s,

Eut (Etr,s(x)) = Eur,s(x).(3.6)

If u ≥ t ≥ r ∨ s, then, for every d-level (r, s)-block matrix X = [xij ]
n
i,j=1,

Eut (Etr,s(X)) = Eut ([Etr,s(xij)]
n
i,j=1) = [Eut (Etr,s(xij))]

n
i,j=1(3.7)

= [Eur,s(xij)]
n
i,j=1 = Eur,s(X).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

RECTANGULAR GLT SEQUENCES 595

If x ∈ Cr×q and y ∈ Cq×s, then, for every t ≥ r ∨ q ∨ s,

(3.8) Etr,s(xy) = πTr,txyπs,t = πTr,txπq,tπ
T
q,tyπs,t = Etr,q(x)Etq,s(y).

IfX= [xij ]
n
i,j=1 and Y = [yij ]

n
i,j=1, with xij ∈ Cr×q and yij ∈ Cq×s for all i, j = 1, . . . ,n,

then, for every t ≥ r ∨ q ∨ s,

Etr,s(XY ) = Qr,t,N(n)

[
XY O
O O

]
QTs,t,N(n)(3.9)

= Qr,t,N(n)

[
X O
O O

]
QTq,t,N(n)Qq,t,N(n)

[
Y O
O O

]
QTs,t,N(n)

= Etr,q(X)Etq,s(Y ).

3.3. Singular value distribution of extended matrix-sequences.
PROPOSITION 3.2. Let {An}n be a d-level (r, s)-block matrix-sequence, and let the

function f : D ⊂ Rk → Cr×s be measurable with 0 < µk(D) <∞. For any t ≥ r ∨ s we
have

{An}n ∼σ f ⇐⇒ {Etr,s(An)}n ∼σ Etr,s(f).

Proof. Let ` = r ∧ s. For every x ∈ D,

σi(E
t
r,s(f(x))) = σi(f(x)), i = 1, . . . , `,

σi(E
t
r,s(f(x))) = 0, i = `+ 1, . . . , t.

Moreover, by (3.3),

σi(E
t
r,s(An)) = σi(An), i = 1, . . . , N(n)`,

σi(E
t
r,s(An)) = 0, i = N(n)`+ 1, . . . , N(n)t.

Thus, for every F ∈ Cc(R),

1

N(n)t

N(n)t∑
i=1

F (σi(E
t
r,s(An))) =

`

t

1

N(n)`

N(n)`∑
i=1

F (σi(An)) +
t− `
t

F (0),

∫
D

∑t
i=1 F (σi(E

t
r,s(f(x))))

t
dx =

`

t

∫
D

∑`
i=1 F (σi(f(x)))

`
dx + µk(D)

t− `
t

F (0).

Therefore, {An}n ∼σ f if and only if {Etr,s(An)}n ∼σ Etr,s(f).

3.4. Extended a.c.s.
PROPOSITION 3.3. Let {An}n and {Bn,m}n be d-level (r, s)-block matrix-sequences.

For any t ≥ r ∨ s we have

{Bn,m}n
a.c.s.−−→ {An}n ⇐⇒ {Etr,s(Bn,m)}n

a.c.s.−−→ {Etr,s(An)}n.

Proof. ( =⇒ ) Suppose that {Bn,m}n
a.c.s.−−→ {An}n. Then, for every m there exists nm

such that, for n ≥ nm,

An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)N(n), ‖Nn,m‖ ≤ ω(m),
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where c(m), ω(m)→ 0 as m→∞. By applying the extension operator to both sides of the
previous equation, we obtain

Etr,s(An) = Etr,s(Bn,m) + Etr,s(Rn,m) + Etr,s(Nn,m)

with

rank(Etr,s(Rn,m)) = rank(Rn,m) ≤ c(m)N(n), ‖Etr,s(Nn,m)‖ = ‖Nn,m‖ ≤ ω(m).

This shows that {Etr,s(Bn,m)}n
a.c.s.−−→ {Etr,s(An)}n.

(⇐= ) Suppose that {Etr,s(Bn,m)}n
a.c.s.−−→ {Etr,s(An)}n. Then, for everym, there exists

nm such that, for n ≥ nm,

Etr,s(An) = Etr,s(Bn,m)+Rn,m+Nn,m, rank(Rn,m) ≤ c(m)N(n), ‖Nn,m‖ ≤ ω(m),

where c(m), ω(m)→ 0 as m→∞. By (3.3), the previous equation is equivalent to[
An O
O O

]
=

[
Bn,m O
O O

]
+QTr,t,N(n)Rn,mQs,t,N(n) +QTr,t,N(n)Nn,mQs,t,N(n).

This implies that

An = Bn,m + Πr,t,N(n)Q
T
r,t,N(n)Rn,mQs,t,N(n)Π

T
s,t,N(n)

+ Πr,t,N(n)Q
T
r,t,N(n)Nn,mQs,t,N(n)Π

T
s,t,N(n),

where Πa,t,N(n) is the N(n)a×N(n)t matrix given by Πa,t,N(n) = [ IN(n)a |O ] for every
a ∈ N with a ≤ t. Since ‖Πa,t,N(n)‖ = ‖Qa,t,N(n)‖ = 1, we have

rank(Πr,t,N(n)Q
T
r,t,N(n)Rn,mQs,t,N(n)Π

T
s,t,N(n)) ≤ rank(Rn,m) ≤ c(m)N(n),

‖Πr,t,N(n)Q
T
r,t,N(n)Nn,mQs,t,N(n)Π

T
s,t,N(n)‖ ≤ ‖Nn,m‖ ≤ ω(m),

and we conclude that {Bn,m}n
a.c.s.−−→ {An}n.

3.5. Extended GLT sequences. Let a : [0, 1]d → Cr×s be continuous a.e. on [0, 1]d, let
f : [−π, π]d → Cr×s be in L1([−π, π]d), and take n ∈ Nd and t ≥ r∨ s. Then, by definition
of Etr,s,

Etr,s(Dn(a)) = diag
i=1,...,n

Etr,s

(
a
( i
n

))
= Dn(Etr,s(a)),(3.10)

Etr,s(Tn(f)) = [Etr,s(fi−j)]
n
i,j=1 = [(Etr,s(f))i−j ]

n
i,j=1 = Tn(Etr,s(f)).(3.11)

In the case where r = s, it follows from (3.10)–(3.11) and GLT 3 that, for every sequence of
d-indices {n = n(n)}n such that n→∞ as n→∞,

{Ets(Dn(a))}n ∼GLT E
t
s(a(x)),(3.12)

{Ets(Tn(f))}n ∼GLT E
t
s(f(θ)).(3.13)

Proposition 3.5 generalizes (3.12)–(3.13) by showing that an extended GLT sequence is still a
GLT sequence with symbol given by the extended symbol. For the proof of Proposition 3.5,
we need the following lemma [22, Lemma 2.4]:

LEMMA 3.4. Let κ : [0, 1]d× [−π, π]d → C be measurable. Then, there exists a sequence
of functions κm : [0, 1]d × [−π, π]d → C such that κm → κ a.e. and κm is of the form

κm(x,θ) =

Nm∑
j=−Nm

a
(m)
j (x) eij·θ, a

(m)
j ∈ C∞([0, 1]d), Nm ∈ Nd.
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PROPOSITION 3.5. Let {An}n be a d-level s-block matrix-sequence, and let κ : [0, 1]d×
[−π, π]d → Cs×s be measurable. For any t ≥ s we have

{An}n ∼GLT κ ⇐⇒ {Ets(An)}n ∼GLT E
t
s(κ).

Proof. ( =⇒ ) Suppose that {An}n ∼GLT κ. By GLT 9, there exist functions ai,m, fi,m,
i = 1, . . . , Nm, such that ai,m : [0, 1]d → C belongs to C∞([0, 1]d), fi,m is a trigonometric
monomial in {eij·θE(s)

αβ : j ∈ Zd, 1 ≤ α, β ≤ s}, and

• κm(x,θ) =
∑Nm

i=1 ai,m(x)fi,m(θ)→ κ(x,θ) a.e.,
• {Bn,m}n =

{∑Nm

i=1Dn(ai,mIs)Tn(fi,m)
}
n

a.c.s.−−→ {An}n.
By the linearity of Ets, properties (3.8)–(3.9), equations (3.12)–(3.13), and GLT 4,

{Ets(Bn,m)}n =

{
Nm∑
i=1

Ets(Dn(ai,mIs))E
t
s(Tn(fi,m))

}
n

(3.14)

∼GLT

Nm∑
i=1

Ets(ai,m(x)Is)E
t
s(fi,m(θ)) = Ets(κm(x,θ)).

By Proposition 3.3,

(3.15) {Ets(Bn,m)}n
a.c.s.−−→ {Ets(An)}n.

Finally, it is clear that

(3.16) Ets(κm(x,θ))→ Ets(κ(x,θ)) a.e.

Equations (3.14)–(3.16) and GLT 7 yield the thesis {Ets(An)}n ∼GLT E
t
s(κ).

( ⇐= ) Suppose that {Ets(An)}n ∼GLT Ets(κ). Let ai,m, fi,m, i = 1, . . . , Nm, be
functions such that ai,m : [0, 1]d → C is continuous a.e., fi,m : [−π, π]d → Cs×s is in
L1([−π, π]d), and

(3.17) κm(x,θ) =

Nm∑
i=1

ai,m(x)fi,m(θ)→ κ(x,θ) a.e.

These functions exist by Lemma 3.4, which in fact ensures we can take ai,m ∈ C∞([0, 1]d)

and fi,m in the set of trigonometric monomials {eij·θE(s)
αβ : j ∈ Zd, 1 ≤ α, β ≤ s}. Let

Bn,m =

Nm∑
i=1

Dn(ai,mIs)Tn(fi,m),

and note that, by GLT 3 – GLT 4,

(3.18) {Bn,m}n ∼GLT κm(x,θ).

We have {Ets(Bn,m)}n ∼GLT E
t
s(κm(x,θ)) (see (3.14)) and Ets(κm(x,θ)) → Ets(κ(x,θ))

a.e. (by (3.17)). Keeping in mind the assumption {Ets(An)}n ∼GLT E
t
s(κ(x,θ)) and using

GLT 8, we obtain

{Ets(Bn,m)}n
a.c.s.−−→ {Ets(An)}n.

By Proposition 3.3, this implies that

(3.19) {Bn,m}n
a.c.s.−−→ {An}n.

Equations (3.17)–(3.19) and GLT 7 yield the thesis {An}n ∼GLT κ.
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4. Rectangular GLT sequences. In this section we develop the theory of rectangular
(multilevel block) GLT sequences as an extension of the theory of square (multilevel block)
GLT sequences. The key tool for transferring results about square GLT sequences to rectangular
GLT sequences is the extension operator studied in Section 3.

4.1. Definition of rectangular GLT sequences.
DEFINITION 4.1 (Rectangular GLT sequence). Let {An}n be a d-level (r, s)-block

matrix-sequence, and let κ : [0, 1]d × [−π, π]d → Cr×s be measurable. We say that {An}n
is a (d-level (r, s)-block) GLT sequence with symbol κ, and we write {An}n ∼GLT κ, if one of
the following equivalent conditions is satisfied:
1. {Etr,s(An)}n ∼GLT E

t
r,s(κ) for all t ≥ r ∨ s.

2. There exists t ≥ r ∨ s such that {Etr,s(An)}n ∼GLT E
t
r,s(κ).

Proof. We prove the equivalence between the two conditions in Definition 4.1.
(1 =⇒ 2) Obvious.
(2 =⇒ 1) Suppose there exists t ≥ r ∨ s such that {Etr,s(An)}n ∼GLT E

t
r,s(κ). We

show that {Eur,s(An)}n ∼GLT E
u
r,s(κ) for all u ≥ r ∨ s. If u ≥ t, then, by (3.6)–(3.7) and

Proposition 3.5,

{Eur,s(An)}n = {Eut (Etr,s(An))}n ∼GLT E
u
t (Etr,s(κ)) = Eur,s(κ).

If r ∨ s ≤ u ≤ t, then, by (3.6)–(3.7),

{Etu(Eur,s(An))}n = {Etr,s(An)}n ∼GLT E
t
r,s(κ) = Etu(Eur,s(κ)),

which implies that {Eur,s(An)}n ∼GLT E
u
r,s(κ) by Proposition 3.5.

REMARK 4.2. Definition 4.1 is consistent with the definition of multilevel block GLT
sequences given in [7]. Indeed, let {An}n be a d-level s-block matrix-sequence, and let
κ : [0, 1]d × [−π, π]d → Cs×s be measurable. Then, {An}n ∼GLT κ according to the
definition in [7] if and only if {An}n ∼GLT κ according to Definition 4.1; see Proposition 3.5.

According to Definition 4.1, the extension operator “embeds” the world of rectangular
GLT sequences into the world of square GLT sequences. As we shall see in the next sections,
this embedding allows us to transfer most of the properties GLT 0 – GLT 9 to rectangular GLT
sequences. Note, however, that we cannot transfer to rectangular GLT sequences the properties
that involve spectral symbols or Hermitian matrices.

4.2. Uniqueness of the symbol of a rectangular GLT sequence. The next theorem
proves the analog of the first part of GLT 0 for rectangular GLT sequences.

THEOREM 4.3. Let {An}n be a d-level (r, s)-block GLT sequence with symbol κ, and
let ξ : [0, 1]d × [−π, π]d → Cr×s be measurable. Then,

{An}n ∼GLT ξ ⇐⇒ κ = ξ a.e. in [0, 1]d × [−π, π]d.

Proof. ( =⇒ ) Let t ≥ r ∨ s. Since {An}n ∼GLT κ and {An}n ∼GLT ξ, we have
{Etr,s(An)}n ∼GLT E

t
r,s(κ) and {Etr,s(An)}n ∼GLT E

t
r,s(ξ) by Definition 4.1. This implies

that Etr,s(κ) = Etr,s(ξ) a.e. by GLT 0, and so κ = ξ a.e.
(⇐= ) Let t ≥ r ∨ s. Since {An}n ∼GLT κ and κ = ξ a.e., we have {Etr,s(An)}n ∼GLT

Etr,s(κ) by Definition 4.1 and Etr,s(κ) = Etr,s(ξ) a.e. This implies that {Etr,s(An)}n ∼GLT
Etr,s(ξ) by GLT 0, and so {An}n ∼GLT ξ by Definition 4.1.

4.3. Fundamental examples of rectangular GLT sequences. In this section, we prove
the analog of GLT 3 for rectangular GLT sequences.
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4.3.1. Rectangular Toeplitz sequences. Let f : [−π, π]d → Cr×s be in L1([−π, π]d),
and let {Tn(f)}n∈Nd be the family of Toeplitz matrices generated by f (see Definition 2.1).
By (3.11), Definition 4.1, and GLT 3, for every sequence of d-indices {n = n(n)}n such that
n→∞ as n→∞, we have {Tn(f)}n ∼GLT f(θ).

4.3.2. Sequences of rectangular diagonal sampling matrices. Let a : [0, 1]d → Cr×s
be continuous a.e. on [0, 1]d, and let {Dn(a)}n∈Nd be the family of diagonal sampling matrices
generated by a (see Definition 2.2). By (3.10), Definition 4.1, and GLT 3, for every sequence
of d-indices {n = n(n)}n such that n→∞ as n→∞, we have {Dn(a)}n ∼GLT a(x).

4.3.3. Rectangular zero-distributed sequences. Suppose that {Zn}n is a d-level (r, s)-
block zero-distributed sequence. Then, {Etr,s(Zn)}n is zero-distributed for any t ≥ r ∨ s; see
Proposition 3.2. Hence, by Definition 4.1, {Zn}n ∼GLT Or,s.

4.4. Singular value distribution of rectangular GLT sequences. The next theorem
proves the analog of GLT 1 for rectangular GLT sequences.

THEOREM 4.4. If {An}n ∼GLT κ, then {An}n ∼σ κ.
Proof. Let t ≥ r ∨ s, where r × s is the size of κ. Since {Etr,s(An)}n ∼GLT E

t
r,s(κ) by

Definition 4.1, we have {Etr,s(An)}n ∼σ Etr,s(κ) by GLT 1, which implies {An}n ∼σ κ by
Proposition 3.2.

4.5. Rectangular GLT algebra. Suppose that {An}n ∼GLT κ and {Bn}n ∼GLT ξ. If
κ and ξ are summable, then the same is true for An and Bn, and so we can consider the
sequence {αAn + βBn}n for α, β ∈ C. Similarly, if κ and ξ are multipliable, then the same
is true for An and Bn, and so we can consider the sequence {AnBn}n. The next theorem
proves the analog of the first part of GLT 4 for rectangular GLT sequences.

THEOREM 4.5. Let {An}n ∼GLT κ and {Bn}n ∼GLT ξ. Then,
1. {A∗n}n ∼GLT κ

∗,
2. {αAn + βBn}n ∼GLT ακ+ βξ for all α, β ∈ C if κ and ξ are summable,
3. {AnBn}n ∼GLT κξ if κ and ξ are multipliable.

Proof. 1. Let t ≥ r ∨ s, where r × s is the size of κ. By (3.4)–(3.5), Definition 4.1, and
GLT 4,

{Ets,r(A∗n)}n = {(Etr,s(An))∗}n ∼GLT (Etr,s(κ))∗ = Ets,r(κ
∗).

We conclude that {A∗n}n ∼GLT κ
∗ by Definition 4.1.

2. Let t ≥ r ∨ s, where r × s is the size of κ and ξ. By the linearity of the extension
operator, Definition 4.1, and GLT 4,

{Etr,s(αAn + βBn)}n = {αEtr,s(An) + βEtr,s(Bn)}n
∼GLT αE

t
r,s(κ) + βEtr,s(ξ) = Etr,s(ακ+ βξ).

We conclude that {αAn + βBn}n ∼GLT ακ+ βξ by Definition 4.1.
3. Let t ≥ r ∨ q ∨ s, where r× q is the size of κ and q× s is the size of ξ. By (3.8)–(3.9),

Definition 4.1, and GLT 4,

{Etr,s(AnBn)}n = {Etr,q(An)Etq,s(Bn)}n ∼GLT E
t
r,q(κ)Etq,s(ξ) = Etr,s(κξ).

We conclude that {AnBn}n ∼GLT κξ by Definition 4.1.
To prove the analog of the second part of GLT 4 for rectangular GLT sequences, we need

to recall some properties of the Moore-Penrose pseudoinverse [12, Section 7.6]. If A = UΣV
is a singular value decomposition (SVD) of the m× n matrix A, then A† = V ∗Σ†U∗. Here,
Σ† is the Moore-Penrose pseudoinverse of Σ, i.e., the n×m diagonal matrix such that, for
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i = 1, . . . ,m ∧ n, (Σ†)ii = 1/Σii if Σii 6= 0 and (Σ†)ii = 0 otherwise. If A is an m× n full
rank matrix, then A† can be expressed as follows:

(4.1) A† =

{
A∗(AA∗)−1, if m ≤ n,
(A∗A)−1A∗, if m ≥ n.

Note that A† = A−1 whenever A is a square invertible matrix. Theorem 4.6 proves the analog
of the second part of GLT 4 for rectangular GLT sequences.

THEOREM 4.6. If {An}n ∼GLT κ and κ has full rank a.e., then {A†n}n ∼GLT κ
†.

Proof. Let An = UnΣnVn be an SVD of An, and let Zn = UnΨnVn, where Ψn is the
rectangular diagonal matrix of the same size as Σn such that (Ψn)ii = 1 if (Σn)ii = 0 and
(Ψn)ii = 0 otherwise. The rank of Zn is the number of zero singular values of An, which
is o(N(n)) by Theorem 4.4 and Lemma 2.4, since κ has full rank a.e. Hence, the sequence
{Zn}n is zero-distributed by Definition 2.5, and so {Zn}n ∼GLT Or,s, with r × s being the
size of κ. Let

(4.2) Bn = An + Zn = Un(Σn + Ψn)Vn,

and note that {Bn}n ∼GLT κ by Theorem 4.5. The matrix Bn has full rank by construction,
and so, by (4.2) and (4.1),1

B†n = A†n + Z†n = B∗n(BnB
∗
n)−1.

The rank of Z†n is the same as the rank of Zn, which implies that {Z†n}n is zero-distributed
and {Z†n}n ∼GLT Os,r. Moreover, {BnB∗n}n is a square GLT sequence with symbol κκ∗

by Theorem 4.5, and κκ∗ is invertible a.e. because κ has full rank a.e. We can therefore use
GLT 4 to obtain

{(BnB∗n)−1}n = {(BnB∗n)†}n ∼GLT (κκ∗)−1.

Using again Theorem 4.5, we conclude that

{A†n}n = {B†n − Z†n}n = {B∗n(BnB
∗
n)−1 − Z†n}n ∼GLT κ

∗(κκ∗)−1 = κ†,

and the theorem is proved.

4.6. Convergence results for rectangular GLT sequences. The next theorem proves
the analog of GLT 7 for rectangular GLT sequences.

THEOREM 4.7. Let {An}n be a d-level (r, s)-block matrix-sequence, and let κ : [0, 1]d×
[−π, π]d → Cr×s be measurable. Suppose that
• {Bn,m}n ∼GLT κm,
• {Bn,m}n

a.c.s.−−→ {An}n,
• κm → κ in measure.
Then {An}n ∼GLT κ.

Proof. Let t ≥ r ∨ s. We have
• {Etr,s(Bn,m)}n ∼GLT E

t
r,s(κm) by Definition 4.1,

• {Etr,s(Bn,m)}n
a.c.s.−−→ {Etr,s(An)}n by Proposition 3.3,

• Etr,s(κm)→ Etr,s(κ) in measure (obviously).

1We here assume that r ≤ s. If r ≥ s, then nothing changes in the proof except for the fact that we have to use
for the pseudoinverse B†n the other expression in (4.1).
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We conclude by GLT 7 that {Etr,s(An)}n ∼GLT E
t
r,s(κ), and so {An}n ∼GLT κ by Defini-

tion 4.1.
The next theorem proves the analog of GLT 8 for rectangular GLT sequences.
THEOREM 4.8. Let {An}n ∼GLT κ and {Bn,m}n ∼GLT κm. Then,

{Bn,m}n
a.c.s.−−→ {An}n ⇐⇒ κm → κ in measure.

Proof. Let t ≥ r ∨ s, where r × s is the size of κ and κm. By Definition 4.1, we have
{Etr,s(An)}n ∼GLT E

t
r,s(κ) and {Etr,s(Bn,m)}n ∼GLT E

t
r,s(κm). Thus, by Proposition 3.3

and GLT 8,

{Bn,m}n
a.c.s.−−→ {An}n ⇐⇒ {Etr,s(Bn,m)}n

a.c.s.−−→ {Etr,s(An)}n
⇐⇒ Etr,s(κm)→ Etr,s(κ) in measure

⇐⇒ κm → κ in measure,

and the theorem is proved.
The next theorem proves the analog of GLT 9 for rectangular GLT sequences.
THEOREM 4.9. Let {An}n ∼GLT κ. Then, there exist functions ai,m, fi,m,

i = 1, . . . , Nm, such that
• ai,m : [0, 1]d → C belongs to C∞([0, 1]d) and fi,m is a trigonometric monomial in
{eij·θE(r,s)

αβ : j ∈ Zd, 1 ≤ α ≤ r, 1 ≤ β ≤ s} with r × s being the size of κ,

• κm(x,θ) =
∑Nm

i=1 ai,m(x)fi,m(θ)→ κ(x,θ) a.e.,

• {Bn,m}n =
{∑Nm

i=1Dn(ai,mIr)Tn(fi,m)
}
n

a.c.s.−−→ {An}n.

Proof. By Lemma 3.4, there exist functions ai,m, fi,m, i = 1, . . . , Nm, such that
ai,m : [0, 1]d → C belongs to C∞([0, 1]d), fi,m is a trigonometric monomial in the set
{eij·θE(r,s)

αβ : j ∈ Zd, 1 ≤ α ≤ r, 1 ≤ β ≤ s}, and

κm(x,θ) =

Nm∑
i=1

ai,m(x)fi,m(θ)→ κ(x,θ) a.e.

Since {Dn(ai,mIr)}n ∼GLT ai,m(x)Ir and {Tn(fi,m)}n ∼GLT f(θ) (see Section 4.3), Theo-
rem 4.5 yields

{Bn,m}n =

{
Nm∑
i=1

Dn(ai,mIr)Tn(fi,m)

}
n

∼GLT κ(x,θ).

We conclude that {Bn,m}n
a.c.s.−−→ {An}n by Theorem 4.8.

4.7. Relations between rectangular GLT sequences of different size. In this section,
we prove a stronger version of GLT 6 for rectangular GLT sequences. It should be considered
not only as the analog of GLT 6 for rectangular GLT sequences but also as an addendum to
the theory of square GLT sequences developed in [7].

THEOREM 4.10. Let {An = [a
(n)
ij ]ni,j=1}n be a d-level (r, s)-block GLT sequence with

symbol κ. If we restrict each r × s block a(n)ij to the same r̃ × s̃ submatrix ã(n)ij , then we

obtain a d-level (r̃, s̃)-block GLT sequence {Ãn = [ã
(n)
ij ]ni,j=1}n whose symbol κ̃ is the

corresponding r̃ × s̃ submatrix of κ.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

602 G. BARBARINO, C. GARONI, M. MAZZA, AND S. SERRA-CAPIZZANO

Proof. Define

χr,r̃ = diagonal {0, 1}-matrix of size r with 1 in the positions
corresponding to the chosen r̃ rows,

χs,s̃ = diagonal {0, 1}-matrix of size s with 1 in the positions
corresponding to the chosen s̃ columns,

αr,r̃ = permutation matrix of size r that moves in order the chosen r̃ rows
to the first r̃ rows,

βs,s̃ = permutation matrix of size s that moves in order the chosen s̃ columns
to the first s̃ columns.

By definition, we have

αr,r̃χr,r̃a
(n)
ij χs,s̃βs,s̃ =

[
ã
(n)
ij O

O O

]
r×s

, i, j = 1, . . . ,n,

αr,r̃χr,r̃κχs,s̃βs,s̃ =

[
κ̃ O
O O

]
r×s

,

where the subscript r × s indicates that the matrix size is r × s. Since we know that
{Dn(αr,r̃χr,r̃)}n ∼GLT αr,r̃χr,r̃ and {Dn(χs,s̃βs,s̃)}n ∼GLT χs,s̃βs,s̃, Theorem 4.5 yields

[[
ã
(n)
ij O

O O

]
r×s

]n
i,j=1


n

= {Dn(αr,r̃χr,r̃)AnDn(χs,s̃βs,s̃)}n(4.3)

∼GLT αr,r̃χr,r̃κχs,s̃βs,s̃ =

[
κ̃ O
O O

]
r×s

.

Let t ≥ r ∨ s ≥ r̃ ∨ s̃. By (4.3) and Definition 4.1,

{Etr̃,s̃(Ãn)}n = {[Etr̃,s̃(ã
(n)
ij )]ni,j=1}n =


[
Etr,s

([
ã
(n)
ij O

O O

]
r×s

)]n
i,j=1


n

∼GLT

[
κ̃ O
O O

]
t×t

= Etr̃,s̃(κ̃).

Thus, {Ãn}n ∼GLT κ̃ by Definition 4.1.

THEOREM 4.11. Let {An = [a
(n)
ij ]ni,j=1}n be a d-level (r, s)-block matrix-sequence,

and let κ : [0, 1]d × [−π, π]d → Cr×s be measurable. For i = 1, . . . , r and j = 1, . . . , s, let
An,ij = [(a

(n)
ij )ij ]

n
i,j=1 be the submatrix of An obtained by restricting each r × s block a(n)ij

to the (i, j)-entry (a
(n)
ij )ij . Then,

{An}n ∼GLT κ ⇐⇒ {An,ij}n ∼GLT κij for all i = 1, . . . , r and j = 1, . . . , s.

Proof. ( =⇒ ) This implication follows immediately from Theorem 4.10.
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(⇐= ) Let t ≥ r ∨ s and fix (i, j) with 1 ≤ i ≤ r and 1 ≤ j ≤ s. From the hypothesis
{An,ij}n ∼GLT κij and Definition 4.1, we have

{Et1(An,ij)}n = {[Et1((a
(n)
ij )ij)]

n
i,j=1}n =


[[

(a
(n)
ij )ij O

O O

]
t×t

]n
i,j=1


n

(4.4)

∼GLT E
t
1(κij) =

[
κij O

O O

]
t×t

.

Let βi and βj be the permutation matrices that move the (1, 1)-entry of a t × t matrix in
position (i, j), i.e.,

βi = permutation matrix of size t that swaps the rows 1 and i,
βj = permutation matrix of size t that swaps the columns 1 and j.

By definition, we have

βiE
t
1((a

(n)
ij )ij)βj = βi

[
(a

(n)
ij )ij O

O O

]
t×t

βj = (a
(n)
ij )ijE

(t)
ij , i, j = 1, . . . ,n,

βiE
t
1(κij)βj = βi

[
κij O

O O

]
t×t

βj = κijE
(t)
ij .

Since {Dn(βi)}n ∼GLT βi and {Dn(βj)}n ∼GLT βj , (4.4) and Theorem 4.5 yield

{[(a(n)ij )ijE
(t)
ij ]ni,j=1}n = {Dn(βi)E

t
1(An,ij)Dn(βj)}n ∼GLT βiE

t
1(κij)βj = κijE

(t)
ij .

If we now sum over all i = 1, . . . , r and j = 1, . . . , s, by the previous relation and Theorem 4.5,
we obtain

{Etr,s(An)}n =


[[
a
(n)
ij O

O O

]
t×t

]n
i,j=1


n

∼GLT

[
κ O
O O

]
t×t

= Etr,s(κ).

We conclude that {An}n ∼GLT κ by Definition 4.1.
THEOREM 4.12. For i = 1, . . . , % and j = 1, . . . , ς , let {An,ij = [a

(n)
ij,ij ]

n
i,j=1}n

be a d-level (ri, sj)-block matrix-sequence, and let κij : [0, 1]d × [−π, π]d → Cri×sj be
measurable. Define the (r, s)-block matrix An = [ [a

(n)
ij,ij ]

j=1,...,ς
i=1,...,% ]ni,j=1 and the r × s matrix-

valued function κ = [κij ]
j=1,...,ς
i=1,...,% , where r =

∑%
i=1 ri and s =

∑ς
j=1 sj . Then,

(4.5) {An}n ∼GLT κ ⇐⇒ {An,ij}n ∼GLT κij for all i = 1, . . . , % and j = 1, . . . , ς.

Moreover, if Bn = [An,ij ]
j=1,...,ς
i=1,...,% , then

(4.6)
(
Pr,N(n) diag

i=1,...,%
PTri,N(n)

)
Bn

(
Ps,N(n) diag

j=1,...,ς
PTsj ,N(n)

)T
= An,

where Pk1,k2 is defined in (2.7).
Proof. We first prove the equivalence in (4.5).
( =⇒ ) This implication follows immediately from Theorem 4.10.
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( ⇐= ) Let An,ij,`k = [(a
(n)
ij,ij)`k]ni,j=1. By Theorem 4.10, from the hypothesis

{An,ij = [a
(n)
ij,ij ]

n
i,j=1}n ∼GLT κij , we infer that

{An,ij,`k}n ∼GLT (κij)`k.

Hence, the thesis {An}n ∼GLT κ follows from Theorem 4.11.
We now prove (4.6). We first note the following: if [Aij ]

j=1,...,ς
i=1,...,% is a block matrix with

Aij of size ri × sj and if we define r =
∑%
i=1 ri and s =

∑ς
j=1 sj , then

ri∑
p=1

sj∑
q=1

e
(r)
p+r1+...+ri−1

(e(ri)p )TAije
(sj)
q (e

(s)
q+s1+...+sj−1

)T

=

ri∑
p=1

sj∑
q=1

e
(r)
p+r1+...+ri−1

(Aij)pq(e
(s)
q+s1+...+sj−1

)T

=

ri∑
p=1

sj∑
q=1

(Aij)pqE
(r,s)
p+r1+...+ri−1,q+s1+...+sj−1

=

s1 · · · sj · · · sς

r1 O O O O O
... O O O O O

ri O O Aij O O

... O O O O O

r% O O O O O

and

(4.7) [Aij ]
j=1,...,ς
i=1,...,% =

%∑
i=1

ς∑
j=1

ri∑
p=1

sj∑
q=1

e
(r)
p+r1+...+ri−1

(e(ri)p )TAije
(sj)
q (e

(s)
q+s1+...+sj−1

)T .

Let

Bn,ij = PTri,N(n)An,ijPsj ,N(n) = PTri,N(n)[a
(n)
ij,ij ]

n
i,j=1Psj ,N(n)(4.8)

= PTri,N(n)

(
n∑

i,j=1

E
(n)
ij ⊗ a

(n)
ij,ij

)
Psj ,N(n)

=

n∑
i,j=1

PTri,N(n)(E
(n)
ij ⊗ a

(n)
ij,ij)Psj ,N(n) =

n∑
i,j=1

a
(n)
ij,ij ⊗ E

(n)
ij ,

where the last equality follows from (2.8). By (4.7),(
diag

i=1,...,%
PTri,N(n)

)
Bn

(
diag

j=1,...,ς
Psj ,N(n)

)
=

(
diag

i=1,...,%
PTri,N(n)

)
[An,ij ]

j=1,...,ς
i=1,...,%

(
diag

j=1,...,ς
Psj ,N(n)

)
= [PTri,N(n)An,ijPsj ,N(n)]

j=1,...,ς
i=1,...,% = [Bn,ij ]

j=1,...,ς
i=1,...,%
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=

%∑
i=1

ς∑
j=1

N(n)ri∑
p′=1

N(n)sj∑
q′=1

e
(N(n)r)
p′+N(n)r1+...+N(n)ri−1

(e
(N(n)ri)
p′ )TBn,ij

· e(N(n)sj)
q′ (e

(N(n)s)
q′+N(n)s1+...+N(n)sj−1

)T

=

%∑
i=1

ς∑
j=1

ri∑
p=1

N(n)∑
u=1

sj∑
q=1

N(n)∑
v=1

e
(N(n)r)
u+N(n)(p−1)+N(n)r1+...+N(n)ri−1

(e
(N(n)ri)
u+N(n)(p−1))

TBn,ij

· e(N(n)sj)

v+N(n)(q−1)(e
(N(n)s)
v+N(n)(q−1)+N(n)s1+...+N(n)sj−1

)T ,

where in the last equality we have used the changes of variable p′ = u+N(n)(p− 1) and
q′ = v +N(n)(q − 1). Note that

e
(N(n)r)
u+N(n)(p−1)+N(n)r1+...+N(n)ri−1

= e
(r)
p+r1+...+ri−1

⊗ e(N(n))
u ,

e
(N(n)ri)
u+N(n)(p−1) = e(ri)p ⊗ e(N(n))

u ,

e
(N(n)s)
v+N(n)(q−1)+N(n)s1+...+N(n)sj−1

= e
(s)
q+s1+...+sj−1

⊗ e(N(n))
v ,

e
(N(n)sj)

v+N(n)(q−1) = e(sj)q ⊗ e(N(n))
v ,

and

N(n)∑
u=1

e(N(n))
u (e(N(n))

u )T =

N(n)∑
v=1

e(N(n))
v (e(N(n))

v )T = IN(n).

Hence, by the properties (2.3)–(2.6) of tensor products,

(
diag

i=1,...,%
PTri,N(n)

)
Bn

(
diag

j=1,...,ς
Psj ,N(n)

)

=

%∑
i=1

ς∑
j=1

ri∑
p=1

N(n)∑
u=1

sj∑
q=1

N(n)∑
v=1

(e
(r)
p+r1+...+ri−1

⊗ e(N(n))
u )(e(ri)p ⊗ e(N(n))

u )TBn,ij

· (e(sj)q ⊗ e(N(n))
v )(e

(s)
q+s1+...+sj−1

⊗ e(N(n))
v )T

=

%∑
i=1

ς∑
j=1

ri∑
p=1

N(n)∑
u=1

sj∑
q=1

N(n)∑
v=1

(e
(r)
p+r1+...+ri−1

(e(ri)p )T ⊗ e(N(n))
u (e(N(n))

u )T )Bn,ij

· (e(sj)q (e
(s)
q+s1+...+sj−1

)T ⊗ e(N(n))
v (e(N(n))

v )T )

=

%∑
i=1

ς∑
j=1

ri∑
p=1

sj∑
q=1

(e
(r)
p+r1+...+ri−1

(e(ri)p )T ⊗ IN(n))Bn,ij

· (e(sj)q (e
(s)
q+s1+...+sj−1

)T ⊗ IN(n)).
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Using (2.8), (4.7), and the expression (4.8) for Bn,ij , we finally obtain

Pr,N(n)

(
diag

i=1,...,%
PTri,N(n)

)
Bn

(
diag

j=1,...,ς
Psj ,N(n)

)
PTs,N(n)

= Pr,N(n)

[
%∑
i=1

ς∑
j=1

ri∑
p=1

sj∑
q=1

(e
(r)
p+r1+...+ri−1

(e(ri)p )T ⊗ IN(n))

(
n∑

i,j=1

a
(n)
ij,ij ⊗ E

(n)
ij

)

· (e(sj)q (e
(s)
q+s1+...+sj−1

)T ⊗ IN(n))

]
PTs,N(n)

= Pr,N(n)

[
n∑

i,j=1

%∑
i=1

ς∑
j=1

ri∑
p=1

sj∑
q=1

e
(r)
p+r1+...+ri−1

(e(ri)p )Ta
(n)
ij,ije

(sj)
q (e

(s)
q+s1+...+sj−1

)T

⊗ E(n)
ij )

]
PTs,N(n)

= Pr,N(n)

[
n∑

i,j=1

[a
(n)
ij,ij ]

j=1,...,ς
i=1,...,% ⊗ E

(n)
ij

]
PTs,N(n) =

n∑
i,j=1

E
(n)
ij ⊗ [a

(n)
ij,ij ]

j=1,...,ς
i=1,...,%

= [ [a
(n)
ij,ij ]

j=1,...,ς
i=1,...,% ]ni,j=1 = An,

which proves the thesis (4.6).

4.8. Existence of a rectangular GLT sequence for any measurable function. The
next theorem proves the analog of the second part of GLT 0 for rectangular GLT sequences.

THEOREM 4.13. Let {n = n(n)}n be a sequence of d-indices such that n → ∞ as
n → ∞, and let κ : [0, 1]d × [−π, π]d → Cr×s be measurable. Then, there exists a d-level
(r, s)-block GLT sequence {An}n ∼GLT κ.

Proof. By GLT 0, for every i = 1, . . . , r and j = 1, . . . , s, there exists {An,ij}n∼GLT κij .
We define Bn = [An,ij ]

j=1,...,s
i=1,...,r and conclude that {Pr,N(n)BnP

T
s,N(n)}n ∼GLT κ by Theo-

rem 4.12.

5. Summary of the theory of rectangular GLT sequences. We summarize in this
section the theory of rectangular GLT sequences developed in Section 4. By comparing this
section with Section 2.8, we see that all properties of square GLT sequences generalize to
rectangular GLT sequences as long as they do not involve spectral symbols or Hermitian
matrices. We remark that property GLT 6 below is a stronger version of GLT 6 and should
therefore be considered not only as a generalization of GLT 6 to rectangular GLT sequences
but also as an addendum to the theory of square GLT sequences developed in [7].

A d-level (r, s)-block GLT sequence {An}n is a special d-level (r, s)-block matrix-
sequence equipped with a measurable function κ : [0, 1]d × [−π, π]d → Cr×s, the so-called
symbol (or kernel). In the properties listed below, unless specified otherwise, the notation
{An}n ∼GLT κ means that {An}n is a d-level (r, s)-block GLT sequence with symbol κ.
GLT 0. If {An}n ∼GLT κ, then {An}n ∼GLT ξ if and only if κ = ξ a.e.

If κ : [0, 1]d × [−π, π]d → Cr×s is measurable and {n = n(n)}n is a sequence of
d-indices such that n→∞ as n→∞, then there exists {An}n ∼GLT κ.

GLT 1. If {An}n ∼GLT κ, then {An}n ∼σ κ.
GLT 3. For every sequence of d-indices {n = n(n)}n such that n→∞ as n→∞,

• {Tn(f)}n ∼GLT κ(x,θ) = f(θ) if f : [−π, π]d → Cr×s is in L1([−π, π]d),
• {Dn(a)}n ∼GLT κ(x,θ) = a(x) if a : [0, 1]d → Cr×s is continuous a.e.,
• {Zn}n ∼GLT κ(x,θ) = Or,s if and only if {Zn}n ∼σ 0.
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GLT 4. Suppose that {An}n ∼GLT κ and {Bn}n ∼GLT ξ, where in this case κ and ξ may
have sizes different from r × s and different from each other. Then,
• {A∗n}n ∼GLT κ

∗,
• {αAn + βBn}n ∼GLT ακ+ βξ for all α, β ∈ C if κ and ξ are summable,
• {AnBn}n ∼GLT κξ if κ and ξ are multipliable,
• {A†n}n ∼GLT κ

† if κ has full rank a.e.
GLT 6. If {An = [a

(n)
ij ]ni,j=1}n is a d-level (r, s)-block GLT sequence with symbol κ and

we restrict each r × s block a(n)ij to the same r̃ × s̃ submatrix ã(n)ij , then we obtain

a d-level (r̃, s̃)-block GLT sequence {Ãn = [ã
(n)
ij ]ni,j=1}n whose symbol κ̃ is the

corresponding r̃ × s̃ submatrix of κ.
If {An,ij = [a

(n)
ij,ij ]

n
i,j=1}n is a d-level (ri, sj)-block GLT sequence with symbol

κij , for i = 1, . . . , % and j = 1, . . . , ς , and if An = [ [a
(n)
ij,ij ]

j=1,...,ς
i=1,...,% ]ni,j=1, then

{An}n is a d-level (r, s)-block GLT sequence with symbol κ = [κij ]
j=1,...,ς
i=1,...,% , where

r =
∑%
i=1 ri and s =

∑ς
j=1 sj . Moreover, if Bn = [An,ij ]

j=1,...,ς
i=1,...,% , then(

Pr,N(n) diag
i=1,...,%

PTri,N(n)

)
Bn

(
Ps,N(n) diag

j=1,...,ς
PTsj ,N(n)

)T
= An,

where Pk1,k2 is the permutation matrix defined in (2.7).
GLT 7. {An}n ∼GLT κ if and only if there exist {Bn,m}n ∼GLT κm such that

{Bn,m}n
a.c.s.−−→ {An}n and κm → κ in measure.

GLT 8. Suppose that {An}n ∼GLT κ and {Bn,m}n ∼GLT κm. Then, {Bn,m}n
a.c.s.−−→ {An}n

if and only if κm → κ in measure.
GLT 9. If {An}n ∼GLT κ, then there exist functions ai,m, fi,m, i = 1, . . . , Nm, such that

• ai,m : [0, 1]d → C belongs to C∞([0, 1]d) and fi,m is a trigonometric monomial
in {eij·θE(r,s)

αβ : j ∈ Zd, 1 ≤ α ≤ r, 1 ≤ β ≤ s},
• κm(x,θ) =

∑Nm

i=1 ai,m(x)fi,m(θ)→ κ(x,θ) a.e.,

• {Bn,m}n =
{∑Nm

i=1Dn(ai,mIr)Tn(fi,m)
}
n

a.c.s.−−→ {An}n.

6. Application to higher-order FE discretizations of systems of DEs. In this section
we provide an example of an application of the theory of rectangular GLT sequences in the
context of higher-order FE discretizations of systems of differential equations (DEs). The
proposed example is an adapted version of the problems considered in [18, 28], which in fact
inspired the writing of this paper.

6.1. Problem formulation. Consider the following system of DEs:

−(a(x)u′(x))′ + v′(x) = f(x), x ∈ (0, 1),

−u′(x)− ρv(x) = g(x), x ∈ (0, 1),

u(0) = 0, u(1) = 0,

v(0) = 0, v(1) = 0,

where ρ is a constant and a ∈ L1([0, 1]). The corresponding weak form reads as follows: find
u, v ∈ H1

0 ([0, 1]) such that, for all w ∈ H1
0 ([0, 1]),

∫ 1

0
a(x)u′(x)w′(x)dx+

∫ 1

0
v′(x)w(x)dx =

∫ 1

0
f(x)w(x)dx,

−
∫ 1

0
u′(x)w(x)dx− ρ

∫ 1

0
v(x)w(x)dx =

∫ 1

0
g(x)w(x)dx.
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6.2. Galerkin discretization. We look for approximations uU, vV of u, v by choosing
two finite-dimensional vector spaces U,V ⊂ H1

0 ([0, 1]) and solving the following discrete
problem: find uU ∈ U and vV ∈ V such that, for all U ∈ U and V ∈ V,

∫ 1

0
a(x)u′U(x)U ′(x)dx+

∫ 1

0
v′V(x)U(x)dx =

∫ 1

0
f(x)U(x)dx,

−
∫ 1

0
u′(x)V (x)dx− ρ

∫ 1

0
v(x)V (x)dx =

∫ 1

0
g(x)V (x)dx.

Let {ϕ1, . . . , ϕN} be a basis of U, and let {ψ1, . . . , ψM} be a basis of V. Then, we can
write uU =

∑N
j=1 ujϕj and vV =

∑M
j=1 vjψj for unique vectors u = (u1, . . . , uN )T and

v = (v1, . . . , vM )T . By linearity, the computation of uU, vV (i.e., of u,v) reduces to solving
the linear system

AN,M

[
u
v

]
=

[
f
g

]
,

where f =
[∫ 1

0
f(x)ϕi(x)dx

]N
i=1

, g =
[∫ 1

0
g(x)ψi(x)dx

]M
i=1

,

(6.1) AN,M =

[
AN (1, 1) AN,M (1, 2)
AN,M (2, 1) AM (2, 2)

]
=

[
AN (1, 1) AN,M (1, 2)

(AN,M (1, 2))T AM (2, 2)

]
,

and

AN (1, 1) =

[∫ 1

0

a(x)ϕ′j(x)ϕ′i(x)dx

]N
i,j=1

,(6.2)

AN,M (1, 2) =

[∫ 1

0

ψ′j(x)ϕi(x)dx

]j=1,...,M

i=1,...,N

,(6.3)

AN,M (2, 1) =

[
−
∫ 1

0

ϕ′j(x)ψi(x)dx

]j=1,...,N

i=1,...,M

(6.4)

=

[∫ 1

0

ϕj(x)ψ′i(x)dx

]j=1,...,N

i=1,...,M

= (AN,M (1, 2))T ,

AM (2, 2) =

[
−ρ
∫ 1

0

ψj(x)ψi(x)dx

]M
i,j=1

.(6.5)

Assuming that AN,M (1, 1) is invertible, the Schur complement of AN,M is the symmetric
matrix given by

SN,M = AM (2, 2)−AN,M (2, 1)(AN (1, 1))−1AN,M (1, 2)(6.6)

= AM (2, 2)− (AN,M (1, 2))T (AN (1, 1))−1AN,M (1, 2).

REMARK 6.1. Suppose that N = Nn and M = Mn depend on a unique fineness pa-
rameter n. If U = V and {ϕ1, . . . , ϕN} = {ψ1, . . . , ψM}, then the sequence {AN,M (i, j)}n
is, up to minor transformations, a square GLT sequence for every i, j = 1, 2. In this case,
the spectral distributions of {AN,M}n and {SN,M}n can be computed through the theory of
square GLT sequences, without resorting to rectangular GLT sequences; see [6, Section 6.4]
and [21, Section 10.6.2]. For stability reasons, however, it is often convenient to choose two
different spaces U,V. This happens, for instance, when U,V have to be chosen so that the
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Ladyzhenskaya-Babuška-Brezzi (LBB) stability condition is met [14], as in the Taylor-Hood
FE discretizations [18]. If U,V are FE spaces of different orders, then {AN,M (i, j)}n is, up
to minor transformations, a rectangular GLT sequence for i 6= j, and the computation of
the spectral distributions of {AN,M}n and {SN,M}n requires the theory of rectangular GLT
sequences (especially GLT 4 and GLT 6, which allow us to “connect” GLT sequences with
symbols of different size).

6.3. B-spline basis functions. Following the higher-order FE approach, the basis func-
tions ϕ1, . . . , ϕN and ψ1, . . . , ψM are chosen as piecewise polynomials of degree ≥ 1. More
precisely, for p, n ≥ 1 and 0 ≤ k ≤ p − 1, let B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] : R → R be
the B-splines of degree p and smoothness Ck defined on the knot sequence

{τ1, . . . , τn(p−k)+p+k+2}

=

{
0, . . . , 0︸ ︷︷ ︸
p+1

,
1

n
, . . . ,

1

n︸ ︷︷ ︸
p−k

,
2

n
, . . . ,

2

n︸ ︷︷ ︸
p−k

, . . . ,
n− 1

n
, . . . ,

n− 1

n︸ ︷︷ ︸
p−k

, 1, . . . , 1︸ ︷︷ ︸
p+1

}
.

We collect here a few properties of B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] that we shall need later on.
For the formal definition of B-splines as well as for the proof of the properties listed below,
see [26]. For more on spline functions, see [15, 27, 29].
• The support of the ith B-spline is given by

(6.7) supp(Bi,[p,k]) = [τi, τi+p+1], i = 1, . . . , n(p− k) + k + 1.

• Except for the first and the last one, all the other B-splines vanish on the boundary of [0, 1],
i.e.,

Bi,[p,k](0) = Bi,[p,k](1) = 0, i = 2, . . . , n(p− k) + k.

• {Bi,[p,k] : i = 1, . . . , n(p− k) + k + 1} is a basis for the space of piecewise polynomial
functions on [0, 1] of degree p and smoothness Ck, that is,

Sn,[p,k] =
{
s ∈ Ck([0, 1]) : s|[ i

n ,
i+1
n ] ∈ Pp for i = 0, . . . , n− 1

}
,

where Pp is the space of polynomials of degree ≤ p. Moreover, the set of functions
{Bi,[p,k] : i = 2, . . . , n(p− k) + k} is a basis for the space

S0n,[p,k] = {s ∈ Sn,[p,k] : s(0) = s(1) = 0}.

• All the B-splines, except for the first k + 1 and the last k + 1, are uniformly shifted-scaled
versions of p− k fixed reference functions β1,[p,k], . . . , βp−k,[p,k], namely the first p− k
B-splines defined on the reference knot sequence

0, . . . , 0︸ ︷︷ ︸
p−k

, 1, . . . , 1︸ ︷︷ ︸
p−k

, . . . , η(p, k), . . . , η(p, k)︸ ︷︷ ︸
p−k

, η(p, k) =

⌈
p+ 1

p− k

⌉
.

The precise formula we shall need later on is the following: setting

ν(p, k) =

⌈
k + 1

p− k

⌉
,
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FIG. 6.1. B-splines B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] for p = 3 and k = 1, with n = 10.
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FIG. 6.2. Reference B-splines β1,[p,k], β2,[p,k] for p = 3 and k = 1.

for the B-splines Bk+2,[p,k], . . . , Bk+1+(n−ν(p,k))(p−k),[p,k] we have

(6.8)
Bk+1+(p−k)(r−1)+t,[p,k](x) = βt,[p,k](nx− r + 1),

r = 1, . . . , n− ν(p, k), t = 1, . . . , p− k.

We point out that the supports of the reference B-splines βt,[p,k] satisfy

(6.9) supp(β1,[p,k]) ⊆ supp(β2,[p,k]) ⊆ . . . ⊆ supp(βp−k,[p,k]) = [0, η(p, k)].

Figures 6.1–6.2 display the graphs of the B-splines B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] for the
degree p = 3 and the smoothness k = 1 and the graphs of the associated reference B-splines
β1,[p,k], β2,[p,k].

The basis functions ϕ1, . . . , ϕN and ψ1, . . . , ψM are defined as follows:

ϕi = Bi+1,[p,k], i = 1, . . . , n(p− k) + k − 1,(6.10)
ψi = Bi+1,[q,`], i = 1, . . . , n(q − `) + `− 1.(6.11)

In particular, we have

U = span(ϕ1, . . . , ϕN ) = S0n,[p,k], N = n(p− k) + k − 1,

V = span(ψ1, . . . , ψM ) = S0n,[q,`], M = n(q − `) + `− 1.

6.4. GLT analysis of the higher-order FE discretization matrices. The higher-order
FE matrices (6.1)–(6.6) resulting from the choice of the basis functions as in (6.10)–(6.11)
will be denoted by An, An(1, 1), An(1, 2), An(2, 1), An(2, 2), Sn, respectively. We therefore
have An(2, 1) = (An(1, 2))T and

An =

[
An(1, 1) An(1, 2)

(An(1, 2))T An(2, 2)

]
,
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An(1, 1) =

[∫ 1

0

a(x)B′j+1,[p,k](x)B′i+1,[p,k](x)dx

]n(p−k)+k−1
i,j=1

,

An(1, 2) =

[∫ 1

0

B′j+1,[q,`](x)Bi+1,[p,k](x)dx

]j=1,...,n(q−`)+`−1

i=1,...,n(p−k)+k−1
,

An(2, 2) =

[
−ρ
∫ 1

0

Bj+1,[q,`](x)Bi+1,[q,`](x)dx

]n(q−`)+`−1
i,j=1

,

Sn = An(2, 2)− (An(1, 2))T (An(1, 1))−1An(1, 2).

The main result of this section is Theorem 6.4, which gives the singular value and spec-
tral distributions of (properly normalized versions of) {An}n and {Sn}n. If the sequences
{n−1An(1, 1)}n, {An(1, 2)}n, {nAn(2, 2)}n were exact (square or rectangular) GLT se-
quences, then Theorem 6.4 would follow immediately from GLT 1, GLT 4, and GLT 6.
Unfortunately, the previous sequences are GLT sequences only up to minor transformations
that, despite being minor, complicate the proof of Theorem 6.4 from a technical point of view.
As we are going to see, the minor transformation we need to turn {n−1An(1, 1)}n into a GLT
sequence is an expansion of each matrix An(1, 1) so as to reach the “right” size. The same
applies to {An(1, 2)}n and {nAn(2, 2)}n. We remark that this expansion technique is quite
common in the GLT context; see, e.g., [6, Section 6] and [7, Section 6].

NOTATION 6.2. Fix a non-negative integerm such thatm(p−k) ≥ k andm(q−`) ≥ `.2
We denote by Ân(1, 1) and Ân(2, 2) the square block diagonal matrices obtained by expanding
An(1, 1) and An(2, 2) as follows:

Ân(1, 1) =

Im(p−k)−k
An(1, 1)

1

 ∈ R(n+m)(p−k)×(n+m)(p−k),

Ân(2, 2) =

Im(q−`)−`
An(2, 2)

1

 ∈ R(n+m)(q−`)×(n+m)(q−`).

We denote by Ân(1, 2) the rectangular block diagonal matrix obtained by expanding An(1, 2)
as follows:

Ân(1, 2) =

Om(p−k)−k,m(q−`)−`
An(1, 2)

0

 ∈ R(n+m)(p−k)×(n+m)(q−`).

We denote by Ân and Ŝn the matrices obtained by expanding An and Sn as follows:

Ân =

[
Ân(1, 1) Ân(1, 2)

(Ân(1, 2))T Ân(2, 2)

]
,

Ŝn = Ân(2, 2)− (Ân(1, 2))T (Ân(1, 1))−1Ân(1, 2);

see Figure 6.3. We define the blocks

2For example, take m = k ∨ `.
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FIG. 6.3. Schematic representation of Ân in the casem(p−k)−k = 2 andm(q− `)− ` = 3. The expanded
matrices Ân(1, 1), Ân(1, 2), (Ân(1, 2))T , Ân(2, 2) are shaded respectively in azure, green, yellow, pink.

K
[s]
[p,k] =

[∫
R
β′j,[p,k](y)β′i,[p,k](y − s)dy

]p−k
i,j=1

, s ∈ Z,

H
[s]
[p,k;q,`] =

[∫
R
β′j,[q,`](y)βi,[p,k](y − s)dy

]j=1,...,q−`

i=1,...,p−k
, s ∈ Z,

M
[s]
[q,`] =

[∫
R
βj,[q,`](y)βi,[q,`](y − s)dy

]q−`
i,j=1

, s ∈ Z,

and the matrix-valued functions

κ[p,k] : [−π, π]→ C(p−k)×(p−k), κ[p,k](θ) =
∑
s∈Z

K
[s]
[p,k]e

isθ,(6.12)

ξ[p,k;q,`] : [−π, π]→ C(p−k)×(q−`), ξ[p,k;q,`](θ) =
∑
s∈Z

H
[s]
[p,k;q,`]e

isθ,(6.13)

µ[q,`] : [−π, π]→ C(q−`)×(q−`), µ[q,`](θ) =
∑
s∈Z

M
[s]
[q,`]e

isθ.(6.14)

Due to the compact support of the reference B-splines (see (6.9)), there are only a finite
number of non-zero blocks K [s]

[p,k], H
[s]
[p,k;q,`], M

[s]
[q,`]. Consequently, the series in (6.12)–(6.14)

are actually finite sums.
LEMMA 6.3. Let a ∈ L1([0, 1]), ρ ∈ R, p, q ≥ 1, 0 ≤ k ≤ p − 1, and 0 ≤ ` ≤ q − 1.

Then,

{n−1Ân(1, 1)}n ∼GLT a(x)κ[p,k](θ),(6.15)

{Ân(1, 2)}n ∼GLT ξ[p,k;q,`](θ),(6.16)

{(Ân(1, 2))T }n ∼GLT (ξ[p,k;q,`](θ))
∗,(6.17)

{nÂn(2, 2)}n ∼GLT −ρµ[q,`](θ).(6.18)
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Proof. We only have to prove (6.16). Indeed, {n−1Ân(1, 1)}n and {nÂn(2, 2)}n are
square GLT sequences, and the proofs of (6.15) and (6.18) have already been given in [6,
Lemma 6.12]. Moreover, the GLT relation (6.17) follows immediately from (6.16) and GLT 4
(take into account that (Ân(1, 2))T = (Ân(1, 2))∗ because Ân(1, 2) is real).

Let us then prove (6.16). By (6.7)–(6.8), for every r = 1, . . . , n− ν(p, k), R = 1, . . . ,
n− ν(q, `), and every t = 1, . . . , p− k, T = 1, . . . , q − `, we have

(Ân(1, 2))(p−k)(m+r−1)+t,(q−`)(m+R−1)+T

= (Ân(1, 2))[m(p−k)−k]+k+(p−k)(r−1)+t,[m(q−`)−`]+`+(q−`)(R−1)+T

= (An(1, 2))k+(p−k)(r−1)+t,`+(q−`)(R−1)+T

=

∫ 1

0

B′`+1+(q−`)(R−1)+T,[q,`](x)Bk+1+(p−k)(r−1)+t,[p,k](x)dx

=

∫
R
B′`+1+(q−`)(R−1)+T,[q,`](x)Bk+1+(p−k)(r−1)+t,[p,k](x)dx

=

∫
R
nβ′T,[q,`](nx−R+ 1)βt,[p,k](nx− r + 1)dx

=

∫
R
β′T,[q,`](y)βt,[p,k](y − r +R)dy = (H

[r−R]
[p,k;q,`])tT

= (Tn+m(ξ[p,k;q,`]))(p−k)(m+r−1)+t,(q−`)(m+R−1)+T .

This means that the submatrix of Ân(1, 2) corresponding to the row indices

i = m(p− k) + 1, . . . , (n+m− ν(p, k))(p− k)

and the column indices

j = m(q − `) + 1, . . . , (n+m− ν(q, `))(q − `)

coincides with the corresponding submatrix of Tn+m(ξ[p,k;q,`]). Thus,

Ân(1, 2) = Tn+m(ξ[p,k;q,`]) +Rn,

where rank(Rn) ≤ (m+ ν(p, k))(p− k) + (m+ ν(q, `))(q − `) = o(n). As a consequence,
{Rn}n ∼σ 0 by Definition 2.5. The thesis (6.16) now follows from GLT 3 – GLT 4.

THEOREM 6.4. Let a ∈ L1([0, 1]), ρ ∈ R, p, q ≥ 1, 0 ≤ k ≤ p− 1, and 0 ≤ ` ≤ q − 1.
Then,

(6.19)
{[
n−1An(1, 1) An(1, 2)
(An(1, 2))T nAn(2, 2)

]}
n

∼σ,λ
[
a(x)κ[p,k](θ) ξ[p,k;q,`](θ)
(ξ[p,k;q,`](θ))

∗ −ρµ[q,`](θ)

]
.

Moreover, if the matrices An(1, 1) are invertible and a 6= 0 a.e., then

(6.20) {nSn}n ∼σ,λ −ρµ[q,`](θ)−
(ξ[p,k;q,`](θ))

∗(κ[p,k](θ))
−1ξ[p,k;q,`](θ)

a(x)
.

Proof. We first prove (6.19). Consider the matrix obtained from the left-hand side of (6.19)
by replacing An(1, 1), An(1, 2), An(2, 2) with Ân(1, 1), Ân(1, 2), Ân(2, 2). By Lemma 6.3
and GLT 6,{

Πn

[
n−1Ân(1, 1) Ân(1, 2)

(Ân(1, 2))T nÂn(2, 2)

]
ΠT
n

}
n

∼GLT

[
a(x)κ[p,k](θ) ξ[p,k;q,`](θ)
(ξ[p,k;q,`](θ))

∗ −ρµ[q,`](θ)

]
,
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where {Πn}n is a sequence of permutation matrices. Hence, by GLT 1,{[
n−1Ân(1, 1) Ân(1, 2)

(Ân(1, 2))T nÂn(2, 2)

]}
n

∼σ,λ
[
a(x)κ[p,k](θ) ξ[p,k;q,`](θ)
(ξ[p,k;q,`](θ))

∗ −ρµ[q,`](θ)

]
.(6.21)

Looking at Figure 6.3, we see that the singular values (resp., eigenvalues) of the matrix in the
left-hand side of (6.21) are given by the singular values (resp., eigenvalues) of the matrix in
the left-hand side of (6.19) plus m(p− k)− k+ 1 singular values (resp., eigenvalues) that are
equal to n−1 plus m(q − `) − ` + 1 singular values (resp., eigenvalues) that are equal to n.
Since m(p− k)− k+m(q− `)− `+ 2 is o(n), (6.19) follows from (6.21) and Definition 2.3.

We now prove (6.20). The proof is completely analogous to the proof of (6.19). Consider
the matrix

nŜn = n(Ân(2, 2)− (Ân(1, 2))T (Ân(1, 1))−1Ân(1, 2))

= nÂn(2, 2)− (Ân(1, 2))T (n−1Ân(1, 1))−1Ân(1, 2).

By Lemma 6.3 and GLT 4,

{nŜn}n ∼GLT −ρµ[q,`](θ)−
(ξ[p,k;q,`](θ))

∗(κ[p,k](θ))
−1ξ[p,k;q,`](θ)

a(x)
.

Hence, by GLT 1,

(6.22) {nŜn}n ∼σ,λ −ρµ[q,`](θ)−
(ξ[p,k;q,`](θ))

∗(κ[p,k](θ))
−1ξ[p,k;q,`](θ)

a(x)
.

Looking at Figure 6.3, we see that the singular values (resp., eigenvalues) of nŜn are given by
the singular values (resp., eigenvalues) of nSn plus m(q − `)− `+ 1 singular values (resp.,
eigenvalues) that are equal to n. Since m(q − `)− `+ 1 is o(n), (6.20) follows from (6.22)
and Definition 2.3.

7. Application to multigrid methods. We outline in this section an application of the
theory of rectangular GLT sequences in the context of multigrid methods. It is an application
similar to the one addressed in [31, Section 3.7]. For simplicity, we focus on two-grid methods
only, and we consider the case of a 1-level 1-block (scalar) GLT sequence {An}n ∼GLT κ(x, θ),
with An of even size n = 2` and κ : [0, 1]× [−π, π]→ C. We also assume that, when {An}n
is interpreted as a 1-level 2-block matrix-sequence (which is possible because n = 2` is even),
we have {An}n ∼GLT κ̃(x, θ) with κ̃ : [0, 1] × [−π, π] → C2×2. Suppose that we want to
solve a linear system with coefficient matrix An by a structure-preserving two-grid method
analogous to the one proposed in [30] for Toeplitz matrices. According to [30, p. 436 and
Section 2.2], the resulting two-grid iteration matrix is given by

TGMn = Sνn · CGCn, CGCn = In − p`n
[
(p`n)∗Anp

`
n

]−1
(p`n)∗An,

where:
• Sn = In − ωAn is the iteration matrix of the relaxed Richardson method with relaxation

parameter ω;
• ν is a positive integer representing the number of smoothing iterations;
• CGCn is the coarse-grid correction matrix;
• p`n = Pn · T `n is the prolongation (or interpolation) matrix of size n× `, and its conjugate

transpose (p`n)∗ is the restriction (or projection) matrix;
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• T `n is the “cutting matrix”, i.e., the matrix of size n× ` given by

T `n =



0
1

0
1

. . .
0
1


, (T `n)ij =

{
1, if i = 2j,

0, otherwise;

• Pn is an n × n matrix such that, when {Pn}n is interpreted as a 1-level 2-block matrix-
sequence, we have {Pn}n ∼GLT ξ(x, θ) for some ξ : [0, 1]× [−π, π]→ C2×2.

We note that T `n = D`(a), where a is the constant function

a(x) =

[
0
1

]
.

We also note that {In}n ∼GLT 1 and {In}n ∼GLT I2, because n = 2` is even and In can be
interpreted as either the 1-level 1-block Toeplitz matrix Tn(1) or the 1-level 2-block Toeplitz
matrix T`(I2). It follows from GLT 3 – GLT 4 that

{TGMn}n ∼GLT (I2 − ωκ̃(x, θ))ν · ς(x, θ), {CGCn}n ∼GLT ς(x, θ),

where

ς(x, θ) = I2 − ξ(x, θ)a(x)
[
(ξ(x, θ)a(x))∗κ̃(x, θ)ξ(x, θ)a(x)

]−1
(ξ(x, θ)a(x))∗κ̃(x, θ)

= I2 −
ξ(x, θ)a(x)(ξ(x, θ)a(x))∗κ̃(x, θ)

(ξ(x, θ)a(x))∗κ̃(x, θ)ξ(x, θ)a(x)
,

provided (ξ(x, θ)a(x))∗κ̃(x, θ)ξ(x, θ)a(x) 6= 0 a.e. in [0, 1]× [−π, π].
REMARK 7.1. While the matrices Sνn and CGCn can be multiplied, their “natural”

symbols 1 − ωκ(x, θ) and ς(x, θ) can not. In such cases, one can proceed as illustrated
above by changing (one or both) the natural symbols to “unnatural” symbols which have
the advantage of being multipliable. A similar consideration applies to the case where two
matrices Bn and Cn have to be added but their natural symbols do not have the same size.

8. Conclusion. We have developed the theory of rectangular (multilevel block) GLT
sequences as an extension of the theory of classical square (multilevel block) GLT sequences
presented in [7]. We have seen that all properties of square GLT sequences obtained in [7]
generalize to rectangular GLT sequences as long as they do not involve spectral symbols or
Hermitian matrices (compare Section 2.8 to Section 5). We have also noted that property
GLT 6 for rectangular GLT sequences is actually a stronger version of the corresponding
property GLT 6 for square GLT sequences. Finally, we have provided in Sections 6–7 two
illustrative applications of the theory of rectangular GLT sequences. Further applications will
be investigated over the years.
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