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SYNCHRONOUS AND ASYNCHRONOUS
OPTIMIZED SCHWARZ METHODS FOR POISSON’S EQUATION

IN RECTANGULAR DOMAINS∗
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Dedicated to Olof B. Widlund on the occasion of his eightieth birthday.

Abstract. Convergence results for optimized Schwarz methods (OSM) applied as solvers for Poisson’s equation
in a bounded rectangular domain with Dirichlet (physical) boundary conditions and zeroth-order (Robin) artificial
transmission conditions between subdomains are presented. The analysis presented applies to a continuous formulation
on an arbitrary number of subdomains with cross points. Both synchronous and asynchronous versions of OSM are
discussed. Convergence theorems are presented, and it is shown numerically that the hypotheses of these theorems
are satisfied for certain configurations of the subdomains. Additional numerical experiments illustrate the practical
behavior of the methods discussed.
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1. Introduction. Our overarching goal is to solve very large linear systems arising from
the discretization of PDEs using parallel iterative methods in extreme-scale supercomputers.
Synchronous iterative algorithms are parallel iterative algorithms in which iterations and
communications are synchronized among processors. In this synchronous paradigm, any load
imbalance or nonuniformity in hardware performance causes processing units to idle at the
synchronization point, waiting for the slowest unit, and thus affecting the overall performance.
Thus, given the heterogeneous and distributed architecture of exascale computers, idle times
in processing units will be an issue in terms of efficiency.

State-of-the-art solvers based on appropriately preconditioned Krylov subspace methods
can be very fast (in terms of iteration count), but they are inherently synchronous methods.
Consequently, when these methods are used as solvers in exascale computers with hundreds of
thousands of processors, the communication among processors is expected to be the bottleneck,
implying low efficiency and long execution times.

Asynchronous iterative algorithms are parallel iterative algorithms in which communica-
tions and iterations are not synchronized among processors. Thus, as soon as a processing unit
finishes its own calculations, it can start the next cycle with the latest data received during a
previous cycle, without waiting for any other processing units to finish their assigned work.
These algorithms increase the number of updates in some processors (with respect to the
synchronous case) but suppress idle times. This usually results in a reduction of the (execution)
time to achieve convergence. For surveys of asynchronous iterations, see [3, 19, 37]. See also
the historical references cited in Section 5.

Classical Schwarz methods are Domain Decomposition (DD) methods in which the
transmission conditions between subdomains are Dirichlet boundary conditions [11, 39].
Optimized Schwarz methods are DD methods in which the transmission conditions contain an
operator of the form ∂

∂ν + Λ, where ν is the normal derivative pointing outwards and Λ is an
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approximation of the Steklov-Poincaré operator by using differential operators [11, 20, 29].
The simplest of such an approximation is called OO0, and Λ is the zeroth-order approximation
of the Steklov-Poincaré operator, i.e., Λ = α, where α is a constant. In other words, this
boundary condition is of Robin type. Since the convergence factor of the method (usually the
spectral radius of the iteration operator) depends on the value of this parameter α, in optimized
Schwarz methods one tunes the value of this boundary parameter to improve the convergence
with respect to the classical Schwarz case (α =∞).

We are exploring the use of optimized Schwarz methods as outer solvers for the solution
of PDEs. These types of outer solvers are fast and can be implemented asynchronously;
see [21, 33]. In this paper, we analyze the convergence properties of an asynchronous
optimized Schwarz method at the continuous level applied as a solver for Poisson’s equation
in a bounded rectangular domain with Dirichlet (physical) boundary conditions.

In [10], a convergence analysis of the classical Schwarz method is presented for a bounded
domain with multiple subdomains, for the case in which the subdomains form a one-way
partition of the domain and in which each overlapped region is shared by two subdomains. See
also [14] for an analysis of optimized Schwarz methods for Poisson’s equation in a rectangular
domain using a one-way subdivision of the domain. In [22] we presented a preliminary
analysis of the convergence of the optimized Schwarz method in the synchronous case for
a problem defined in a bounded domain and for an arbitrary number of subdomains, when
the subdomains form a two-dimensional subdivision containing cross points. In this paper, a
more detailed version of that analysis is presented, and the analysis is extended to include the
asynchronous case.

We mention that the analysis of the synchronous (and asynchronous) optimized Schwarz
iterations in [21, 33] is based on Fourier transforms, and the synchronous method can be
expressed as a linear map from the coefficients representing the Fourier transform at the nth
iteration to those at the (n+ 1)st iteration. Such linear map can be represented by a matrix (of
finite order, usually of order 2p, for p subdomains or strips). Thus, for this finite-dimensional
operator one can use results for the analysis of asynchronous iterations such as those in
[7, 9, 15] (see also [19]). In [17] and [35] the convergence conditions for the asynchronous
iterations is extended to infinite-dimensional operators. Here, for the decomposition with cross
points, we need to use a different approach, and we obtain an infinite-dimensional operator T̂ .
For our convergence proof of the asynchronous method for the infinite-dimensional operator,
we create special infinite-dimensional boxes so that the hypotheses of the convergence theorem
from [7] are satisfied.

Our contribution is manifold. We use a generalized Fourier series to represent each of
the four components of the error of the synchronous optimized Schwarz iterations for the
rectangular subdomains with cross-points (see Section 4). This representation is substantially
different and more difficult to obtain than the use of a Fourier transform (which cannot be
applied in this case). We prove that these series converge uniformly and that we can interchange
the order of the summation and the derivatives. In this manner we can show that these series
indeed represent the error of the synchronous (or asynchronous) iterations. A lot of the work
consists of analyzing the nature of these series. These results allow us to write the synchronous
iteration as a map T̂ from the coefficients of these series at iteration n to the coefficients
at iteration n + 1. We approximate this infinite-dimensional operator by considering an
appropriate truncation of the generalized Fourier series and the finite-dimensional operator
T̂kmax

that maps the vectors containing the coefficients of the truncated series from step n
to step n + 1; see the definition of these operators in Section 4. We prove convergence
results using appropriate hypotheses on the finite-dimensional operators T̂kmax , kmax ∈ N, for
the synchronous case and on the infinite-dimensional operator T̂ for the asynchronous case
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(Sections 4 and 6) and show numerically that for certain configurations of the subdomains
these hypotheses hold. In fact, it is computationally very inexpensive to test these hypotheses.
In addition, we provide empirically the optimal value of the Robin parameter α as a function
of the problem parameters (Section 8).

We mention here that our convergence results, both in the synchronous (Section 4) and
asynchronous settings (Section 6), are the first such proofs for the case of a rectangular
(bounded) domain with cross-points, with the exception of the preliminary summarized
exposition in our conference paper [22].

One way to look at our contribution is that we took a very hard problem (convergence
analysis on a bounded domain with cross points), and by considering the problem at the
continuous level and proving an appropriate convergence theorem, we transformed it into
a simple computational problem. Namely, examining the spectral radius of a small matrix,
whose order is not related to the number of degrees of freedom of the discretized PDE.
Furthermore, in this manner it is possible to analyze the effect of the parameters of the domain
decomposition (amount of overlap, number of subdomains, size of the subdomains) on the
bound of the convergence rate of the method.

Numerical experiments in Section 9 illustrate our theoretical results and complement the
numerical results in [14, 33], showing that indeed asynchronous optimized Schwarz methods
can be effective; see also [23]. Several appendices present detailed proofs of some of the
results mentioned in the paper. By postponing some of the proofs to the end of the paper, we
hope that the reader can capture its essence without being distracted by the technical details.

2. Formulation of the problem. We want to solve Poisson’s equation in a rectangular
domain subject to nonhomogeneous Dirichlet boundary conditions, i.e.,

(2.1)

{
−∆u = f in Ω,

u = g on ∂Ω,

where Ω = [0, L1]× [0, L2].

We divide the physical domain into p×q overlapping rectangular subdomains. To simplify
the presentation, we consider square subdomains where each side is of length H and we have
the same overlap on each side, but the analysis presented here can easily be extended to
arbitrary rectangles and an arbitrary amount of overlap (as long as the overlap does not cover
the whole subdomain—a minimal assumption). Each of these subdomains is represented by a
pair of indexes, (s, r), with s ∈ {1, . . . , p} and r ∈ {1, . . . , q}. Let h be the length of the side
of each interior square subdomain (i.e., subdomains not touching the physical boundary) as if
it were a partition with no overlap. That is, by shrinking each of the overlapping subdomains
by the amount γ on each side which is not a boundary of Ω, we obtain the nonoverlapping
subdomains which form a partition of Ω. We have then overlapping square subdomains with
side H = h + 2γ and can use γ as a parameter to quantify the amount of overlap between
subdomains; see Figure 2.1. We will later use a normalized value of this overlap, namely
γ̄ = γ/H .
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FIG. 2.1. Example of a 3× 3 decomposition of a square domain.

The optimized Schwarz (OS) iteration process associated with problem (2.1) and with
OO0 transmission conditions is defined, for an interior subdomain (i.e., for
1 < s < p, 1 < r < q ), by

(2.2)



−∆u
(s,r)
n+1 = f in Ω(s,r),

−
∂u

(s,r)
n+1

∂x
+ αu

(s,r)
n+1 = −∂u

(s−1,r)
n

∂x
+ αu(s−1,r)

n for x = (s− 1)h− γ,

∂u
(s,r)
n+1

∂x
+ αu

(s,r)
n+1 =

∂u
(s+1,r)
n

∂x
+ αu(s+1,r)

n for x = sh+ γ,

−
∂u

(s,r)
n+1

∂y
+ αu

(s,r)
n+1 = −∂u

(s,r−1)
n

∂y
+ αu(s,r−1)

n for y = (r − 1)h− γ,

∂u
(s,r)
n+1

∂y
+ αu

(s,r)
n+1 =

∂u
(s,r+1)
n

∂y
+ αu(s,r+1)

n for y = rh+ γ,

where ∂
∂x and ∂

∂y are, in this instance, normal derivatives1. The parameter α is the one
that we want to tune to minimize the bound for the convergence rate. The subdomains
touching the boundaries have one or two boundaries that are actually physical (not artificial)
boundaries. The equations for the subdomains touching the boundaries are similar to (2.2)
with the exception that one or two of the boundary conditions are Dirichlet, namely the ones
associated with the physical boundaries.

Equation (2.2) simply says that we solve the local problem (in Ω(s,r)) with Robin boundary
conditions, using as boundary values from the neighboring subdomains the iterates from the
previous iteration.

We want to study the convergence of the OS iteration represented by (2.2) and the
analogous equations for subdomains touching the boundaries. To that end, let us define the
error ηn = un − u∗, where u∗ is the solution of (2.1). Thus, the error η(s,r)

n is the nth iterate

1As mentioned in the introduction, the usual formulation of the OO0 condition is with the normal derivative
across the artificial interfaces.
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of (2.2), with f = 0, for the interior subdomains. We have that ηn = (η
(1,1)
n , . . . , η

(p,q)
n ). A

convergence analysis of the OS iteration is therefore equivalent to analyzing the convergence
to zero of each of the errors η(s,r)

n . The plan is to write the restriction of the error to each
subdomain in terms of a set of generalized Fourier series and then recast the OS iteration (with
f = 0 and g = 0) as an iteration for the (infinite) vector containing the coefficients of these
generalized Fourier series.

3. Recasting the OS iteration as a new fixed point iteration. To obtain the new for-
mulation, we begin by analyzing the local error in an interior subdomain. Let η(s,r)

n be the
local error after n iterations corresponding to the subdomain (s, r). As already mentioned, by
linearity, we can see that the local error for the interior subdomains of the iteration process is
described by (2.2) with f = 0. Furthermore, following a standard approach as described, e.g.,
in [24], by the superposition principle we can write η(s,r)

n = η
(s,r)
n,1 + η

(s,r)
n,2 + η

(s,r)
n,3 + η

(s,r)
n,4 ,

where η(s,r)
n,i , i = 1, . . . , 4, is the solution of (2.2) with f = 0 and with one nonhomogeneous

boundary condition and the rest homogeneous. We use the following convention: i = 1
corresponds to the case where the non-homogeneous boundary condition is at the bottom,
i = 2 to the case with non-homogeneous boundary condition on the right, i = 3 at the top,
and i = 4 on the left. To distinguish between the global variables (x, y), which are Cartesian
coordinates with respect to the origin placed at the bottom left corner of Ω, and local variables,
which are Cartesian coordinates within each subdomain with the origin coinciding with the
bottom left corner of

Ω(s,r) = [(s− 1)(H − 2γ), sH − 2(s− 1)γ]× [(r − 1)(H − 2γ), rH − 2(r − 1)γ],

considered as the square (0, H)2, we denote the latter by (x`, y`). Thus, the relation between
the local coordinates, denoted by (x`, y`), and the global coordinates, denoted by (x, y), is
given by the following formulas:

(3.1) x` = x− (s− 1)(H − 2γ), y` = y − (r − 1)(H − 2γ).

With this notation, we can explicitly write the equations for each of the four components of
the error as follows.

(3.2)



−∆η
(s,r)
n+1,1 = 0 in (0, H)2,

−
∂η

(s,r)
n+1,1

∂x`
+ αη

(s,r)
n+1,1 = 0 for x` = 0,

∂η
(s,r)
n+1,1

∂x`
+ αη

(s,r)
n+1,1 = 0 for x` = H,−∂η(s,r)

n+1,1

∂y`
+ αη

(s,r)
n+1,1

 (x`, y`) =

(
−
∂η

(s,r−1)
n

∂y`
+ αη

(s,r−1)
n

)
(x`, H − 2γ) for y` = 0,

∂η
(s,r)
n+1,1

∂y`
+ αη

(s,r)
n+1,1 = 0 for y` = H,
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(3.3)



−∆η
(s,r)
n+1,2 = 0 in (0, H)2,

−
∂η

(s,r)
n+1,2

∂x`
+ αη

(s,r)
n+1,2 = 0 for x` = 0,∂η

(s,r)
n+1,2

∂x`
+ αη

(s,r)
n+1,2

 (x`, y`) =

(
∂η

(s+1,r)
n

∂x`
+ αη

(s+1,r)
n

)
(2γ, y`) for x` = H,

−
∂η

(s,r)
n+1,2

∂y`
+ αη

(s,r)
n+1,2 = 0 for y` = 0,

∂η
(s,r)
n+1,2

∂y`
+ αη

(s,r)
n+1,2 = 0 for y` = H,

(3.4)



−∆η
(s,r)
n+1,3 = 0 in (0, H)2,

−
∂η

(s,r)
n+1,3

∂x`
+ αη

(s,r)
n+1,3 = 0 for x` = 0,

∂η
(s,r)
n+1,3

∂x`
+ αη

(s,r)
n+1,3 = 0 for x` = H,

−
∂η

(s,r)
n+1,3

∂y`
+ αη

(s,r)
n+1,3 = 0 for y` = 0,∂η

(s,r)
n+1,3

∂y`
+ αη

(s,r)
n+1,3

 (x`, y`) =

(
∂η

(s,r+1)
n

∂y`
+ αη

(s,r+1)
n

)
(x`, 2γ) for y` = H,

(3.5)



−∆η
(s,r)
n+1,4 = 0 in (0, H)2,−∂η(s,r)

n+1,4

∂x`
+ αη

(s,r)
n+1,4

 (x`, y`) =

(
−
∂η

(s−1,r)
n

∂x`
+ αη

(s−1,r)
n

)
(H − 2γ, y`) for x` = 0,

∂η
(s,r)
n+1,4

∂x`
+ αη

(s,r)
n+1,4 = 0 for x` = H,

−
∂η

(s,r)
n+1,4

∂y`
+ αη

(s,r)
n+1,4 = 0 for y` = 0,

∂η
(s,r)
n+1,4

∂y`
+ αη

(s,r)
n+1,4 = 0 for y` = H.

The benefit of splitting the error into four parts, where each part satisfies three homoge-
neous boundary conditions, is that the equations defining each part of the local error can be
solved using separation of variables, leading to a series representation of each part of the error,
where each term of the series is the product of two functions of one variable and their product
is a harmonic function in 2D. Moreover, the explicit expressions of these functions are easily
obtained by solving simple ODEs. In what follows we show how to construct these series for
part 1 of the error in the interior subdomain (s, r), i.e., for η(s,r)

n,1 . The series representation of
the other parts of the error can be obtained by a similar procedure, and it is therefore omitted
for brevity.

The goal is to write the solution of each component of the error, i.e., the solutions of
the equations (3.2)–(3.5) as generalized Fourier series in one of the variables while the other
variable remains fixed. Each term of such series contains a product of two functions. These
functions are solutions of certain ODEs, which we describe now.
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Let φm be the solution of

(3.6)



d2φm
dx2

`

(x`) + (
zm
H

)2φm(x`) = 0 for x` ∈ (0, H),

−dφm
dx`

(x`) + αφm(x`) = 0 for x` = 0,

dφm
dx`

(x`) + αφm(x`) = 0 for x` = H,

and let ψm be the solution of

(3.7)


d2ψm
dx2

`

(y`)− (
zm
H

)2ψm(y`) = 0 for y` ∈ (0, H),

−dψm
dx`

(y`) + αψm(y`) = 0 for y` = 0.

Then, we have that the solutions of these systems are

(3.8) φm(x`) =
ᾱ

zm
sin
(zmx`

H

)
+ cos

(zmx`
H

)
and

(3.9) ψm(y`) =
ᾱ

zm
sinh

(zmy`
H

)
+ cosh

(zmy`
H

)
,

where {zm}m∈N is the set of solutions of the transcendental equation

(3.10) (ᾱ2 − z2) sin(z)− (2zᾱ) cos(z) = 0

and labeled so that

(3.11) z1 < z2 < · · ·

and where ᾱ = αH is the “normalized" Robin parameter, i.e., the Robin parameter times the
width of the subdomain.

We begin by observing that the product of these functions is harmonic. The proof of the
following lemma is given in Appendix A.

LEMMA 3.1. The function vm : [0, 1]2 → R defined as

(3.12) vm(x`, y`) = φm(x`)ψm(H − y`)

is harmonic.
As a consequence, we have that the function (3.12) satisfies Laplace’s equation in (0, H)2

and the three homogeneous boundary conditions in (3.2). Given that Laplace’s equation and
these boundary conditions are homogeneous, by the superposition principle we have that
any linear combination of {φm(x`)ψm(H − y`)} also satisfies Laplace’s equation and the
homogeneous boundary conditions. Then, the series

∞∑
m=1

Amφm(x`)ψm(H − y`)
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also satisfies these equations provided that the order of infinite summation and differentiation
commutes. In Theorem 3.2 we show that the series

(3.13) v(x`, y`) =

∞∑
m=1

Bm

z
5/2
m

φm(x`)ψm(H − y`)

satisfies (3.2) with the appropriate choice of {Bm}m∈N. The reason for writing the series (3.13)
in that form is to show that, given that {φm}m∈N and {ψm/ψm(H)}m∈N are uniformly
bounded in (0, H), if {Bm}m∈N is uniformly bounded, then the terms of the series decay at
least as fast as 1/z

5/2
m . As shown in Lemma B.1 in Appendix B, this rate of decay of the terms

of the series is enough to ensure that the order of summation and differentiation commutes for
that series.

We also comment on the hypotheses of Theorem 3.2 below, whose proof is given in
Appendix C. One of them is that the initial error η0 is piecewise C3 in Ω. Note that when
f ∈ C1(Ω) we have u∗ ∈ C3(Ω). Then, the condition η0 ∈ C3(Ω) is easily obtained, for
example, with u0 = 0. The other is that 2γ < H , that is, that the overlapped regions do not
cover the whole subdomain. This is of course very natural, and in practice it is not a real
restriction.

Observe that (3.6) is a regular Sturm-Liouville eigenvalue problem with eigenvalues
λm = (zm/H)2. By the Sturm-Liouville theory, {φm}m∈N is a complete orthogonal set
in [0, H]; see, e.g., [24, pp. 174–178]. Therefore, the expression (3.13) can be seen as a
generalized Fourier series in the x`-variable. In Theorem 3.2 we use the orthogonality of
{φm}m∈N to determine the values of the coefficients Bm. Recall that one of the benefits of
expanding the error parts as linear combinations of the product φmψm is that this product is
harmonic and therefore any truncation of the series (3.13) is also harmonic.

THEOREM 3.2. Let u0 be the initial approximation of the solution of (2.1) and such that
the initial error η0 = u0−u∗ is piecewise C3 in Ω. Assume further that the overlap γ is small
enough so that 2γ < H . Then, the four parts of the local error of the interior subdomains can
be written as

η
(s,r)
n,1 (x`, y`) =

∞∑
m=1

B
(s,r)
n,m,1

z
5/2
m ψm(H)

φm(x`)ψm(H − y`) ,(3.14)

η
(s,r)
n,2 (x`, y`) =

∞∑
m=1

B
(s,r)
n,m,2

z
5/2
m ψm(H)

φm(y`)ψm(x`) ,(3.15)

η
(s,r)
n,3 (x`, y`) =

∞∑
m=1

B
(s,r)
n,m,3

z
5/2
m ψm(H)

φm(x`)ψm(y`) ,(3.16)

η
(s,r)
n,4 (x`, y`) =

∞∑
m=1

B
(s,r)
n,m,4

z
5/2
m ψm(H)

φm(y`)ψm(H − x`) ,(3.17)

where φm and ψm are given by (3.8) and (3.9), respectively, and

(3.18) |B(s,r)
n,m,i| ≤M

(s,r)
n

for all m ∈ N and some M (s,r)
n > 0.

We note that (3.14) and (3.16) are generalized Fourier series in the variable x`, while (3.15)
and (3.17) are generalized Fourier series in the variable y`.

Theorem 3.2 provides explicit series expansions of each part of the error in the interior
subdomains. The corresponding series expansions of the different parts of the errors in

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

752 J. C. GARAY, F. MAGOULÈS, AND D. B. SZYLD

subdomains not in the interior, i.e., those along the boundaries of the domain Ω have a similar
form, but the functions involved are a little different, precisely to account for the values at the
boundary. For completeness, they are presented in detail in the following.

The functions for the generalized Fourier series for subdomains on the boundary are φ(b)
m ,

the solutions of 

d2φ
(b)
m

dx2
`

(x) + (
z̃m
H

)2φ(b)
m (x) = 0 for x ∈ (0, H),

φ(b)
m (x) = 0 for x = 0,

dφ
(b)
m

dx`
(x) + αφ(b)

m (x) = 0 for x = H,

and the functions ψ(b)
m which solve
d2ψ

(b)
m

dx2
`

(x)− (
z̃m
H

)2ψ(b)
m (x) = 0 for x ∈ (0, H),

ψ(b)
m (x) = 0 for x = 0.

The solution of these systems are

(3.19) ψ(b)
m (x) := sinh

(
z̃mx

H

)
and

(3.20) φ(b)
m (x) := sin

(
z̃mx

H

)
,

where {z̃m}m∈N are such that z̃1 < z̃2 < · · · and z̃m satisfies the transcendental equation

(3.21) ᾱ sin(z̃) + z̃ cos(z̃) = 0 .

As was the case for the basis functions for the interior subdomains {φm}, the set of
these new basis functions {φ(b)

m } is a complete orthogonal set in [0, H] that spans the set
of piecewise continuous functions. For subdomains on the corners, two of the boundary
conditions are already homogeneous (zero Dirichlet boundary conditions). Thus, we only have
two non-homogeneous boundary conditions in this case, and therefore we only need to divide
the error of the corner subdomains into two parts (i.e., if we split the error in four parts, two of
them are zero). However, we will keep the same convention for the values of the index i as
before. Thus, for the subdomain on the bottom-left corner we have that i = 2, 3, which means
that we only have non-homogeneous boundary conditions on the right and top sides of the
subdomain. Using separation of variables and the superposition principle, the series expansion
of the parts of the local errors of the corner subdomains at the nth iteration can be written as

η(1,q)
n (x`, y`) =

∞∑
m=1

(ᾱ+ 1/z̃m)B
(1,q)
n,m,1

z̃
5/2
m cosh(z̃m)

φ(b)
m (x`)ψ

(b)
m (y` −H)

+

∞∑
m=1

(ᾱ+ 1/z̃m)B
(1,q)
n,m,2

z̃
5/2
m cosh(z̃m)

φ(b)
m (y` −H)ψ(b)

m (x`),

(3.22)
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η(p,q)
n (x`, y`) =

∞∑
m=1

(ᾱ+ 1/z̃m)B
(p,q)
n,m,1

z̃
5/2
m cosh(z̃m)

φ(b)
m (x` −H)ψ(b)

m (y` −H)

+

∞∑
m=1

(ᾱ+ 1/z̃m)B
(p,q)
n,m,4

z̃
5/2
m cosh(z̃m)

ψ(b)
m (x` −H)φ(b)

m (y` −H),

(3.23)

η(p,1)
n (x`, y`) =

∞∑
m=1

(ᾱ+ 1/z̃m)B
(p,1)
n,m,3

z̃
5/2
m cosh(z̃m)

φ(b)
m (x` −H)ψ(b)

m (y`)

+

∞∑
m=1

(ᾱ+ 1/z̃m)B
(p,1)
n,m,4

z̃
5/2
m cosh(z̃m)

ψ(b)
m (x` −H)φ(b)

m (y`),

(3.24)

η(1,1)
n (x`, y`) =

∞∑
m=1

(ᾱ+ 1/z̃m)B
(1,1)
n,m,2

z̃
5/2
m cosh(z̃m)

ψ(b)
m (x`)φ

(b)
m (y`)

+

∞∑
m=1

(ᾱ+ 1/z̃m)B
(1,1)
n,m,3

z̃
5/2
m cosh(z̃m)

φ(b)
m (x`)ψ

(b)
m (y`).

(3.25)

We need these new functions φ(b)
m and ψ(b)

m because, unlike for the interior subdomains case
where all of the boundary conditions are of Robin type, in the case of subdomains touching
the boundary, there are mixed boundary conditions, where on some sides they are of Dirichlet
type and on the others they are of Robin type. The series representation of the local errors
of the subdomains touching the boundary that are not corners (i.e., on the sides) at the nth
iteration are

η(1,r)
n (x`, y`) =

∞∑
m=1

B
(1,r)
n,m,1

z̃
5/2
m ψm(H)

φ(b)
m (x`)ψm(H − y`)

+

∞∑
m=1

B
(1,r)
n,m,2

z
5/2
m cosh(z̃m)

φm(y`)ψ
(b)
m (x`)

+

∞∑
m=1

B
(1,r)
n,m,3

z̃
5/2
m ψm(H)

φ(b)
m (x`)ψm(y`),

(3.26)

η(p,r)
n (x`, y`) =

∞∑
m=1

B
(p,r)
n,m,1

z̃
5/2
m ψm(H)

φ(b)
m (x` −H)ψm(H − y`)

+

∞∑
m=1

B
(p,r)
n,m,3

z̃
5/2
m ψm(H)

φ(b)
m (x` −H)ψm(y`)

+

∞∑
m=1

B
(p,r)
n,m,4

z
5/2
m cosh(z̃m)

φm(y`)ψ
(b)
m (x` −H),

(3.27)

η(s,1)
n (x`, y`) =

∞∑
m=1

B
(s,1)
n,m,4

z̃
5/2
m ψm(H)

φ(b)
m (y`)ψm(H − x`)

+

∞∑
m=1

B
(s,1)
n,m,2

z
5/2
m cosh(z̃m)

φ(b)
m (y`)ψ

(b)
m (x`)

+

∞∑
m=1

B
(s,1)
n,m,3

z̃
5/2
m cosh(z̃m)

φm(x`)ψ
(b)
m (y`),

(3.28)
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η(s,q)
n (x`, y`) =

∞∑
m=1

B
(s,q)
n,m,1

z̃
5/2
m cosh(z̃m)

φm(x`)ψ
(b)
m (H − y`)

+

∞∑
m=1

B
(s,q)
n,m,2

z̃
5/2
m ψm(H)

φ(b)
m (y` −H)ψm(x`)

+

∞∑
m=1

B
(s,q)
n,m,4

z
5/2
m ψm(H)

φ(b)
m (H − y`)ψm(H − x`).

(3.29)

We pause here to note that the expressions of the errors at the nth iteration in each of the
p× q subdomains described by the series (3.14)–(3.17), (3.22)–(3.29), can be written in an
encompassing manner as a series of the form

(3.30) η(s,r)
n (x`, y`) =

4∑
i=1

∞∑
m=1

B
(s,r)
n,m,iϕ

(s,r)
m,i (x`, y`; ᾱ,H, zm, z̃m),

where the functions ϕ(s,r)
m,i depend also on the parameters ᾱ,H , and on either zm, the solutions

of equation (3.10), or z̃m, the solutions of equation (3.21), and these series converge uniformly.
In fact, the expression (3.30) can be seen simply as a shorthand for each of the expressions in
(3.14)–(3.17), (3.22)–(3.29).

We are now ready to determine a new fixed point iteration which is equivalent to the
optimized Schwarz method given by (2.2) together with the corresponding equations for the
subdomains on the boundary. We want an operator mapping the vector of all the local error
series coefficients at iteration n to the vector of coefficients at iteration n + 1. To that end,
plugging the series expansion of η(s,r)

n+1,i into its corresponding nonhomogeneous boundary

conditions, multiplying both sides of the resulting equation by φk (φ(b)
k ), integrating over

[0, H], and using the orthogonality property of the set {φm}m∈N

({
φ

(b)
m

}
m∈N

)
, we obtain2

the expression of the error series coefficients at iteration n+ 1 in terms of those at iteration n.
For interior subdomains that are not adjacent to subdomains touching the boundary, we
have, for example, the expression for B(s,r)

n+1,k,1 given in equation (C.16) in Appendix C. The
formulas for the coefficients of the error series related to subdomains touching the boundary
are similar.

We mention in passing that one can see in (C.16) that coefficients of frequency k at
iteration n+1 depend not only on the coefficients of the error series at iteration n of frequency k,
but also on the coefficients of other frequencies. In other words, this means that error modes
of different frequencies are coupled. A phenomenon that does not occur when a one-way
decomposition is used.

Let Bn be the infinite vector containing all the error series coefficients at iteration n, i.e.,
Bn = (b

(n)
1 , b

(n)
2 , . . .) with

b
(n)
j ∈

{
B

(s,r)
n,k,i : s ∈ {1, . . . , p}, r ∈ {1, . . . , q}, k ∈ N, i ∈ {1, . . . , 4}

}
.

Then, the relation between the coefficients of the local errors can be written as

Bn+1 = T̂Bn,

2We develop these formulas using the program Mathematica.
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where T̂ : R∞ → R∞ is an infinite matrix. The coupling between modes of different
frequencies implies that every row of the infinite matrix T̂ is nonzero. We can write this
operator as T̂ = [(T̂ (1,1))T , . . . , (T̂ (p,q))T ]T , where T̂ (s,r) is a local operator such that
B

(s,r)
n+1 = T̂ (s,r)Bn with B

(s,r)
n+1 being a vector containing all the error series coefficients of the

local problem (s, r) at iteration (n+ 1); see Figure 3.1. That is, we can think of this infinite
matrix T̂ as p× q block rows (of infinite size).

FIG. 3.1. Schematic representation of the infinite matrix T̂ and the vector Bn.

For the initial error η0 we have

∆η0 = ∆u0 −∆u∗ = ∆u0 − f.

Note that the initial approximation u0 need not be such that ∆u0 = f . Therefore, ∆η0 may not
be harmonic. Then we cannot assume that η(s,r)

0 can be written as a sum of the series (3.14)–
(3.17), (3.22)–(3.29). However, after computing u(s,r)

1 using the corresponding restriction of
u0 on the right-hand side of the corresponding local equations for the (s, r)-subdomain, we
have that ∆u

(s,r)
1 = f (s,r), ∆η

(s,r)
1 = 0, and the error η(s,r)

1 can be written in terms of the
four parts given by the series (3.14)–(3.17), (3.22)–(3.29). From this it follows that we can
represent η1 by the vector B1. For n ≥ 1 there is a one-to-one correspondence between ηn
and Bn. Hence, we can consider B1 as the starting point for the new fixed point iteration with
the operator T̂ .

It follows then that in order to study the convergence of the optimized Schwarz method (2.2)
and its asynchronous version defined later in Section 5, it suffices to study the properties of
the operator T̂ . We have provided a general procedure of how to compute the coefficients of
the operator T̂ . Each such coefficient is indexed by two indices, and each of these indices is
determined by four numbers: the subdomain indices (s, r), with s = 1, . . . , p, r = 1, . . . , q,
the index indicating which of the four parts of the errors we are considering, i = 1, . . . , 4, and
the mode k = 1, 2, . . . ,∞, in the series expansion. For completeness, we provide in the rest of
this section an explicit representation of the entries of this operator for the case of 1 < s < p,
1 < r < q. The cases of subdomains on the boundary of Ω are similar. Furthermore, since
in some of our analysis we use a truncated version of this infinite operator T̂ , we develop an
index system for that case as follows.

Consider the generalized Fourier series (3.14)–(3.17), (3.22)–(3.29) representing the er-
rors at the nth iteration. Let us truncate each of them after kmax terms. Consider then the
finite matrix T̂kmax

which is the submatrix of T̂ mapping the coefficients of these truncated
series from the nth iteration to the (n + 1)st iteration. The vector Bkmax

n is similarly trun-
cated. The jth entry of the vector Bkmax

n is denoted by b(n)
j . We enumerate the error series
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coefficients as entries of Bkmax
n by pairing each coefficient with a global index. The global

index j = j(s, r, i, k, p, q) of the coefficient B(s,r)
n,k,i for a fixed value of kmax is given in the

following expression.

j =



(i− 2) ∗ kmax + k,
if (s, r) = (1, 1),

(3 ∗ (s− 2) + i) ∗ kmax + k,
if 1 < s < p, r = 1,

(3 ∗ (p− 2) + i− 1) ∗ kmax + k,
if s = p, r = 1,

(4 + 3 ∗ (p− 2) + (6 + 4 ∗ (p− 2)) ∗ (r − 2) + (i− 1)) ∗ kmax + k,
if s = 1, 1 < r < q,

(4 + 3 ∗ (p− 2) + (6 + 4 ∗ (p− 2)) ∗ (r − 2) + 3 + 4 ∗ (s− 2) + (i− 1)) ∗ kmax + k,
if 1 < s < p, 1 < r < q,

(4 + 3 ∗ (p− 2) + (6 + 4 ∗ (p− 2)) ∗ (r − 2) + 3 + 4 ∗ (p− 2) + (Ψ(i, s, r, p, q)− 1)) ∗ kmax + k; ,
if s = p, 1 < r < q,

(4 + 3 ∗ (p− 2) + (6 + 4 ∗ (p− 2)) ∗ (q − 2) + (i− 1)) ∗ kmax + k,
if s = 1, r = q,

(4 + 3 ∗ (p− 2) + (6 + 4 ∗ (p− 2)) ∗ (q − 2) + 2 + 3 ∗ (s− 2) + (Ψ(i, s, r, p, q)− 1)) ∗ kmax + k,
1 < s < p, r = q

(4 + 3 ∗ (p− 2) + (6 + 4 ∗ (p− 2)) ∗ (q − 2) + 2 + 3 ∗ (p− 2) + (i− 1)/3) ∗ kmax + k,
s = p, r = q

10 ∗ kmax + (i− 1) ∗ kmax + k,
p = 3, q = 3, s = 2, r = 2

14 ∗ kmax + (i− 1) ∗ kmax + k,
p = 3, q = 3, s = p, 1 < r < q,

where the function Ψ is given by

Ψ(i, s, r, p, q) =



1, if s = p, i = 1,

2, if s = p, i = 3,

3, if s = p, i = 4,

1, if r = q, i = 1,

2, if r = q, i = 2,

3, if r = q, i = 4.

The function Ψ takes the label of the index of the subdomain touching the boundary and returns
the relative position among the active indexes for the given subdomain. It was introduced to
identify the values of the index i for subdomains touching the boundary, given that for these
subdomains i does not assume all the values of {1, 2, 3, 4}. For example, for the subdomains
that are not corners and are touching the right boundary, i can only assume the values 1, 3,
or 4. For different values of kmax, the vector has different lengths, and the indexing changes.

Thus, we have Bkmax
n = (b

(n)
1 , b

(n)
2 , . . . , b

(n)
` ), where b(n)

` = B
(s,r)
n,m,i, for s, r, n,m, i such

that ` = j(s, r, i,m, p, q). The tlß̂,lĵ -entry of T̂kmax
is the factor that multiplies the coefficient

B
(s̃,r̃)

n,m̃,̃i
such that j(s̃, r̃, ĩ, m̃, p, q) = lĵ in the formula of the coefficient B(s,r)

n+1,m,i such that
j(s, r, i,m, p, q) = lß̂. Thus, the right-hand side of equation (C.16) with the summation
indexes going from m = 1 to m = kmax can be seen as the result of multiplying the row of
T̂kmax

corresponding to the global index of B(s,r)
n,k,1 and the vector Bkmax

n . Then, if lß̂ is the

global index of the coefficient B(s,r)
n+1,k,1 from equation (C.16) and lĵ is the global index of the

coefficient B(s,r)
n+1,m,2, then
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tlß̂,lĵ =
4z

11/2
k

[
ᾱ
zk

tanh(zk) + 1
] (
zm + ᾱ2

zm

)
sin ((1− 2γ̄)zm)

z
1/2
m

[(
zk + ᾱ2

zk

)
tanh(zk) + 2ᾱ

]
z2
m (zmz3

k + zkz3
m)

×
{

tanh(zm)
[
ᾱ(z2

k+z2
m) sin(zk)−zk(ᾱ2−z2

m) cos(zk)
]
+zm(ᾱ2+z2

k) sin(zk)
}[

ᾱ
zm

tanh(zm) + 1
]

[(z2
k − ᾱ2) sin(2zk) + 2zk(ᾱ2 + z2

k + ᾱ)− 2ᾱzk cos(2zk)]
·

4. Convergence of the synchronous optimized Schwarz method. In this section we
discuss the convergence of a synchronous implementation of the optimized Schwarz method
described by (2.2) for the interior subdomains and similar equations describing the method for
the subdomains on the boundary of Ω. The convergence result rely on the study of the spectral
properties of a truncated version of the matrix T̂ , denoted T̂kmax . Recall that T̂kmax is a finite
matrix obtained by discarding the rows and columns of T̂ corresponding to the coefficients
pertaining to k > kmax. Thus, kmax is the truncation parameter; the sparsity structure of
T̂kmax

is shown in Figure 4.1. Also, let us recall that Bkmax
n is the truncated version of Bn.

FIG. 4.1. Sparsity structure of T̂kmax for p = q = 10 and kmax = 10.

THEOREM 4.1. Consider the synchronous optimized Schwarz iteration described by (2.2)
and the analogous equations corresponding to subdomains touching the boundaries. Let us
write the error parts as in (3.14)–(3.17) and (3.22)–(3.29). Let Bn be the vector whose entries
are the coefficients of the error series from all subdomains at iteration n and T̂ the infinite
matrix described in Section 3 such that Bn+1 = T̂Bn. The matrix T̂kmax

is a finite matrix
obtained by discarding the rows and columns of T̂ corresponding to the coefficients pertaining
to k > kmax. Let us denote by λkmax

j the jth eigenvalue of T̂kmax , where we have ordered
them in non-increasing order according to their modulus, and by vkmax

j the corresponding
eigenvectors normalized to have max-norm one. We assume that T̂kmax

has a complete set of
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eigenvectors. Also, let us denote by Bkmax
n the truncated version of Bn, which conforms to the

truncation T̂kmax
of T̂ .

Then, the synchronous optimized Schwarz iteration converges for any initial u0 such that
η0 = u0 − u∗ is piecewise C3 in Ω, provided that the following two conditions hold.

1. The absolute values of λkmax
j form a non-increasing sequence that decreases fast

enough so that there exists an ε > 0 and an nε ∈ N such that for n ≥ nε we have
|λkmax
j |n ≤ 1/j(1+ε) for all values of kmax ∈ N.

2. There exists 0 < ρ < 1 such that the spectral radius ρ(T̂kmax
) ≤ ρ for all kmax ∈ N.

The proof of Theorem 4.1 is given in Appendix E.
We make several remarks on the hypotheses of Theorem 4.1. Hypothesis 1 refers to the

absolute value of the eigenvalues and their decay rate. We have observed that this hypothesis
holds for all cases that we analyzed numerically. In Figure 4.2 this can be clearly observed.
Note that instead of |λj |, we plot its value to the 30th power in a log-log plot.

FIG. 4.2. 30th power of the absolute values of the eigenvalues of T̂kmax in non-increasing order for different
values of kmax, p = q = 5, and γ̄ = 0.01, and f(j) = 1/j (in red).

Hypothesis 2 refers to the spectral radius of the truncated matrix T̂kmax
. In all our

computations, we have found that indeed ρ(T̂kmax
) is uniformly bounded for all values of

kmax and that this bound is less than one for all values of the overlap larger than a minimum
overlap. This is illustrated in Figure 4.3. Note that in fact ρ(T̂kmax) is essentially constant for
varying values of kmax.

Furthermore, the two graphs in Figure 4.4 illustrate that the use of the spectral radius
of the truncated matrices T̂kmax to characterize the convergence of the optimized restricted
additive Schwarz (ORAS) method is valid. In this figure, we present the spectral radius of
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FIG. 4.3. Spectral radius of T̂kmax , for p, q = 10, with normalized overlap γ̄ = 0.01. Left: kmax = 20
and normalized boundary parameter ᾱ ∈ [0.01, 100]. Right: Varying kmax, with normalized boundary parameter
ᾱ = 0.72.

T̂kmax and the number of iterations to achieve convergence of the ORAS method, respectively,
for different values of the normalized parameter ᾱ = αH , for a 2 × 2 partition of the unit
square, and γ̄ = 0.05. Note that the value of α corresponding to the smallest spectral radius of
the truncated matrix coincides with the value of α producing the smallest number of iterations
to achieve convergence of the ORAS method.

FIG. 4.4. Left: Spectral radius of T̂kmax for kmax = 13. Right: Number of iterations to converge (relative
residual norm below 10−6). In both cases, the plots are for different values of the normalized parameter ᾱ = αH ,
for p = q = 2, and a normalized overlap γ̄ = 0.05.

We end this section by remarking that, as we mentioned in the introduction, we believe
that this is the first proof of convergence of an optimized Schwarz iteration for multiple
subdomains in two dimensions with cross-points at the continuous level, except of course for
the summarized treatment in our conference paper [22].

5. Asynchronous optimized Schwarz methods. We want to analyze the convergence
of an asynchronous implementation of the OS iteration (2.2) for the interior subdomains
and similar equations describing the method for the subdomains on the boundary of Ω. In
other words, a processor would solve the local problem (2.2) with the boundary information
received from the other processors, and when the solution is obtained, it is sent to the other
processors. Then, without synchronizing with the other processors, the process is repeated
using whatever information (if any) has been received by the other processors. There is a rich
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literature on asynchronous methods beginning with the work of Chazan and Miranker [9],
Baudet [5], Robert [36], Bertsekas [6], Lubachevsky and Mitra [27], Elsner, Koltracht, and
Neumann [16], Bru, Migallón, and Penadés [8], El Baz, Gazen, Miellou, and Spiteri [12, 13],
Barán, Kaszkurewicz, and Bhaya [4], Bahi [2], and El Tarazi [15], among others.

We begin by reviewing a mathematical model of asynchronous iterations. This is a
standard model and can be found, e.g., in [7, 19, 38]. Let U (1), . . . , U (R) be given sets
and U be their Cartesian product, i.e., U = U (1) × · · · × U (R). Thus, u ∈ U implies
u =

(
u1, . . . , uR

)
, with uν ∈ U (ν) for ν ∈ {1, . . . , R}. Let T (ν) : U → U (ν), where

ν ∈ {1, . . . , R}, and let T : U → U be a vector-valued map (the iteration map) given by
T = (T (1), . . . , T (R)) with a fixed point u∗, i.e., u∗ = T (u∗). Let us define a time stamp
as the instant of time at which at least one processor finishes its computation and produces
a new update. Let {tn}n∈N be a sequence of time stamps at which at least one processor
updates its associated component. Let {σ(n)}n∈N be a sequence with σ(n) ⊂ {1, . . . , R}
for all n ∈ N. The set σ(n) consists of labels (numbers) of the processors that update their
associated component at the nth time stamp. Define, for ν, q̃ ∈ {1, . . . , R}, {τνq̃ (n)}n∈N a
sequence of integers representing the time-stamp index of the update of the data coming from
processor q̃ and available in processor ν at the beginning of the computation of u(ν)

n which
ends at the time stamp tn. Let u0 =

(
u1

0, . . . , u
R
0

)
be the initial approximation (of the fixed

point u∗). Then, the new computed value updated by processor ν at the nth time stamp is

(5.1) uνn =

{
T (ν)

(
u1
τν1 (n), . . . , u

R
τνR(n)

)
, ν ∈ σ(n),

uνn−1, ν /∈ σ(n).

In other words, at the time stamp tn either uν is updated (if ν ∈ σ(n)) or it is not (if ν /∈ σ(n)).
It is assumed that the three following conditions (necessary for convergence) are satisfied:

τ
(ν)
q̃ (n) < n, ∀ν, q̃ ∈ {1, . . . , R} ,∀n ∈ N,(5.2)

card {n ∈ N∗|ν ∈ σ(n)} = +∞, ∀ν ∈ {1, . . . , R} ,(5.3)

lim
n→+∞

τ
(ν)
q̃ (n) = +∞, ∀ν, q̃ ∈ {1, . . . , R} .(5.4)

Condition (5.2) indicates that data used at time tn must have been produced before the
beginning of the computation of u(ν)

n , i.e., time does not flow backward. Condition (5.3)
means that no process will ever stop updating its components. Condition (5.4) corresponds to
the fact that new data will always be provided to the process. In other words, no process will
have a piece of data that is never updated.

The standard convergence results for the asynchronous iteration (5.1) that one uses for
the analysis of asynchronous iterations are those in [7, 9, 15] (see also [19]). Here we state a
theorem due to Bertsekas [7], extended to infinite products in [17] and further to operators
which change from one iteration to the next in [18]. Our convergence proof of the asynchronous
version of the OS method (2.2) will consist of showing that the hypotheses of this theorem
hold.

THEOREM 5.1. Let U = U (1) × · · · × U (R), T (ν) : U → U (ν), ν ∈ {1, . . . , R}, and
T = (T 1, . . . , T (R)) with a fixed point u∗, i.e., u∗ = T (u∗). Consider an asynchronous
iteration of the form (5.1), and assume that the conditions (5.2)–(5.4) hold. Assume fur-
ther that we have a non-empty set E∗ and a sequence of non-empty sets En ⊂ U , with
En = E

(1)
n × · · · × E(R)

n and En+1 ⊆ En, n = 0, 1, . . . If in addition,
(i) T (En) ⊆ En+1 ⊆ En and

(ii) any limit point of any sequence {wn}∞n=0 with wn ∈ En lies in E∗.
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Then, provided u0 ∈ E0, every limit point of the updates un of the asynchronous iteration (5.1)
lies in E∗. In particular if E∗ = {u∗}, then the asynchronous iteration (5.1) converges to u∗.

We are ready to finally define formally the asynchronous optimized Schwarz iterations.
Let l1 = τ

(s,r)
(s−1,r)(n), l2 = τ

(s,r)
(s+1,r)(n), l3 = τ

(s,r)
(s,r−1)(n), and l4 = τ

(s,r)
(s,r+1)(n), i.e., the

time-stamp indexes of the updates of the data coming from the neighboring processors and
available in processor (s, r) at the beginning of the computation of u(s,r)

tn which will end at
the nth time stamp. Let us define the local equations for interior subdomains as

(5.5)



−∆u
(s,r)
tn = f (s,r) in Ω(s,r),

−
∂u

(s,r)
tn

∂x
+ αu

(s,r)
tn = −

∂u
(s−1,r)
tl1

∂x
+ αu

(s−1,r)
tl1

for x = (s− 1)h− γ,

∂u
(s,r)
tn

∂x
+ αu

(s,r)
tn =

∂u
(s+1,r)
tl2

∂x
+ αu

(s+1,r)
tl2

for x = sh+ γ,

−
∂u

(s,r)
tn

∂y
+ αu

(s,r)
tn = −

∂u
(s,r−1)
tl3

∂y
+ αu

(s,r−1)
tl3

for y = (r − 1)h− γ,

∂u
(s,r)
tn

∂y
+ αu

(s,r)
tn =

∂u
(s,r+1)
tl4

∂y
+ αu

(s,r+1)
tl4

for x = rh+ γ.

In our case, the processors are labeled with a pair of indices corresponding to the numbering
of the subdomains, say (s, r). Analogously to the synchronous case, for the cases where the
subdomains are not interior but touch a boundary, i.e., s = 1, r = 1, s = p, and/or r = q, the
local equations are similar to (5.5) but have one or more Dirichlet homogeneous boundary
conditions. The local approximation of the solution at time stamp tn corresponding to the
interior (s, r)-subdomain is

(5.6) u
(s,r)
tn =

{
solution of (5.5), if (s, r) ∈ σ(n),

u
(s,r)
tn−1

, if (s, r) /∈ σ(n),

where σ(n) ⊂ {1, . . . , p} × {1, . . . , q}. For subdomains touching the boundary we replace
line one in equation (5.6) by the corresponding local equations.

Following the same process as in the synchronous case we can obtain local operators
that relate the error coefficients at different time stamps. These local operators are the same
as in the synchronous case. In the asynchronous case, the local operations are performed
without synchronization, therefore the expression of the global operator is more complex
than in the synchronous case. However, as it is shown in the next section, we can study
the convergence of the asynchronous method by considering the spectral properties of the
operator |T̂ |, where T̂ is the global operator of the synchronous case, and the absolute value is
understood componentwise.

6. Convergence proof of the asynchronous OS method. We begin by reviewing some
concepts from the literature. An n× n matrix T is irreducible if for every pair of indices i, j,
there exists a path (of length k = k(i, j)) in the graph of T joining the index i with the index j.
For a nonnegative matrix T , this is equivalent to say that there is an integer k such that the
(i, j)-entry of T k is nonzero (i.e., positive). The latter concept extends naturally to infinite
matrices, and more general to operators on Banach spaces; see, e.g., [26]3.

3For generalized concepts of irreducibility on Banach spaces, see also, e.g., [34].
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For our convergence result we assume that T̂ and thus |T̂ | is irreducible (which it is in
our case; see Figure 4.1). Since |T̂ | is nonnegative and irreducible, it has a positive Perron
eigenvector corresponding to the spectral radius, i.e., there exists v > 0 such that |T̂ |v = ρv
with ρ = ρ(|T̂ |); see, e.g, [26]. This eigenvector is of course unique up to scaling, and it has
finite norm. This property is used in the proof of the theorem. As it will follow from the proof
of the theorem, instead of requiring the infinite matrix to be irreducible and thus its absolute
value having a positive Perron vector, it would suffice to assume that there exists a positive
vector v (with finite norm) so that |T̂ |v ≤ ρv for ρ < 1.

We show in Section 7, that for certain subdomain configurations there are values of the
normalized boundary parameter ᾱ = αH and the normalized overlap γ̄ = γ/H for which
ρ(|T̂kmax

|) < 1, where H is the side length of the subdomains. Also, for these configurations
the value of ρ(|T̂kmax

|) < 1 remains practically constant for large enough kmax, which implies
that ρ(|T̂ |) < 1. These observations allow us to consider ρ(|T̂ |) < 1 as a viable hypothesis to
prove the convergence of the asynchronous OS (AOS) method for the given Poisson’s problem
at the continuous level.

THEOREM 6.1. Let T̂ be the operator which maps the coefficients of the series represent-
ing the error of the synchronous iteration (2.2) (and similarly for the subdomains touching
the boundaries) at step n to those at step n+ 1, for example, as defined by (C.16). Assume
that |T̂ | is irreducible, and let v > 0 be a corresponding Perron vector. Assume further that
ρ = ρ(|T̂ |) < 1. Let B1 be the vector containing all the coefficients B(s,r)

1,m,i for the error after
the first iteration in (6.2), i ∈ {1, . . . , 4}, s ∈ {1, . . . , p}, and r ∈ {1, . . . , q}. Recall that
‖B1‖∞ is finite by Theorem 3.2. If there exists a positive constant a > 0 such that

(6.1) |B1| ≤ av,

then the asynchronous implementation of the optimized Schwarz iteration (5.6) converges to
the solution of (2.1) for any initial u0 piecewise C3-function in Ω.

Proof. Given the initial function approximation u0, we consider the initial error
η0 = u0 − u∗. After the first update, all local errors η(s,r)

1 can be represented in terms
of the four parts given by the series (3.14)–(3.17), (3.22)–(3.29), which for each subdomain
indexed by (s, r), s = 1, . . . , p, r = 1, . . . , q, we can write generically as in (3.30), i.e.,

(6.2) η
(s,r)
1 (x`, y`) =

4∑
i=1

∞∑
m=1

B
(s,r)
1,m,iϕ

(s,r)
m,i (x`, y`).

Collecting all the coefficients of these series we have the infinite vector B1.
Let w = av. Then we have

|T̂w| = |T̂ (av)| = a|T̂ v| ≤ a|T̂ |v ≤ aρv = ρ(av) = ρw.

Thus,

(6.3) |T̂w| ≤ ρw.

Note that we also have

‖w‖∞ = ‖av‖∞ = a‖v‖∞ <∞

since ‖v‖∞ <∞ and a <∞.
Let us define the set of functions v̄(s,r) : Ω(s,r) → R, defined on the (s, r)-subdomain by

E(s,r)
n =

{
v̄(s,r)

∣∣∣∣∣ v̄(s,r) − u(s,r)
∗ =

4∑
i=1

∞∑
m=1

B
(s,r)
m,i ϕ

(s,r)
m,i with |B(s,r)| ≤ ρn−1w(s,r)

}
,
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where B(s,r) is the vector whose entries are the coefficients B(s,r)
m,i . Define further the product

set

En = E(1,1)
n × · · · × E(p,q)

n .

It follows directly from these definitions that En+1 ⊂ En, for n = 1, 2, . . . From (6.1) it
also follows that u1 ∈ E1. We will show next that the conditions (i) and (ii) of Theorem 5.1
hold. Let u ∈ En, that is,

(6.4) u(s,r) − u(s,r)
∗ =

4∑
i=1

∞∑
m=1

B
(s,r)
m,i ϕ

(s,r)
m,i , with |B(s,r)| ≤ ρn−1w(s,r),

and consider T (u) = (T (1,1)(u), . . . , T (p,q)(u)), where T (s,r)(u) is the solution of the prob-
lem (5.5) (or the corresponding equations for subdomains touching the boundary). By Theo-
rem 3.2, we can write

(6.5) T (s,r)(u)− u(s,r)
∗ =

4∑
i=1

∞∑
m=1

C
(s,r)
m,i ϕ

(s,r)
m,i .

In other words, we have

C(s,r) = T̂ (s,r)B,

where we have collected all the entries of the coefficients B
(s,r)
m,i into the vector B,

m = 1, 2, . . . , i ∈ {1, . . . , 4}, s ∈ {1, . . . , p}, and r ∈ {1, . . . , q}, and all the entries of
C

(s,r)
m,i into the vector C(s,r), m = 1, 2, . . . , i ∈ {1, . . . , 4}. We need to show the bound
|C(s,r)| ≤ ρ(n+1)−1w(s,r). Note that from (6.4) it follows that |B(s,r)| ≤ ρn−1w(s,r), for all
s ∈ {1, . . . , p} and r ∈ {1, . . . , q}. Hence,

|B| ≤ ρn−1w .

Then, using (6.3) we have

|C(s,r)| = |T̂ (s,r)B| ≤ |T̂ (s,r)||B| ≤ |T̂ (s,r)|ρn−1w = ρn−1
(
|T̂ (s,r)|w

)
≤ ρn−1ρw(s,r) = ρ(n+1)−1w(s,r).

(6.6)

Given that (s, r) was arbitrary, we have that this inequality holds for all s ∈ {1, . . . , p},
r ∈ {1, . . . , q}. Then, by (6.5) and (6.6), T (s,r)(u) ∈ E

(s,r)
n+1 for all s ∈ {1, . . . , p} and

r = {1, . . . , q}. Consequently, T (u) = (T (1,1)(u), . . . , T (p,q)(u)) ∈ En+1. Since u ∈ En
was arbitrary, we have T (u) ∈ En+1 for all u ∈ En. Therefore,

T (En) ⊂ En+1 ⊂ En.

Thus, condition (i) of Theorem 5.1 holds.
We show now that condition (ii) of Theorem 5.1 holds. Using Lemma G.1 in Appendix G,

we have that each local error η(s,r)
n = T (s,r)(u)− u(s,r)

∗ is bounded as follows:

|η(s,r)
n (x`, y`)| ≤ 4‖Bn‖∞MS,

where M is a positive constant independent of n and

S = max

{ ∞∑
m=1

1

z
5/2
m

,

∞∑
m=1

1

z̃
5/2
m

}
.
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Then, since ‖Bn‖∞ ≤ ρn−1‖w‖∞, we have the bound

(6.7) |η(s,r)
n (x`, y`)| ≤ 4ρn−1‖w‖∞MS.

Then, since ρ < 1 and ‖w‖∞ <∞, we have

lim
n→∞

|η(s,r)
n (x`, y`)| = 0

uniformly in (x`, y`) ∈ Ω(s,r), which implies that for all u1 ∈ E1 we have

lim
n→∞

‖Tn(u1)‖∞ = u∗.

Thus, condition (ii) of Theorem 5.1 holds.
Therefore, the asynchronous optimized Schwarz method converges.

7. Spectral radius of T̂kmax and |T̂kmax |. Recall that T̂kmax is a finite matrix obtained
by discarding the rows and columns of T̂ corresponding to the coefficients pertaining to
k > kmax. Recall also that we are considering a domain consisting of p × q (overlapping)
rectangular subdomains. The values of the entries of the matrix T̂kmax

depend on γ̄, ᾱ (the
normalized overlap and normalized OO0 parameter), and kmax. The structure of the matrix
depends on kmax, p, q, and the way we order the entries of the infinite vector Bn, i.e., the way
we order each coefficient B(s,r)

n,k,i based on the values of s, r, k, and i. However, the eigenvalues
(and thus the spectral radius) do not depend on the ordering of the entries since a change in
the order is just a similarity transformation obtained through permutation matrices. For the
ordering that we have chosen (as described at the end of Section 3), we computed the spectral
radius of the resulting matrix T̂kmax , for γ̄ ∈ {0, 0.01, 1/30, 0.04, 0.1, 0.13, 0.18, 0.2, 0.25},
a set of values of ᾱ in the range [0.01, 500], kmax ∈ {1, 2, 3, 5, 10, 20, 50, 100, 200, 400}, and
p, q ∈ {5, 10, 20, 30, 40}. In these computations we have observed the following.

1. There exist values of ᾱ for which the spectral radius of T̂kmax
is less than one.

2. For a given γ̄ and the range of ᾱ considered in the experiments, ρ(T̂kmax
) has a

minimum, and it approaches a constant less than one for large values of ᾱ; see
Figure 4.3, left.

3. Given γ̄, ᾱ, p, and q, the value of ρ(T̂kmax) remains practically constant for large
enough kmax; see Figure 4.3, right.

4. For a given γ̄, the optimal spectral radius of T̂kmax
increases as the number of

subdomains p× q increases; see Figure 7.1, left.
5. The optimal spectral radius of T̂kmax

decreases as γ̄ increases up to a certain point;
see Figure 7.1, right.

In Figure 7.2, left, a plot of the values of the spectral radius of |T̂kmax | for different values
of ᾱ is shown for the case γ̄ = 0.01, p, q = 2, and kmax = 100. From (C.9) we know that

|B(s,r)
m,1,i| ≤

C1

z
1/2
m

for some C1 > 0. Similarly, for subdomains touching the boundary like in a partition with
p = q = 2, we have

|B(s,r)
m,1,i| ≤

C1

z̃
1/2
m

for some C1 > 0, where without loss of generality we have used the same constant in both
cases. In Figure 7.2, right, we see the plot of the entries of the Perron vector of |T̂kmax

| for
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FIG. 7.1. Optimal spectral radius of T̂kmax . Left: For varying p, for γ̄ = γ
H

= 0.01, and kmax = 7, where
the number of subdomains is p× q = p2 (i.e., q = p). Right: For varying normalized overlap γ̄ = γ

H
, for p, q = 8,

and kmax = 10.

FIG. 7.2. Left: Spectral radius of |T̂kmax | for varying ᾱ, for p, q = 2, and γ̄ = 0.01. Right: Entries of the
Perron vector of |T̂kmax |, for ᾱ = 2.54, γ̄ = 0.01, and kmax = 400.

ᾱ = 2.54, γ̄ = 0.01, p, q = 2. This plot is formed by the repetition of the part of the graph that
goes from j = 1 to j = kmax. In Figure 7.3 we have the log-log plot of this part of the Perron
vector. From this plot we see that for all s ∈ {1, . . . , p}, r ∈ {1, . . . , q}, i ∈ {1, . . . , 4}, we
have vs,r1,i,kmax

= 1 and

(7.1) v
(s,r)
m,i,kmax

>
1

(m− 1)1/2

for m ∈ N \ {1}. In fact (7.1) holds for all kmax. Then,

v
(s,r)
m,i ≥

1

(m− 1)1/2
,

for m ∈ N \ {1} and vs,r1,i = 1.

Let C2 = max

{
1, 1

z̃
1/2
1

}
. For m > 1 we have

(7.2) v
(s,r)
m,i ≥

1

(m− 1)1/2
>

1

((m− 1)π)
1/2

>
1

z̃
1/2
m
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FIG. 7.3. Log-log plot of part of the Perron vector of |T̂kmax |, for j ∈ [1, kmax], ᾱ = 2.54, γ̄ = 0.01, and
kmax = 400.

since (m− 1)π ≤ z̃m ≤ mπ. Then, from (7.2) and since C2 ≥ 1 we have for m > 1,

C2v
(s,r)
m,i >

1

z̃
1/2
m

.

Also, since v(s,r)
1,i = 1, we have

C2v
(s,r)
1,i = C2 = max

{
1,

1

z̃
1/2
1

}
.

Consequently,

C2v
(s,r)
m,i ≥

1

z̃
1/2
m

for all m ∈ N. Then, taking a = C1C2, and since B(s,r)
m,1,i ≤ C1/z̃

1/2
m , we have av ≥ |B1|.

Additionally, we have that ρ(|T̂kmax
|) < 0.8 for all kmax ∈ N. Thus, the conditions of Theo-

rem 6.1 hold, and the convergence of the asynchronous implementation of OS is guaranteed
for ᾱ = 2.54, γ̄ = 0.01, p, q = 2.

We remark that the discussion we just presented for p = q = 2 does not carry over to
larger values of p, q for the asynchronous case. This situation arises because (6.7) is not a
tight upper bound for the asymptotic convergence of the method. Nevertheless, as we see in
Section 9, convergence is achieved in the asynchronous case for larger values of p, q.

8. Optimal Robin parameter α. For large enough kmax such that ρ(T̂kmax
) < 1, the

spectral radius of T̂kmax
describes the asymptotic convergence rate of the optimized Schwarz

method for the synchronous case. Thus, in the synchronous case we define the optimal ᾱ
for a given (normalized) overlap amount γ̄ as the one which minimizes the spectral radius of
T̂kmax

and thus gives the optimal asymptotic convergence rate. Note that T̂kmax
is a banded

square matrix of order N = 2kmax(2pq − p− q). Let ρ∞ = limkmax→∞ ρ(T̂kmax
). Usually,

for kmax = 5 we have that ρ(T̂kmax
) is a good estimation of ρ∞ when p and q are large. Thus,

computing the spectral radius of T̂kmax
is not an expensive operation. Consequently, finding

the optimal ᾱ is not an expensive operation.
The spectral radius of T̂kmax is a function of the normalized Robin parameter ᾱ, the

normalized overlap γ̄, the number of subdomains in each direction p and q, and the truncation

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

SYNCHRONOUS AND ASYNCHRONOUS OPTIMIZED SCHWARZ METHODS 767

parameter kmax. The optimal value of ᾱ is a function of γ̄, p, q. In Figure 8.1, left, we see
the optimal values of ᾱ for γ̄ ∈ [0.0005, 0.06] and p = q with p ∈ {4, 5, 6, 8}. As it can
be observed, the range of values of γ̄ for which the values of ᾱopt are essentially constant
increases with p. Thus, for large p we have that ᾱopt is constant for all γ̄ ∈ [0.0005, 0.06] (i.e.,
for an overlap between 0.1% and 12%), and it only depends on the number of subdomains,
i.e., it only depends on the parameter p. In Figure 8.1, right, we see the values of ᾱopt for
p ∈ [4, 40] ∩ N using γ̄ = 0.01. The red curve is an approximation of the blue curve by using
the following power law formula,

(8.1) ᾱopt = 8.9p(−1.08).

Thus, for p ∈ [10, 40] ∩ N we can use (8.1) to obtain the optimal value of ᾱ.
In the computation of the optimal ᾱ we have taken kmax large enough (i.e., kmax = 40)

so that ρ
(
T̂kmax

)
remained essentially constant for larger values of kmax. With this we ensure

that the computed value of ᾱopt is essentially the same as the value of ᾱopt corresponding to
the infinite-dimensional case.

FIG. 8.1. Left: Optimal values of ᾱ for different values of γ̄ and p. Right: Computed values of ᾱopt for different
values of p and the power law approximation for large values of p and for γ̄ = 0.01.

9. Numerical experiments. We present numerical experiments that illustrate the perfor-
mance of the proposed asynchronous optimized Schwarz method on a bounded domain as
well as the synchronous counterpart. The experiments show the convergence of the methods,
illustrating the results of our theorems. In addition it can be observed that the asynchronous
version is faster in terms of execution time.

The test cases are related to the study of the heat analysis in a domain, modeled as follows:

ρ
∂u

∂t
−∇ · (k∇u) = f,

where u denotes the thermal field, k is the thermal conductivity, and f the heat-flux density of
the source. Here the steady-state heat equation is considered, i.e.,

∂u

∂t
= 0,

which is by definition not time-dependent and which corresponds to the case where enough
time has passed such that the thermal field no longer evolves in time. This leads to the
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following reduced equation

−k∆u = f.

Two numerical experiments are conducted: the first one on a two-dimensional domain and the
second one on a three-dimensional domain.

Car compartment. The numerical solution of the steady-state heat equation required
for the first study was performed on a two-dimensional domain of dimensions 1760 mm
× 745 mm representing a cross section of a car compartment. This area is meshed with
unstructured quadrangle finite elements. One example of the finite element mesh with 465
degrees of freedom (DOF) is shown Figure 9.1, left. We considered for the simulation a

FIG. 9.1. Left: Finite element mesh of a two-dimensional cross section of the car compartment. Right: Its
partitioning into subdomains.

refinement of the mesh which contain 46 945 DOF. Lagrange Q1 finite elements are used for
the discretization. The domain is split into subdomains, and one example of the partitioning
into 16 subdomains with the METIS software [25] is shown in Figure 9.1, right.

We consider three different situations, namely a partitioning of the domain into 16, 25, and
36 subdomains. In all cases, the overlap used is the minimum overlap, i.e., one set of common
nodes in the boundary between subdomains. The optimized coefficients of the Schwarz
algorithms are obtained using the values of ρ(T̂kmax

) and ρ(|T̂kmax
|) in terms of ᾱ = αH (see,

e.g., Figures 4.3 (left) and 7.2 (left)), with the minimum found using the CMA-ES algorithm
from [29]. Here H is the diameter of the subdomains. The resulting parameters where divided
by H , leading to (non-normalized) values of the synchronous optimized parameter α equal to
0.0039068× 103, 0.0038607× 103, 0.0034090× 103 for a partitioning into 16, 25, and 36
subdomains, respectively. The same value of the parameters are used for the synchronous and
asynchronous version of the code.

To solve the resulting linear system, the synchronous and asynchronous optimized
Schwarz methods with zeroth-order optimized interface conditions were implemented in
the C++ library Alinea [28]. The parallel implementation of the asynchronous optimized
Schwarz methods is quite similar to the synchronous implementation described in [32] except
that the asynchronous iterations and asynchronous communications are managed by a new
additional layer. This new additional layer, the C++ library JACK [30], is defined on top of
the MPI library; the version of the MPI library used in the experiments is MPICH2 [1]. This
layer allows us to use asynchronous communications between the processors and to deal with
continuous requests. This new layer also contains new functionality such as the detection of
the asynchronous convergence of the algorithm for a given stopping criteria. Here we use the
stopping criterion developed in [3]; it is based on a leader election protocol over a tree topology,
where cancellation messages are introduced in order to avoid erroneous detections [31].

The experiments are performed on a heterogeneous cluster composed of four nodes
Intel(R) Xeon(R) E5410, 2,33GHz, 8 cores, RAM: 8 GB, four nodes Intel(R) Core(TM)
i7 2,80GHz, 8 cores, RAM: 8 GB each with graphics processing units accelerator (Tesla
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FIG. 9.2. Computer aided design model of the City of Lyon.

K20c 4799MB, GTX 570 1279MB), and four nodes Intel(R) Xeon(R) E5-2609, 2,10GHz,
24 cores, RAM: 16 GB each with graphics processing units accelerator (three of them with
Quadro K4000 3071MB and one with Quadro K600 1023MB), for a total of 160 cores. The
interconnected network is a switched, star shaped 10Mb/s Ethernet network. We report our
computational results in Table 9.1, where we vary the number of subdomains using the same
discretization.

TABLE 9.1
Number of iterations or average and maximum updates and computational time (in seconds).

#subdomains # iter time # updates avg max time
Synchronous Asynchronous

16 109 2.79 151 224 1.73
25 187 2.42 261 497 1.10
36 304 1.76 332 705 0.75

Recall that in asynchronous iterations we cannot talk about (global) iteration steps since
each processor may update its approximation to the (local) solution at different moments, i.e.,
at different time stamps. In fact, each processor (corresponding to each subdomain) would
usually perform a different number of updates, i.e., of local solutions. Thus, in Table 9.1,
for the synchronous case, the number of iterations are reported, while for the asynchronous
case, the average and the maximum number of updates among all processors are reported. In
both cases, the total computational time (in seconds) are shown. It can be appreciated that the
asynchronous optimized Schwarz method performs better in terms of execution time than its
synchronous counterpart. In fact, for each case, the time to converge for the asynchronous
runs is about half the time needed in the synchronous case.

City of Lyon. In order to show the potential of the introduced approach, we present
now some numerical experiments on a three-dimensional domain. The problem consists
of a climate change modeling of the Rhône-Alps area, located in the southeast of France.
The eastern part of the region is composed of the Alps mountain range. The western part of
the region is composed of the start of the Massif Central mountain range. The central part
of the region comprises the valleys of the Rhône and the Saône rivers. The City of Lyon
Global Positioning System coordinates location are a latitude of 45.764043 degrees north and
a longitude of 4.835659 degrees. The wind blows often in the Rhône-Alps area: the north
wind is felt regularly from the north of the Rhône valley and the south wind blows sometimes
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FIG. 9.3. Finite element mesh of a three-dimensional model of the City of Lyon. Close up around some buildings.

violently ahead of the disturbances from the Mediterranean and the southwest. This wind
regime is the result of the alignment of the Rhône-Saône valleys and the ridges to the west
(Massif Central) and to the east (Alps), which channel the wind in the valley. In addition to
violent winds, polar cold wave and heat wave transported by the wind become a major interest.

We have realized a computer aided design model of the City of Lyon of dimensions
1600000 mm × 1600000 mm × 200000 mm, as shown in Figure 9.2. A focus on the area
surrounding the Lyon train station is of particular attention during a heat wave, due to the
presence of high buildings and the absence of gardens and parks. The finite element mesh is
composed of 887 397 points. An example of the finite element mesh of a part of the boundary
is shown in Figure 9.3. Lagrange P1 finite elements are used for the discretization. The domain
is split into subdomains, and one example of the partitioning into 16 subdomains with the
METIS software [25] is shown Figure 9.4.

The optimized coefficients are derived from our two-dimensional theorems, with a mini-
mum overlap, leading to ᾱ equal to 0.0017119× 103, 0.0012373× 103, 0.0011186× 103 for
a partitioning into 16, 25, and 36 subdomains respectively. An example of the heat distribution
is illustrated in Figure 9.5.

FIG. 9.4. Mesh partitioning of the finite element mesh of a three-dimensional model of the City of Lyon.

As shown in Table 9.2, the asynchronous optimized Schwarz method performs better
in CPU time than its synchronous counterpart, despite requiring more iterations, confirming
the efficiency of the proposed asynchronous approach. Indeed, for the cases of 25 and 36
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FIG. 9.5. Heat distribution within a three-dimensional model of the City of Lyon.

TABLE 9.2
Number of iterations or average and maximum updates and computational time (in seconds).

#subdomains # iter time # updates avg max time
Synchronous Asynchronous

16 825 73.8 951 1176 59.9
25 985 58.2 1223 1691 28.7
36 1474 34.8 1547 2762 14.3

subdomains, the asynchronous method takes less than half the computational time than the
synchronous counterpart.

10. Conclusion. We have analyzed at the continuous level the convergence of the op-
timized Schwarz method when it is applied as an outer solver for the solution of Poisson’s
problem in a rectangular domain with Dirichlet (physical) boundary conditions and Robin
artificial boundary conditions. We presented convergence proofs for the synchronous and
asynchronous implementations of the optimized Schwarz method. As a key preliminary step
to prove convergence we recasted the problem into a fixed point iteration with an infinite
matrix as the iteration operator T̂ . Then we showed that to prove convergence of the method
in the synchronous case, it suffices to study the spectral properties of a truncated version of
this operator T̂kmax

, a finite matrix. This matrix is of very small dimension, and examining the
eigenvalues of this matrix is computationally very inexpensive. In other words, with our proof
we have reduced the proof of convergence to a small computational step. For the convergence
proof of the asynchronous case, it suffices to study the spectral properties of |T̂kmax |. We
defined the optimal values of the Robin parameter as those whose normalized values minimize
the spectral radius of T̂kmax

for the synchronous case and that of |T̂kmax
| for the asynchronous

case. Finally, we presented numerical experiments from practical applications illustrating that
on the one hand the method indeed converges as the theory indicates and on the other hand
that the asynchronous implementation is faster than its synchronous counterpart in terms of
execution time.
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Appendix A. Proof of Lemma 3.1.
Proof of Lemma 3.1. Note first that

d

dx`
(φm(x`)) =

dφm
dx`

(x`)
dx`
dx

=
dφm
dx`

(x`)

since from the definition (3.1), dx`dx = 1. Similarly,

d

dy
(ψm(H − y`)) =

d

dy`
(ψm(H − y`)) = −dψm

dy`
(H − y`).

Then, it follows that

d2φm
dx2

(x`) =
d2φm
dx2

`

(x`) and
d2

dy2
(φm(H − y`)) =

d2φm
dy2
`

(H − y`).

Also, note from the first line of equations (3.6) and (3.7) that

d2φm

dx`
2 (x`) = −

(zm
H

)2

φm(x`) and
d2ψm

dy`
2 (H − y`) =

(zm
H

)2

ψm(H − y`).

Then, we have

∆(vm(x`, y`)) = ∆(φm(x`)ψm(H − y`))

= ψm(H − y`)
d2φm

dx`
2 (x`) + φm(x`)

d2ψm

dy`
2 (H − y`)

= −ψm(H − y`)
(zm
H

)2

φm(x`) + φm(x`)
(zm
H

)2

ψm(H − y`) = 0.

Appendix B. Justification of the order interchange between derivatives, integral,
and infinite summation.

LEMMA B.1. The series in (3.14)–(3.17) with coefficients |B(s,r)
n,m,i| ≤ M

(s,r)
n with

M
(s,r)
n > 0 are such that:

1. The order of the first derivatives and summation can be interchanged in [0, H]2.
2. The order of the second derivatives and summation can be interchanged in (0, H)2.
3. The order of the integral over [0, H], the first derivatives, and summation can be

interchanged.
Proof. We present the proof for the case i = 1, but a similar procedure can be used for the

proof in the cases i = 2, 3, 4.
Using (3.9), we have that

η
(s,r)
n,1 (x`, y`) =

∞∑
m=1

B
(s,r)
n,m,1

z
5/2
m

[
ᾱ
zm

sinh (zm) + cosh (zm)
]φm(x`)ψm(H − y`).

Let σ = (σ1, σ2) be a multi-index. Then, we have ∂σ = ∂σ1

∂x`
∂σ2

∂y`
. Note that

∂σ
∞∑
m=1

B
(s,r)
n,m,1

z
5/2
m ψm(H)

φm(x`)ψm(H − y`) =

∞∑
m=1

∂σ

(
B

(s,r)
n,m,1

z
5/2
m ψm(H)

φm(x`)ψm(H − y`)

)
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for each (x`, y`) ∈ (0, H)2 if the series on the right-hand side of the above equation converges
uniformly in a neighborhood of each (x`, y`). Thus, in order to prove parts 1 and 2 of the
lemma, it suffices to show that

(B.1)
∞∑
m=1

∂σ

(
B

(s,r)
n,m,1

z
5/2
m ψm(H)

φm(x`)ψm(H − y`)

)

converges uniformly for σ = (0, 1), σ = (1, 0) in [0, H]2 and for σ = (0, 2), σ = (2, 0) in
(0, H)2.

We have that

∞∑
m=1

∂

∂y`

(
B

(s,r)
n,m,1

z
5/2
m ψm(H)

φm(x`)ψm(H − y`)

)

=

∞∑
m=1

B
(s,r)
n,m,1

z
5/2
m ψm(H)

φm(x`)
∂

∂y`
(ψm(H − y`)) .

Note that |φm(x`)| ≤ ᾱ/z1 + 1 in [0, H] and

∂
∂y`

(ψm(H − y`))
zmψm(H)

=

−ᾱ
H cosh

(
(H−y`)zm

H

)
− zm

H sinh
(

(H−y`)zm
H

)
zm

[
ᾱ
zm

sinh (zm) + cosh (zm)
]

=
1

H

−ᾱ
zm
− tanh

(
(H−y`)zm

H

)
ᾱ
zm

tanh(zm) + 1

cosh
(

(H−y`)zm
H

)
cosh(zm)

 ≤ 1

H

(
ᾱ

z1
+ 1

)
.

In the last inequality we used the fact that cosh ((H − y`)zm) ≤ cosh(zm) for
y` ∈ [0, H], | tanh(H − y`)| ≤ 1 for all y` ∈ [0, H], and 1

ᾱ
zm

tanh(zm)+1
≤ 1. Then,∣∣∣∣∣

∞∑
m=1

B
(s,r)
n,m,1

z
5/2
m ψm(H)

φm(x`)
∂ψm
∂y`

(H − y`)

∣∣∣∣∣
≤
∞∑
m=1

|B(s,r)
n,m,1|

z
3/2
m

(
ᾱ

z1
+ 1

) | ∂∂y (ψm(H − y`)) |
zm|ψm(H)|

≤ 1

H

(
ᾱ

z1
+ 1

)2

M (s,r)
n

∞∑
m=1

1

z
3/2
m

<∞.

Thus, the series in (B.1) converges uniformly in [0, H]2 for σ = (0, 1).
Note that

∂

∂x`
φm(x`) =

1

H

[
ᾱ cos(

zmx`
H

)− zm sin(
zmx`
H

)
]
≤ 1

H
(ᾱ+ zm) .

Also ψm(H − y`) ≤ ψm(H) for y` in [0, H]. Then for σ = (1, 0) we have∣∣∣∣∣
∞∑
m=1

∂

∂x`

(
B

(s,r)
n,m,1

z
5/2
m ψm(H)

φm(x`)ψm(H − y`)

)∣∣∣∣∣
≤
∞∑
m=1

M (s,r)
n

1

H

(
ᾱ

zm
+ 1

)
1

z
3/2
m
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≤M (s,r)
n

1

H

(
ᾱ

z1
+ 1

) ∞∑
m=1

1

z
3/2
m

<∞ .

Hence, the series in (B.1) converges uniformly in [0, H]2 for σ = (1, 0).
We have that

∂2φm
∂x2

`

(x`) =
1

H2

[
−zmᾱ sin(

zmx`
H

)− z2
m cos(

zmx`
H

)
]
.

Note that another bound for ψm(H − y`)/ψm(H), tighter for large m, can be obtained as
follows,

∣∣∣∣ψm(H − y`)
ψm(H)

∣∣∣∣ =

ᾱ
zm

sinh
(
zm(y`−H)

H

)
+ cosh

(
zm(y`−H)

H

)
ψm(H)

=

ᾱ
zm

tanh
(
zm(y`−H)

H

)
+ 1[

ᾱ
zm

tanh (zm) + 1
]

cosh
(
zm(y`−H)

H

)
cosh(zm)


≤
(
ᾱ

z1
+ 1

)cosh
(
zm(y`−H)

H

)
cosh(zm)

 ,

and for y` ∈ (0, H),

cosh
(
zm(H−y`)

H

)
cosh(zm)

=
1 + e

−2
(
zm(H−y`)

H

)
1 + e−2zm

ezm
(H−y`)
H −zm

=
1 + e

−2
(
zm(H−y`)

H

)
1 + e−2zm

e
−zmy`
H ≤ 2

1

z2
m

(
y`
H

)2 ·
Thus,

(B.2)
∣∣∣∣ψm(H − y`)

ψm(H)

∣∣∣∣ ≤ ( ᾱz1
+ 1

)(
2

1

z2
m

(
y`
H

)2
)
.

Then we have for σ = (2, 0) and 0 < ε < y` < H that

∞∑
m=1

∂2

∂x2
`

(
B

(s,r)
n,m,1

z
5/2
m ψm(H)

φm(x`)ψm(H − y`)

)

=

∞∑
m=1

B
(s,r)
n,m,1

z
5/2
m

1

H2

[
zm sin(

zmx`
H

)− z2
m cos(

zmx`
H

)
] ψm(H − y`)

ψm(H)

≤
∞∑
m=1

B
(s,r)
n,m,1

z
5/2
m

1

H2

∣∣∣zm sin(
zmx`
H

)− z2
m cos(

zmx`
H

)
∣∣∣ ( ᾱ

z1
+ 1

)(
2

1

z2
m

(
y`
H

)2
)

≤ 2
M

(s,r)
n

ε2

(
1

z1
+ 1

)(
ᾱ

z1
+ 1

) ∞∑
m=1

1

z
5/2
m

<∞.

Consequently, the series in (B.1) converges uniformly in (0, H)× (ε,H) for σ = (2, 0).
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Now we analyze the case σ = (0, 2). We have that, using (B.2),∣∣∣∣∣∣
d2

dy2
`
(ψm(H − y`))

ᾱ
H sinh(zm) + cosh(zm)

∣∣∣∣∣∣ =

∣∣∣∣ z2
m

H2

ψm(H − y`)
ᾱ
H sinh(zm) + cosh(zm)

∣∣∣∣
≤ z2

m

H2

(
ᾱ

z1
+ 1

)(
2

z2
m

(
y`
H

)2
)

=

(
ᾱ

z1
+ 1

)(
2

y2
`

)
.

Then, for σ = (0, 2) and 0 < ε < y` < H , we have

∞∑
m=1

∂2

∂y2
`

(
B

(s,r)
n,m,1φm(x`)ψm(H − y`)

z
5/2
m ψm(H)

)

=

∞∑
m=1

B
(s,r)
n,m,1

z
5/2
m

φm(x`)

(
d2

dy2
`
(ψm(H − y`))

)
ψm(H)

≤
∞∑
m=1

M
(s,r)
n

z
5/2
m

(
ᾱ

z1
+ 1

)(
ᾱ

z1
+ 1

)(
2

y2
`

)

≤M (s,r)
n

(
ᾱ

z1
+ 1

)2
2

ε2

∞∑
m=1

z5/2
m <∞.

Thus, the series in (B.1) converges uniformly in (0, H)× (ε,H) for σ = (0, 2). Note that the
summation sign and the integral of a series commute if the series converges absolutely. In
the proof of part 1 we have shown that (B.1) converges absolutely and uniformly in [0, H]2

when σ = (1, 0) and σ = (0, 1). From this fact, part 3 of the lemma follows, and the proof is
complete.

Appendix C. Proof of Theorem 3.2.
For the proof of Theorem 3.2, we will use the following intermediate result on the rate of

decay of the coefficients of the series expansion of C2-functions in terms of the basis functions
defined by (3.8) with respect to the roots (3.11).

LEMMA C.1. Let M > 0 and g : [0, H] → R be such that g ∈ C2 ((0, H)),
dσg
dxσ`

(x`) ≤ M , for all x` ∈ (0, H) and for σ = 0, 1, 2, and limx`→0
dσg
dxσ`

(x`) < M and

limx`→H
dσg
dxσ`

(x`) < M for σ = 0, 1. Let us define Cm as the coefficients of the expansion of
g(x) in the basis given by {φm}m∈N, i.e.,

g(x`) =

∞∑
m=1

Cmφm(x`).

Then, the coefficients Cm can be written as

Cm =
C̄m
z2
m

, with |C̄m| ≤ K,

for some K > 0 and for all m ∈ N.
Proof. Since {φm}m∈N is a complete orthogonal set, we have that

Cm =

∫H
0
g(x`)φm(x`)dx`∫H
0
φ2
m(x`)dx`

=

∫H
0
g(x`)

(
ᾱ
zm

sin
(
zmx`
H

)
+ cos

(
zmx`
H

))
dx`∫H

0

(
ᾱ
zm

sin
(
zmx`
H

)
+ cos

(
zmx`
H

))2

dx`

·
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We first look at the numerator. Using integration by parts, we have

∫ H

0

ᾱ

zm
sin
(zmx`

H

)
g(x`)dx`

=
ᾱH

z2
m

[
−g(H) cos(zm) + g(0) +

∫ H

0

cos
(zmx`

H

) ∂g

∂x`
(x`)dx`

](C.1)

and

∫ H

0

cos
(zmx`

H

)
g(x`)dx`

=
H

zm

[
g(H) sin(zm)−

∫ H

0

sin
(zmx`

H

) ∂g

∂x`
(x`)dx`

]

=
H

zm
g(H) sin(zm)

−
(
H

zm

)2
[
− ∂g

∂x`
(H) cos(zm) +

∂g

∂x`
(0)

+

∫ H

0

cos
(zmx`

H

) ∂2g

∂x2
`

(x`)dx`

]

=
H

zm
g(H)

zm sin(zm)

zm

−
(
H

zm

)2
[
− ∂g

∂x`
(H) cos(zm) +

∂g

∂x`
(0)

+

∫ H

0

cos
(zmx`

H

) ∂2g

∂x2
`

(x`)dx`

]
.

(C.2)

Using (C.1) and (C.2), we have

∫ H

0

g(x`)

[
ᾱ

zm
sin
(zmx`

H

)
+ cos

(zmx`
H

)]
dx`

=
ᾱH

z2
m

[
−g(H) cos(zm) + g(0) +

∫ H

0

cos
(zmx`

H

) ∂g

∂x`
(x`)dx`

]

+ g(H)H
zm sin(zm)

z2
m

−
(
H

zm

)2
[
− ∂g

∂x`
(H) cos(zm) +

∂g

∂x`
(0)

+

∫ H

0

cos
(zmx`

H

) ∂2g

∂x2
`

(x`)dx`

]
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=
1

z2
m

{
ᾱH

[
−g(H) cos(zm) + g(0) +

∫ H

0

cos
(zmx`

H

) ∂g

∂x`
(x`)dx`

]
+ g(H)Hzm sin(zm)

−
(
H2
) [
− ∂g

∂x`
(H) cos(zm) +

∂g

∂x`
(0)

+

∫ H

0

cos
(zmx`

H

) ∂2g

∂x2
`

(xl)dx`

]}
:=

1

z2
m

Nm.

(C.3)

Then, from the last identity, it follows that we can write Cm= C̄m/z
2
m, where C̄m=Nm/Dm,

with

Dm =

∫ H

0

[
ᾱ

zm
sin
(zmx`

H

)
+ cos

(zmx`
H

)]2

dx` .

We now show that |C̄m| < K for some K. By simply evaluating the integral and rearranging
the resulting expression, we have that

(C.4) Dm =
H
(
−ᾱ2 sin (2zm) + 2ᾱzm (ᾱ− cos (2zm) + 1) + z2

m sin (2zm)
)

4z3
m

+
H

2
·

Note that Dm > 0 for all m ∈ N and that the first term in (C.4) goes to zero as m goes to
infinity since zm →∞ as m→∞. Then, there exist an m̂ such that for all m ≥ m̂ we have
Dm ≥ H/4. Let

ω = min

{
min

m∈{1,...,m̂}
Dm,

H

2

}
.

Then, ω > 0 (since it is the minimum of a finite set of positive numbers), and for all m ∈ N,
we have Dm ≥ ω, and thus,

(C.5)
1

Dm
≤ 1

ω
<∞.

We turn now to the bound of Nm as defined in (C.3). By hypothesis, we have that there
exists an M > 0 such that

g(H−), g(0+),
dg

dx`
(H−),

dg

dx`
(0+) < M <∞ and

d2g

dx2
`

≤M in (0, H).

We next wish to bound |zm sin(zm)|, and we will use the property (3.11). To that end, we
consider two possible cases, depending on whether zm = ᾱ or not. If there exists an mᾱ ∈ N
such that zmᾱ = ᾱ, then we have from (3.10) since ᾱ > 0 that cos(zmᾱ) = 0. This implies
that zmᾱ = (2j− 1)π/2 for some j ∈ N. Then, it follows that | sin(zmᾱ)| = 1. Consequently,

|zmᾱ sin(zmᾱ)| = ᾱ.

For ᾱ > 0 such that ᾱ 6= zm for all m ∈ N, we can write (again from (3.10))

sin(zm) =
2zmᾱ

ᾱ2 − z2
m

cos(zm).
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Let zmin ∈ {zm} such that |z2
min − ᾱ2| = minm∈N |z2

m − ᾱ2|. Then,

|zm sin(zm)| =
∣∣∣∣2z2

mᾱ cos(zm)

ᾱ2 − z2
m

∣∣∣∣ =

∣∣∣∣∣∣∣
2ᾱ cos(zm)(
ᾱ
zm

)2

− 1

∣∣∣∣∣∣∣ ≤
2ᾱ∣∣∣∣( ᾱ

zmin

)2

− 1

∣∣∣∣ ·
Let us define

Q :=

{
ᾱ, if (2ᾱ+ π)/(2π) ∈ N,

2ᾱ
(ᾱ/zmin)2−1

, otherwise.

Then, for all ᾱ > 0 we have

|Nm| ≤ ᾱ [2M +MH]H +MHQ+H2 [2M +HM ] .(C.6)

Thus, from (C.5) and (C.6), we have that for all m ∈ N

|C̄m| =
∣∣∣∣NmDm

∣∣∣∣ ≤ M

ω

{
ᾱ (2 +H)H +HQ+H2 (2 +H)

}
:= K <∞,

i.e., C̄m is uniformly bounded for all m ∈ N.
We present now the proof of the theorem.
Proof of Theorem 3.2. We present in detail the proof for the case i = 1, but a similar

procedure can be applied for the cases i = 2, 3, 4, and therefore these are omitted for brevity.
We use induction in n. Let us first consider the case n = 1.

Let

(C.7) g0,1(x`) :=

(
− ∂

∂y`
η

(s,r−1)
0 + αη

(s,r−1)
0

)
(x`, H − 2γ),

i.e., g0,1 is the right-hand side of the non-homogeneous boundary condition from the equations
defining one of the four components of the error at step n = 1, with η(s,r)

1,1 as in (3.2). By
hypothesis, the initial approximation u0 is such that the initial error η0 is piecewise C3 in Ω
(e.g., u0 = 0 when f ∈ C1(Ω)). Then, g0,1 satisfies the hypothesis of Lemma C.1.

Consequently, by Lemma C.1 there exist {C(s,r)
1,m,1}m∈N and {C̄(s,r)

1,m,1}m∈N such that

g0,1(x`) =
∞∑
m=1

C
(s,r)
1,m,1φm(x`), where C

(s,r)
1,m,1 =

C̄
(s,r)
1,m,1

z2
m

,

with
{
C̄

(s,r)
1,m,1

}
m∈N

uniformly bounded in m ∈ N. Using these bounded sequences we are

ready to construct the coefficients for (3.14) so that the generalized Fourier series (3.14) is the
solution of the equation for the error (3.2). To that end, let us define

(C.8) B
(s,r)
1,m,1 =

z
1/2
m C̄

(s,r)
1,m,1ψm(H)

dψm
dy`

(H) + αψm(H)
·

To bound these coefficients, we use that ᾱ > 0, tanh(zm) < 1, for all m ∈ N, the fact that
0 < z1 < z2 < · · · , and that 0 < tanh(z1) < tanh(z2) < · · · to obtain

ψm(H)
dψm
dy`

(H) + αψm(H)
=

[
ᾱ
zm

sinh (zm) + cosh (zm)
]

(
zm + ᾱ2

zm

)
sinh(zm) + 2ᾱ cosh(zm)
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=
ᾱ
zm

tanh(zm) + 1

zm

[(
1 +

(
ᾱ
zm

)2
)

tanh(zm) + 2ᾱ
zm

] ≤ ᾱ
zm

tanh(zm) + 1

zm tanh(zm)

≤ 1

zm

(
ᾱ

zm
+

1

tanh(zm)

)
≤ 1

zm

(
ᾱ

z1
+

1

tanh(z1)

)
.

Thus, with M (s,r)
1 = C̄

(s,r)
1,m,1 (ᾱ/z1 + 1/ tanh(z1)) /z

1/2
1 we have

(C.9) |B(s,r)
1,m,1| ≤

z
1/2
m C̄

(s,r)
1,m,1

(
ᾱ
z1

+ 1
tanh(z1)

)
zm

≤
C̄

(s,r)
1,m,1

(
ᾱ
z1

+ 1
tanh(z1)

)
z

1/2
1

= M
(s,r)
1

for all m ∈ N. That is, the coefficients B(s,r)
1,m,1 as in (C.8) satisfy (3.18) for n = 1.

Let us define the function υ : [0, H]2 → R as

υ(x`, y`) =
∞∑
m=1

B
(s,r)
1,m,1

z
5/2
m ψm(H)

φm(x`)ψm(H − y`).

We shall show that υ solves the equations that define η(s,r)
1,1 , i.e., it solves (3.2) for n = 1. Let

σ = (σ1, σ2) be a multi-index. Then, we have ∂σ = ∂σ1

∂x
∂σ2

∂y . In Appendix B it is shown that
the identity

∂σ
∞∑
m=1

B
(s,r)
1,m,1

z
5/2
m ψm(H)

φm(x`)ψm(H − y`) =

∞∑
m=1

∂σ
B

(s,r)
1,m,1

z
5/2
m ψm(H)

φm(x`)ψm(H − y`)

holds in [0, H]2 for σ = (1, 0), σ = (0, 1) and in (0, H)2 for σ = (2, 0), σ = (0, 2), i.e.,
the order of infinite summation and differentiation commutes for the derivative of the series
expansion of υ.

Then, since by Lemma 3.1, ∆(φm(x`)ψm(H − y`)) = 0 in (0, H)2 and the order of
derivatives and summation commute, we have that

∆υ(x`, y`) =

∞∑
m=1

B
(s,r)
n+1,m,i∆(φm(x`)ψm(H − y`))

z
5/2
m ψm(H)

= 0.

Also, (
− ∂

∂x`
+ α

)
υ(0, y`) =

∞∑
m=1

B
(s,r)
1,m,1

(
−dφmdx` + αφm

)
(0)ψm(y`)

z
5/2
m ψm(H)

= 0,

since by the second equation in (3.6),
(
−dφmdx` + αφm

)
(0) = 0,

(
∂

∂x`
+ α

)
υ(H, y`) =

∞∑
m=1

B
(s,r)
1,m,1

(
dφm
dx`

+ αφm

)
(H)ψm(y`)

z
5/2
m ψm(H)

= 0,

since by the third equation in (3.6),
(
dφm
dx`

+ αφm

)
(H) = 0, and

(
∂

∂y`
+ α

)
υ(x`, H) =

∞∑
m=1

B
(s,r)
1,m,1

(
−dψm
dy`

+ αψm

)
(0)

z
5/2
m ψm(H)

φm(x`) = 0,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

780 J. C. GARAY, F. MAGOULÈS, AND D. B. SZYLD

since by the second equation in (3.7),
(
−dψm
dy`

+ αψm

)
(0) = 0.

Thus, we have that υ satisfies Laplace’s equation in (0, H)2 and the three homogeneous
boundary conditions from the definition of η(s,r)

1,1 . It remains to verify that υ satisfies the
non-homogeneous boundary condition at the bottom boundary, i.e., at y` = 0. Note that

(
− ∂

∂y`
+ α

)
υ(x`, y`) =

∞∑
m=1

B
(s,r)
n+1,m,i

(
dψm
dy`

+ αψm

)
(H − y`)

z
5/2
m ψm(H)

φm(x`)·

Then for y` = 0 and n = 1 we have

(
− ∂

∂y`
+ α

)
υ(x`, 0) =

∞∑
m=1

B
(s,r)
1,m,1φm(x`)

(
dψm
dy`

+ αψm

)
(H)

z
5/2
m ψm(H)

=

∞∑
m=1

C̄
(s,r)
1,m,1

z2
m

φm(x`) =

∞∑
m=1

C
(s,r)
1,m,1φm(x`)

= g0,1(x`) =

(
− ∂

∂y`
ηs,r−1

0 + αηs,r−1
0

)
(x`, H − 2γ),

where in the second equality we used (C.8) and in the last equality we used (C.7). Thus,
υ solves the equations defining η

(s,r)
1,1 . Consequently, η(s,r)

1,1 = υ and (3.14) holds with

|B(s,r)
1,m,1| ≤M

(s,r)
1 for some M (s,r)

1 > 0. Hence, the case n = 1 is proved.
Next we show that if the series expansions (3.14)–(3.17) hold for the error at step n

with (3.18), then the same holds for step n+ 1. To that end, let

(C.10) gn,1(x`) =

(
− ∂

∂y`
+ α

)
η(s,r−1)
n (x`, H − 2γ) ,

i.e., gn,1 is the right-hand side of the non-homogeneous boundary condition from the equations
defining η(s,r)

n+1,1 as in (3.2). Let us defineC(s,r)
n,m,1 as the coefficients of the expansion of gn,1(x`)

in the basis given by {φm}m∈N, where φm(x`) is as in (3.8). Thus,

gn,1(x`) =

∞∑
m=1

C
(s,r)
n,m,1φm(x`)

and

(C.11) C
(s,r)
n,m,1 =

∫H
0
gn,1(x`)φm(x`)dx`∫H

0
φ2
m(x`)dx`

·

Note that, unlike the first iteration, we do not know the regularity of gn,1 (even if gn,1 is
harmonic in the interior of the subdomain, this does not imply that it will necessarily be twice
differentiable on the boundaries of the subdomain). Therefore, we cannot use integration by
parts and Lemma C.1 to conclude that C(s,r)

n,m,1 decays like 1/z2
m. This is precisely why we

have to use induction.
Let us define

(C.12) B
(s,r)
n+1,m,1 =

C
(s,r)
n,m,1z

5/2
m ψm(H)

dψm
dy`

(H) + αψm(H)
·
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Then, from (C.11) and (C.12) we obtain

(C.13) B
(s,r)
n+1,m,1 =

(∫H
0
gn,1(x`)φm(x`)dx`∫H

0
φ2
m(x`)dx`

)
z

5/2
m ψm(H)

dψm
dy`

(H) + αψm(H)
·

We shall see that these are indeed the coefficients we need in (3.14), i.e., with these coefficients,
the expansion (3.14) satisfies (3.2). We have to prove first that |B(s,r)

n+1,m,i| ≤M
(s,r)
n+1 for all

m ∈ N and some M (s,r)
n+1 > 0. This result is necessary to guarantee the interchange of

summation and differentiation of a series that is defined later. We can write the error in the
subdomain (s, r − 1) at step n in terms of its four parts defined in (3.2)–(3.5), i.e.,

η(s,r−1)
n (x`, y`) =

4∑
i=1

η
(s,r−1)
n,i (x`, y`).

Plugging this expression into (C.10) we obtain

gn,1(x`) =

(
− ∂

∂y`
+ α

)
ηs,r−1
n (x`, H − 2γ)

=

4∑
i=1

(
− ∂

∂y`
+ α

)
η

(s,r−1)
n,i (x`, H − 2γ).

(C.14)

By the induction hypothesis we have that η(s,r−1)
n,i , i = 1, 2, 3, 4, is given by the series in

(3.14)–(3.17) with |B(s,r−1)
n,m,i | ≤M

(s,r)
n .

We want to look at the expression of a particular but generic coefficient, say,
B

(s,r)
n+1,k,1. To that end, we multiply both sides of (C.14) by φk(x`) and integrate over [0, H]

to obtain∫ H

0

gn,1(x`)φk(x`)dx`

=

∫ H

0

(
4∑
i=1

(
− ∂

∂y`
+ α

)
ηs,r−1
n,i (x`, H − 2γ)

)
φk(x`)dx`

=

∞∑
m=1

B
(s,r−1)
n,m,1

z
5/2
m ψm(H)

∫ H

0

φm(x`)φk(x`)dx`

(
dψm
dy`

+ αψm

)
(2γ)

+

∞∑
m=1

B
(s,r−1)
n,m,2

z
5/2
m ψm(H)

∫ H

0

ψm(x`)φk(x`)dx`

(
−dφm
dy`

+ αφm

)
(H − 2γ)

+

∞∑
m=1

B
(s,r−1)
n,m,3

z
5/2
m ψm(H)

∫ H

0

φm(x`)φk(x`)dx`

(
−dψm
dy`

+ αψm

)
(H − 2γ)

+

∞∑
m=1

B
(s,r−1)
n,m,4

z
5/2
m ψm(H)

∫ H

0

ψm(H − x`)φk(x`)dx`

(
−dφm
dy`

+ αφm

)
(H − 2γ).

(C.15)

Note that we have interchanged the order of the summation, derivatives, and integrals in the
right-hand side of the above equation. The justification for these order interchanges is given in
Appendix B.
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Let γ̄ = γ/H be the normalized overlap. Plugging (C.15) into (C.13) and evaluating the
integrals we obtain the following expression4

B
(s,r)
n+1,k,1

=

(
zk + ᾱ2

zk

)
sinh (2γ̄zk) + 2ᾱ cosh (2γ̄zk)(

zk + ᾱ2

zk

)
sinh (zk) + 2ᾱ cosh (zk)

B
(s,r−1)
n,k,1

+

∞∑
m=1

{
4z

11/2
k

[
ᾱ
zk

tanh(zk) + 1
] (
zm + ᾱ2

zm

)
sin ((1− 2γ̄)zm)

z
1/2
m

[(
zk + ᾱ2

zk

)
tanh(zk) + 2ᾱ

]
z2
m

(
zmz3

k + zkz3
m

)
×
{

tanh(zm)
[
ᾱ(z2

k + z2
m) sin(zk)− zk(ᾱ2 − z2

m) cos(zk)
]

+ zm(ᾱ2 + z2
k) sin(zk)

}[
ᾱ
zm

tanh(zm) + 1
] [

(z2
k − ᾱ2) sin(2zk) + 2zk(ᾱ2 + z2

k + ᾱ)− 2ᾱzk cos(2zk)
] B

(s,r−1)
n,m,2

}

+

(
−zk + ᾱ2

zk

)
sinh ((1− 2γ̄)zk)(

zk + ᾱ2

zk

)
sinh (zk) + 2ᾱ cosh (zk)

B
(s,r−1)
n,k,3

+

∞∑
m=1

{
4z

11/2
k

[
ᾱ
zk

tanh(zk) + 1
] (
zm + ᾱ2

zm

)
sin ((1− 2γ̄)zm)

z
1/2
m

[(
zk + ᾱ2

zk

)
tanh(zk) + 2ᾱ

]
z2
m

(
zmz3

k + zkz3
m

)

×

{
tanh(zm)zk(ᾱ2 + z2

m)− zm
[
−2ᾱzk +

(ᾱ2−z2
k) sin(zk)+2ᾱzk cos(zk)

cosh(zm)

]}
[
ᾱ
zm

tanh(zm) + 1
] [

(z2
k − ᾱ2) sin(2zk) + 2zk(ᾱ2 + z2

k + ᾱ)− 2ᾱzk cos(2zk)
]B(s,r−1)

n,m,4

}
.

(C.16)

In Appendix D it is shown that B(s,r)
n+1,k,1 defined by (C.16) satisfies the inequality

|B(s,r)
n+1,k,1| ≤M

(s,r)
n+1 for some M (s,r)

n+1 > 0 for all k ∈ N. Now, let

ῡ(x`, y`) =

∞∑
m=1

B
(s,r)
n+1,m,i

z
5/2
m ψm(H)

φm(x`)ψm(y`).

By a similar reasoning as done before for υ, we can see that ῡ solves all the equations defining
η

(s,r)
n+1,1. Consequently, η(s,r)

n+1,1 = ῡ. Therefore,

η
(s,r)
n+1,1 = ῡ(x`, y`) =

∞∑
m=1

B
(s,r)
n+1,m,i

z2
mψm(H)

φm(x`)ψm(H − y`).

Thus, we just showed that if (3.14)–(3.17) and (3.18) hold for step n, then (3.14) and (3.18)
with i = 1 hold for step n+ 1. The same result can be obtained with the same procedure for
η

(s,r)
n,i with i = 2, 3, 4. Therefore, if (3.14)–(3.17) and (3.18) hold for step n, then they hold

for n+ 1, and the proof is complete.

Appendix D. A uniform bound for the coefficients of the generalized Fourier series
representation of the error.

THEOREM D.1. Let the hypotheses of Theorem 3.2 hold. The coefficients B(s,r)
n+1,k,1

defined in (C.16) are such that

(D.1) |B(s,r)
n+1,k,1| ≤M

(s,r)
n+1

4We develop this formula, as well as those for all the other coefficients B(s,r)
n+1,k,i and therefore all the entries of

the infinite matrix T̂ defined in Section 3, with the aid of the program Mathematica.
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for some M (s,r)
n+1 > 0 and all k ∈ N.

Proof. We prove (D.1) by induction in n. For n = 1, this is shown in (C.9). So, we
assume this expression holds for n, that is, |B(s,r)

n,k,1| ≤M
(s,r)
n for some M (s,r)

n > 0. Consider
the expression (C.16). Let

t1,k :=

(
zk + ᾱ2

zk

)
sinh (2γ̄zk) + 2ᾱ cosh (2γ̄zk)(

zk + ᾱ2

zk

)
sinh (zk) + 2ᾱ cosh (zk)

·

Note that sinh and cosh are isotone functions. Then, since by hypothesis 2γ̄ < 1, we have
|t1,k| ≤ 1 for all k ∈ N. Similarly, letting

t3,k :=

(
−zk + ᾱ2

zk

)
sinh ((1− 2γ̄)zk)(

zk + ᾱ2

zk

)
sinh (zk) + 2ᾱ cosh (zk)

,

we have that |t3,k| ≤ 1 for all k ∈ N.
Now, let

t2,k :=

4z
11/2
k

[
ᾱ
zk

tanh(zk) + 1
] (
zm + ᾱ2

zm

)
sin ((1− 2γ̄)zm)

z
1/2
m

[(
zk + ᾱ2

zk

)
tanh(zk) + 2ᾱ

]
z2
m (zmz3

k + zkz3
m)

×
{

tanh(zm)
[
ᾱ(z2

k + z2
m) sin(zk)− zk(ᾱ2 − z2

m) cos(zk)
]

+ zm(ᾱ2 + z2
k) sin(zk)

}[
ᾱ
zm

tanh(zm) + 1
]

[(z2
k − ᾱ2) sin(2zk) + 2zk(ᾱ2 + z2

k + ᾱ)− 2ᾱzk cos(2zk)]
·

From (C.4) and (C.5) we have

4z3
k

[(z2
k − ᾱ2) sin(2zk) + 2zk(ᾱ2 + z2

k + ᾱ)− 2ᾱzk cos(2zk)]
≤ 1

ωH
·

From (3.10) we have

sin(zm) =
2zmᾱ

ᾱ2 − z2
m

cos(zm).

Also, recalling that zm ≥ z1 and that | tanh(z)| < 1,∣∣∣∣ ᾱzk tanh(zk) + 1

∣∣∣∣ ≤ ᾱ

z1
+ 1,

∣∣∣∣zm +
ᾱ2

zm

∣∣∣∣ ≤ zm(1 +
ᾱ2

z2
1

)
,∣∣∣∣(zk +

ᾱ2

zk

)
tanh(zk) + 2ᾱ

∣∣∣∣ ≥ zk (tanh(z1)) ,
ᾱ

zm
tanh(zm) + 1 > 1.

We shall obtain a bound for |t2,k| that is independent of k. To that end, we consider
several cases. Firstly zk 6= ᾱ and k = 1; secondly zk 6= ᾱ and k > 1; and finally, zk = ᾱ. For
zk 6= ᾱ it follows that
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|t2,k| ≤
1
ωH z

5/2
k

(
ᾱ
z1

+ 1
)
zm

(
1 + ᾱ2

z2
1

)
z

1/2
m zk tanh(z1)z2

m (zmz3
k + zkz3

m)

×

(
ᾱ(z2

k + z2
m)

∣∣∣∣2zkᾱ cos(zk)

ᾱ2 − z2
k

∣∣∣∣+ zk(ᾱ2 − z2
m)| cos(zk)|

+ zm(ᾱ2 + z2
k)

2zkᾱ| cos(zk)|
ᾱ2 − z2

k

)

≤

(
ᾱ
z1

+ 1
)(

1 + ᾱ2

z2
1

)
ωH tanh(z1)(z2

k + z2
m)

z
1/2
k

z
5/2
m

×

(
ᾱ(z2

k + z2
m)

2zkᾱ| cos(zk)|

z2
k

∣∣∣ ᾱ2

z2
min
− 1
∣∣∣ + zk(ᾱ2 − z2

m)| cos(zk)|

+ zmz
2
k

(
ᾱ2

z2
k

+ 1

)
2zkᾱ| cos(zk)|

z2
k

∣∣∣ ᾱ2

z2
min
− 1
∣∣∣
)
.

Let

C(ᾱ) =

(
ᾱ
z1

+ 1
)(

1 + ᾱ2

z2
1

)
ωH

∣∣∣ ᾱ2

z2
min
− 1
∣∣∣ tanh(z1)

·

Then, we obtain, using again that zk > z1,

|t2,k|

≤ C(ᾱ)

 2ᾱ2

z
1/2
k

1

z
5/2
m

+ z
3/2
k

(
1 +

ᾱ2

z2
1

) ∣∣∣∣ ᾱ2

z2
min

− 1

∣∣∣∣ 1

z
1/2
m (z2

k + z2
m)

+
2ᾱz

3/2
k

(
ᾱ2

z2
k

+ 1
)

z
3/2
m (z2

k + z2
m)


≤ C(ᾱ)

 2ᾱ2

z
1/2
k

1

z
5/2
m

+ z
3/2
k

(
1 +

ᾱ2

z2
1

) ∣∣∣∣ ᾱ2

z2
min

− 1

∣∣∣∣ 1

z
1/2
m (z2

k + z2
m)

+
2ᾱ
(
ᾱ2

z2
1

+ 1
)

z
3/2
m z

1/2
1

 .
Thus,

∞∑
m=1

|t2,k| ≤ C(ᾱ)

[
2ᾱ2

z
1/2
k

( ∞∑
m=1

1

z
5/2
m

)

+ z
3/2
k

(
1 +

ᾱ2

z2
1

) ∣∣∣∣ ᾱ2

z2
min

− 1

∣∣∣∣
( ∞∑
m=1

1

z
1/2
m (z2

k + z2
m)

)

+
2ᾱ
(
ᾱ2

z2
1

+ 1
)

z
1/2
1

( ∞∑
m=1

1

z
3/2
m

)]
.

(D.2)

Let

S1 :=

∞∑
m=1

1

z
5/2
m

, S2,k :=

∞∑
m=1

1

z
1/2
m (z2

k + z2
m)
, S3 :=

∞∑
m=1

1

z
3/2
m

.
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From Lemma F.1 in Appendix F we can see that S1 <∞ and S3 <∞. Then, for k = 1 we
have

∞∑
m=1

|t2,k| ≤ C(ᾱ)

[
2ᾱ2

z
1/2
1

( ∞∑
m=1

1

z
5/2
m

)

+ z
3/2
1

(
1 +

ᾱ2

z2
1

) ∣∣∣∣ ᾱ2

z2
min

− 1

∣∣∣∣
( ∞∑
m=1

1

z
5/2
m

)
+

2ᾱ
(
ᾱ2

z2
1

+ 1
)

z
1/2
1

( ∞∑
m=1

1

z
3/2
m

)]

≤ C(ᾱ)

[
2ᾱ2

z
1/2
1

S1 + z
3/2
1

(
1 +

ᾱ2

z2
1

) ∣∣∣∣ ᾱ2

z2
min

− 1

∣∣∣∣S1 +
2ᾱ
(
ᾱ2

z2
1

+ 1
)

z
1/2
1

S3

]
:= C1 <∞.

For k > 1 and since (m− 1)π ≤ zm ≤ mπ, we have

1

z
1/2
m (z2

k + z2
m)
≤ 1

[(m− 1)π]
1/2

[(k − 1)2π2 + (m− 1)2π2]
·

Then,

S2,k =
1

z
1/2
1 (z2

k + z2
1)

+

∞∑
m=2

1

z
1/2
m (z2

k + z2
m)

≤ 1

z
1/2
1 (z2

k + z2
1)

+

∞∑
m=2

1

π5/2

1

(m− 1)1/2 ((k − 1)2 + (m− 1)2)

=
1

z
1/2
1 (z2

k + z2
1)

+
1

π5/2

∞∑
j=1

1

j1/2
(
k̃2 + j2

) ,
with k̃ = k − 1. Note that

∞∑
j=1

1

j1/2
(
k̃2 + j2

) ≤ ∫ ∞
1

1

x1/2
(
k̃2 + x2

)dx .
We bound this integral after a change of variable. Let u =

√
x√
k̃

, so that dx = 2k̃1/2
√
xdu, and

x2 = k̃2u4, thus, using that u4 ≥ u2 for u ≥ 1/
√
k̃2, we have∫ ∞

1

1

x1/2
(
k̃2 + x2

)dx =
2

k̃3/2

∫ ∞
1/
√
k̃2

1

1 + u4
du ≤ 2

k̃3/2

∫ ∞
0

1

1 + u2
du

=
2

k̃3/2
lim
u→∞

arctan(u) =
2

k̃3/2

(π
2

)
=

π

k̃3/2
·

Before we continue, note that for k ∈ N \ {1} we have

z
3/2
k

k̃3/2
<

(kπ)3/2

(k − 1)3/2
=

(
π

1− 1
k

)3/2

≤
(

π

1− 1
2

)3/2

= (2π)
3/2

.
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Then, for k > 1, from (D.2), we have

∞∑
m=1

|t2,k| ≤ C(ᾱ)

 2ᾱ2

z
1/2
1

S1 + z
3/2
k

(
1 +

ᾱ2

z2
1

) ∣∣∣∣ ᾱ2

z2
min

− 1

∣∣∣∣ π

k̃3/2
+

2ᾱ
(
ᾱ2

z2
1

+ 1
)

z
1/2
1

S3


≤ C(ᾱ)

 2ᾱ2

z
1/2
1

S1 +

(
1 +

ᾱ2

z2
1

) ∣∣∣∣ ᾱ2

z2
min

− 1

∣∣∣∣π(2π)3/2 +
2ᾱ
(
ᾱ2

z2
1

+ 1
)

z
1/2
1

S3


:= C3 <∞.

Now, for zk = ᾱ, we have ᾱ = (2j − 1)π/2 for some j ∈ N. Consequently, for zk = ᾱ
we have sin(zk) = ±1, cos(zk) = 0, sin(2zk) = 0, and cos(2zk) = ±1. Then, for zk = ᾱ
we have

|t2,k| ≤
zm

(
4
√
zk

(
ᾱ
z1

+ 1
)(

ᾱ2

z2
1

+ 1
)) (

ᾱ
(
z2
k + z2

m

)
tanh(zm) + zm

(
ᾱ2 + z2

k

))(
zk
√
zmz2

m (zmz2
k + zkz2

m)
)

(tanh(z1) (2z3
k + z2

k + 2ᾱ2zk))

≤
4ᾱ3/2

(
ᾱ
z1

+ 1
)(

ᾱ2

z2
1

+ 1
)

tanh(z1)(1 + 4ᾱ)

1

z
3/2
m (ᾱ2 + z2

m)

[
ᾱ

(
ᾱ2

z2
1

+ 1

)
z2
m + 2ᾱ2zm

]

≤
4ᾱ3/2

(
ᾱ
z1

+ 1
)(

ᾱ2

z2
1

+ 1
)

tanh(z1)(1 + 4ᾱ)

[
ᾱ

(
ᾱ2

z2
1

+ 1

)
1

z
3/2
m

+ 2ᾱ2 1

z
5/2
m

]
·

Then,

∞∑
m=1

|t2,k| ≤
4α3/2

(
α
z1

+ 1
)(

α2

z2
1

+ 1
)

tanh(z1)(1 + 4α)

[
α

(
α2

z2
1

+ 1

)( ∞∑
m=1

1

z
3/2
m

)
+ 2α2

( ∞∑
m=1

1

z
5/2
m

)]

=
4α3/2

(
α
z1

+ 1
)(

α2

z2
1

+ 1
)

tanh(z1)(1 + 4α)

[
α

(
α2

z2
1

+ 1

)
S3 + 2α2S1

]
:= C4 ·

Let C5 = max{C1, C3, C4}. Note that C5 is independent of k. Then, it follows that

∞∑
m=1

|t2,k| ≤ C5, for all k ∈ N.

Similarly, letting

t4,k :=
4z

11/2
k

[
ᾱ
zk

tanh(zk) + 1
] (
zm + ᾱ2

zm

)
sin ((1− 2γ̄)zm)

z
1/2
m

[(
zk + ᾱ2

zk

)
tanh(zk) + 2ᾱ

]
z2
m (zmz3

k + zkz3
m)

×

{
tanh(zm)zk(ᾱ2 + z2

m)− zm
[
−2ᾱzk +

(ᾱ2−z2
k) sin(zk)+2ᾱzk cos(zk)

cosh(zm)

]}
[
ᾱ
zm

tanh(zm) + 1
]

[(z2
k)− ᾱ2 sin(2zk) + 2zk(ᾱ2 + z2

k + ᾱ)− 2ᾱzk cos(2zk)]

and using the similar procedure as for t2,k, we can see that there exists a constant C6 > 0 such
that

∞∑
m=1

|t4,k| ≤ C6, for all k ∈ N.
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Using the results from above and the induction hypothesis, we have that

|B(s,r)
n+1,k,1| ≤ |t1,k||B

(s,r−1)
n,k,1 |+

∞∑
m=1

|t2,k||B(s,r−1)
n,m,2 |+|t3,k||B

(s,r−1)
n,k,3 |+

∞∑
m=1

|t4,k||B(s,r−1)
n,m,4 |

≤ (1 + C5 + 1 + C6)M (s,r−1)
n .

Therefore, with M (s,r)
n+1 := (2 + C5 + C6)M

(s,r−1)
n , we have that |B(s,r))

n+1,k,1| ≤ M
(s,r)
n+1 , for

all k ∈ N.

Appendix E. Proof of Theorem 4.1.
Proof of Theorem 4.1. Given the initial approximation of the solution u0, we consider the

initial error η0 = u0 − u∗. After the first iteration, all local errors η(s,r)
1 can be represented

in terms of the four parts given by the series (3.14)–(3.17), (3.22)–(3.29). Collecting all the
coefficients of these series we have the infinite vector B1. By Theorem 3.2, the entries of B1

are bounded; see (3.18). Let us denote by nkmax
the order of T̂kmax

. Let us write the truncated
vector Bkmax

1 in terms of the eigenvector basis, i.e., Bkmax
1 =

∑nkmax
j=1 cjv

kmax
j . Since the

vector Bkmax
1 has all its entries bounded, the coefficients in another basis must also be bounded.

Let P be such that cj ≤ P for all j and for all values of kmax. In this proof, to simplify the
notation, we will omit the superscript kmax from vkmax

j and λkmax
j .

Let n > nε. Then, we have for a fixed value of kmax,

‖T̂nkmax
Bkmax

1 ‖∞ =

∥∥∥∥∥∥
nkmax∑
j=1

cjλ
n
j vj

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
nkmax∑
j=1

λn−nεj (cjvj)λ
nε
j

∥∥∥∥∥∥
∞

≤
nkmax∑
j=1

|λj |n−nε‖cjvj‖∞|λnεj | ≤
nkmax∑
j=1

|λj |n−nε
P

j1+ε

≤ Pρn−nε
nkmax∑
j=1

1

j1+ε
≤ Pρn−nε

∞∑
j=1

1

j1+ε
≤ PSρn−nε ,

where we have used S =
∑∞
j=1

1
j1+ε . Thus, we have that ‖T̂nkmax

Bkmax
1 ‖∞ ≤ PSρn−nε

for all kmax ∈ N. Then, it follows that

(E.1) ‖Bn+1‖∞ = ‖T̂nB1‖∞ ≤ PSρn−nε .

Next we bound the local errors. From Lemma G.1 in Appendix G we know that there
exists a positive number M such that for all (x`, y`) ∈ [0, H]2 we have∣∣∣∣ φmψmψm(H)

∣∣∣∣ ≤M,

∣∣∣∣∣φ(b)
m ψm
ψm(H)

∣∣∣∣∣ ≤M,

∣∣∣∣∣ φmψ(b)
m

cosh(z̃m)

∣∣∣∣∣ ≤M,

∣∣∣∣∣ φ(b)
m ψ

(b)
m

cosh(z̃m)

∣∣∣∣∣ ≤M,

and ∣∣∣∣∣(1 + ᾱ/z̃m)
φ

(b)
m ψ

(b)
m

cosh(z̃m)

∣∣∣∣∣ ≤M.

Then, from equations (3.14)–(3.17), (3.22)–(3.29), using these bounds as well as (E.1), we
can see that the ith part of the local error corresponding to subdomain (s, r) is bounded as

|η(s,r)
i,n+1(x`, y`)| ≤ ‖Bn‖∞MS2 ≤ PSMS2ρ

n−nε ,
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where we used S2 = max{
∑∞
m=1

1
z2
m
,
∑∞
m=1

1
z̃2
m
} and S2 <∞ as shown in Lemma F.1 in

Appendix F. Then, we have the following bound for the local error in the subdomain (s, r):

|η(s,r)
n+1 (x`, y`)| =

∣∣∣∣∣
4∑
i=1

η
(s,r)
i,n+1(x`, y`)

∣∣∣∣∣ ≤ 4PSMS2ρ
n−nε .

Thus, since the last bound is independent of s, r, x`, y`, all the local errors at iteration n are uni-
formly bounded in [0, H]2 by 4PSMS2ρ

n−nε . Then, since ρ < 1, we have that η(s,r)
n+1 (x`, y`)

tends to zero uniformly in (x`, y`) ∈ [0, H]2, s ∈ {1, . . . , p}, and r ∈ {1, . . . , q} as n tends to
infinity. Consequently, given that all local errors converge to zero, the (synchronous) optimized
Schwarz iteration converges to the solution of (2.1).

Appendix F. The series with roots of the transcendental equation is convergent.
LEMMA F.1. Let zm be the solutions of (3.10). Then,

∑∞
m=1

1
z2
m
<∞.

The solutions of (3.10) are the zeros of the function Φ : R→ R, Φ(z) = tan(z)− 2zᾱ
ᾱ2−z2 .

Thus, zm is a positive zero of Φ for all m ∈ N. Plotting the graph of Φ we can see that
zm > (m− 1)π for all m ∈ N (see Figure F.1). Then we have

∞∑
m=1

1

z2
m

=
1

z2
1

+

∞∑
m=2

1

z2
m

≤ 1

z2
1

+

∞∑
m=2

1

((m− 1)π)2
=

1

z2
1

+
1

π2

∞∑
j=1

1

j2
·

Note that
∑∞
j=1

1
ja <∞ for any a > 1. Then,

∑∞
j=1

1
j2 <∞. Consequently, since z1 > 0

and
∑∞
j=1

1
j2 <∞, we have

∑∞
m=1

1
z2
m
<∞.

FIG. F.1. Graph of Φ for ᾱ = 2. Note that zm is the mth positive zero of Φ.

Appendix G. Bounds for functions for the generalized Fourier series.
LEMMA G.1. There exists a positive constant M > 0, independent of m, such that∣∣∣∣ φmψmψm(H)

∣∣∣∣ ≤M,

∣∣∣∣∣φ(b)
m ψm
ψm(H)

∣∣∣∣∣ ≤M,

∣∣∣∣∣ φmψ(b)
m

cosh(z̃m)

∣∣∣∣∣ ≤M,

∣∣∣∣∣ φ(b)
m ψ

(b)
m

cosh(z̃m)

∣∣∣∣∣ ≤M,

and ∣∣∣∣∣(1 + ᾱ/z̃m)
φ

(b)
m ψ

(b)
m

cosh(z̃m)

∣∣∣∣∣ ≤M,
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where φm, ψm,φ(b)
m , ψ(b)

m are defined in equations (3.8), (3.9), (3.20), and (3.19), respectively.

Proof. We can easily bound the following:

ψm
ψm(H)

=
ᾱ
zm

sinh
(
zmx
H

)
+ cosh

(
zmx
H

)
ᾱ
zm

sinh (zm) + cosh (zm)
≤

ᾱ
zm

sinh
(
zmx
H

)
+ cosh

(
zmx
H

)
cosh(zm)

·

Since sinh and cosh are isotone functions,

sinh
(zmx
H

)
≤ sinh

(
zmH

H

)
= sinh(zm), cosh

(zmx
H

)
≤ cosh

(
zmH

H

)
= cosh(zm)

and since sinh(x) ≤ cosh(x) for all x ∈ R, we have

sinh
(
zmx
H

)
cosh(zm)

≤ 1,
cosh

(
zmx
H

)
cosh(zm)

≤ 1.

Then, recalling that zm ≥ z1,

ψm
ψm(H)

≤ ᾱ

zm
+ 1 ≤ ᾱ

z1
+ 1.

Similarly, we have

ψ
(b)
m

cosh(z̃m)
=

sinh
(
z̃mx
H

)
cosh(z̃m)

,

φm(x) =
ᾱ

zm
sin
(zmx
H

)
+ cos

(zmx
H

)
≤ ᾱ

z1
+ 1, and

φ(b)
m (x) = sin

(
z̃mx

H

)
≤ 1.

Thus, we can write the following bounds:

|φm(x)| ≤ ᾱ

z1
+ 1,

∣∣∣φ(b)
m (x)

∣∣∣ ≤ ᾱ

z1
+ 1,

∣∣∣∣ ψm(x)

ψm(H)

∣∣∣∣ ≤ ᾱ

z1
+ 1,

∣∣∣∣∣ ψ(b)
m (x)

cosh(z̃m)

∣∣∣∣∣ ≤ ᾱ

z1
+ 1.

Then, letting M :=
(
ᾱ
z1

+ 1
)2 (

ᾱ
z̃1

+ 1
)

we have

∣∣∣∣ φmψmψm(H)

∣∣∣∣ ≤M,

∣∣∣∣∣ φ(b)
m ψ

ψm(H)

∣∣∣∣∣ ≤M,

∣∣∣∣∣ φmψ(b)
m

cosh(z̃m)

∣∣∣∣∣ ≤M,

∣∣∣∣∣ φ(b)
m ψ

(b)
m

cosh(z̃m)

∣∣∣∣∣ ≤M, and∣∣∣∣∣(1 + ᾱ/z̃m)
φ

(b)
m ψ

(b)
m

cosh(z̃m)

∣∣∣∣∣ ≤M .
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