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A MACHINE LEARNING FRAMEWORK FOR LES CLOSURE TERMS∗

MARIUS KURZ† AND ANDREA BECK‡

Abstract. In the present work, we explore the capability of artificial neural networks (ANN) to predict the closure
terms for large eddy simulations (LES) solely from coarse-scale data. To this end, we derive a consistent framework
for LES closure models, with special emphasis laid upon the incorporation of implicit discretization-based filters and
numerical approximation errors. We investigate implicit filter types that are inspired by the solution representation of
discontinuous Galerkin and finite volume schemes and mimic the behavior of the discretization operator, and a global
Fourier cutoff filter as a representative of a typical explicit LES filter. Within the perfect LES framework, we compute
the exact closure terms for the different LES filter functions from direct numerical simulation results of decaying
homogeneous isotropic turbulence. Multiple ANN with a multilayer perceptron (MLP) or a gated recurrent unit (GRU)
architecture are trained to predict the computed closure terms solely from coarse-scale input data. For the given
application, the GRU architecture clearly outperforms the MLP networks in terms of accuracy, whilst reaching up
to 99.9% correlation between the networks’ predictions and the exact closure terms for all considered filter functions.
The GRU networks are also shown to generalize well across different LES filters and resolutions. The present study
can thus be seen as a starting point for the investigation of data-based modeling approaches for LES, which not only
include the physical closure terms, but account for the discretization effects in implicitly filtered LES as well.

Key words. large eddy simulation, turbulence models, deep learning, artificial neural networks, recurrent neural
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1. Introduction. Over the last decade, machine learning methods, and in particular
artificial neural networks (ANN), have achieved tremendous success: from pushing the state-
of-the-art in the fields of image and speech recognition [18, 19] to surpassing human-level
performance in the game of Go [31, 32]. This recent success of ANN was predominantly fueled
by the emergence of large datasets, the exploitation of highly-parallel graphical processing
units (GPU) [18], and the development of easy-to-use high-performance machine learning
libraries like PyTorch [26] and TensorFlow [1]. In general, artificial neural networks can
approximate any continuous functional relationship between input and output quantities
solely based on data and without prior assumptions on the nature of said function. These
approximation properties are shown by a variety of universal approximation theorems in the
literature, e.g., [7, 15, 21].

Significant efforts have been directed towards utilizing the approximation capabilities of
neural networks also for problems in other scientific fields, including the field of turbulence
research. Turbulence is a multi-scale phenomenon, for which the range of active scales in the
flow grows with increasing Reynolds numbers. Thus, direct numerical simulation (DNS) at
high Reynolds numbers is still computationally prohibitive for most applications. Common
approaches to mitigate the computational effort are the Reynolds-averaged Navier-Stokes
equations (RANS) or the method of large eddy simulation (LES), which both rely on filter
operations to resolve only the most influential part of the solution, while modeling the effects
of the non-resolved part. The filtering of the non-linear convective terms of the Navier-Stokes
equations evokes the so-called closure problem, which introduces an additional model term in
the coarse-scale equations. For the RANS approach, only the temporally averaged solution is
resolved and the influence of the turbulent fluctuations is modeled, while the LES approach
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resolves the large, energy-containing flow scales in space and time, but uses models to describe
the non-resolved fine scale contributions. These models are typically derived based on physical
or mathematical considerations. Despite decades of research, no model proved itself superior
for all applications and many models comprise empirical parameters, which have to be tuned
for the respective flow regime and/or the discretization choices [9].

Recently, increasing efforts have been made to complement the established physics-based
methodology of turbulence modeling by a data-driven approach based on ANN. In one of the
first works employing neural networks for LES modeling, Sarghini et al. [30] used a neural
network to approximate a mixed LES model to save computation time. A similar approach
for RANS was investigated in [35]. Ling et al. [20] derived a novel ANN architecture to
embed physical invariances in the predicted RANS closure terms. In context of LES, Maulik
and San [22] used ANN for approximate deconvolution of filtered turbulence. The direct
inference of the LES subgrid stresses is investigated in [23] for two-dimensional Kraichnan
turbulence and in [8] for turbulent channel flow. Different network architectures were used by
Beck et al. in [3], who used convolutional neural networks to predict the closure terms for
homogeneous isotropic turbulence (HIT), and Srinivasan et al. [34], who used long short-term
memory networks to predict the turbulent dynamics by means of a shear flow model. In [36],
ANN are used to predict the closure for compressible isotropic turbulence. More recently,
Novati et al. [25] used a multi-agent reinforcement learning approach to infer local LES model
parameters for the HIT test case.

In this work, we derive a general machine learning framework for LES closure models,
while laying emphasis on discretization effects and the influence of different LES filter forms.
We generate training data by applying several distinct LES filter functions to DNS data of de-
caying homogeneous isotropic turbulence (DHIT). For this, we project the DNS solution onto
a discontinuous Galerkin (DG) or finite volume (FV) flavored representation on a coarsened
mesh. This resembles the implicitly filtered LES approach, where the discretization acts as
an implicit LES filter. In addition, a global Fourier cutoff filter is used, while ensuring that
the filtered solution is perfectly resolved by the underlying numerical scheme to mitigate any
influences of the LES discretization. We show that the multilayer perceptron (MLP) and recur-
rent neural networks with gated recurrent units (GRU) are generally able to learn the unknown
closure terms from data for all filter forms, with the GRU achieving excellent accuracy with
up to 99.9% correlation between the predicted and the exact closure terms. Further, we show
that the trained GRU networks generalize well across different LES resolutions and different
filter functions. This is a surprising and encouraging result, since an accurate prediction of the
actual closure terms would greatly benefit the development and help guide the selection of
proper LES closure models.

This paper is organized as follows: In Section 2, the underlying equations are discussed
and special emphasis is laid upon the derivation of the perfect LES closure terms. The relevant
network architectures are discussed in Section 3 and the training of the networks is described
in Section 4. The results are reported in Section 5. Section 6 concludes the paper.

2. Turbulence modeling. Since neural networks approximate functional relationships
solely from data, special care has to be taken to ensure its validity and consistency. Based on
the compressible Navier-Stokes equations in Section 2.1, the LES closure terms are derived in
a consistent manner in Section 2.2 as the overall target quantity of the machine learning task.
For the DHIT test case described in Section 2.3, these closure terms are then computed and
examined in Section 2.4.
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2.1. Governing equations. The Navier-Stokes equations describe the evolution of com-
pressible, viscous fluids and can be written in conservative form as

(2.1) Ut +∇x · F c(U)−∇x · F v (U,∇xU) = 0.

The vector of conserved variables is U = [ρ, ρv1, ρv2, ρv3, ρe]
T with mass, momentum,

and energy, respectively, Ut denotes differentiation with respect to time, and the differential
operator with respect to the spatial coordinates is denoted as ∇x. The convective fluxes F c

and the viscous fluxes F v with columns i = 1, 2, 3 take the form

F ci =


ρvi

ρv1vi + δ1ip
ρv2vi + δ2ip
ρv3vi + δ3ip
ρevi + pvi

 , F vi =


0
τ1i
τ2i
τ3i

τijvj − qi

 ,
with δ denoting the Kronecker delta and p the static pressure. The stress tensor τij and the
heat flux qi can be written as

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3δij
∂vk
∂xk

)
,(2.2)

qi = −k ∂T

∂xi
,

where k denotes the heat conductivity, T is the static temperature, and µ is the dynamic
viscosity. Assuming an ideal gas, the equation system is closed by the relation

p = ρ (γ − 1)
[
e− 1

2

(
v21 + v22 + v23

) ]
,

with γ as ratio of specific heats. In this work, the compressible equations are only solved for
small Mach numbers, i.e., in the limit Ma → 0, for which compressibility effects become
negligible and eventually the incompressible Navier-Stokes equations are solved.

2.2. Perfect large eddy simulation. In numerical simulations, the continuous form of
(2.1) is replaced by a discretized formulation, which can for instance be written as

(2.3) Ut +R(F (U)) = 0,

with R denoting a discrete divergence operator applied to the fluxes F = F c − F v. It is
clear that the discretization operator is consistent in the limit h → 0, i.e., if (2.3) is solved
on a grid with negligible discretization errors, the continuous solution U is recovered. For
turbulent problems, (2.3) often cannot be solved on such a fine grid, due to the multi-scale
character of turbulence and the consequently prohibitive computational cost. The methodology
of large eddy simulation (LES) avoids to resolve the expensive fine-scale components of the
solution by only resolving its coarse scales. This corresponds to applying a low-pass filter (·)
with linear filter kernel to (2.3). Under the common assumption that filter and time derivative
commute, this yields

(2.4) U t +R(F (U)) = 0

as the exact evolution equation for the coarse-scale solution U . Note that, although (2.4) is a
coarse-scale formulation, the closure problem has not been solved yet: Computation of the

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

120 M. KURZ AND A. BECK

second term in (2.4) would require the knowledge of U (on a DNS level), since F depends
non-linearly on it. For practical LES, U is advanced in time using an appropriate numerical
scheme with its spatial discretization operator R̃(U) applied to the coarse-scale solution. Note
that R̃→ R in the above limit of h→ 0, but that R̃ introduces approximation errors otherwise.
Further, R̃ can be non-linear. In fact, discretization operators typically contain some form of
non-linearity to ensure stability in under-resolved regions. We use this notation to highlight
that while the filter operator (̄.) is known analytically, the discretization induced filtering (̃.) is
not. Equation (2.4) can then be written as

(2.5) U t + R̃(U) = R̃(U)−R(F (U))︸ ︷︷ ︸
perfect LES closure

.

The described approach yields the perfect LES closure term as the right-hand side of (2.5).1

If the closure term (R̃(U) − R(F (U))) is known during simulation (e.g., computed from
high-fidelity DNS data), the exact coarse-scale solution U can be recovered, as is verified in
[3]. Since this DNS data is not available in practical situations, the right-hand side of (2.5) is
typically replaced by a model, which is based on physical or mathematical reasoning, to solve
this closure problem. A more detailed discussion on the approach of perfect LES can be found
in [3], we merely wish to emphasize here that this is a formal framework for the analysis of
LES.

By establishing (2.5), two distinct choices have to be made. The first is the choice of
the LES operator. Since the LES discretization is a constituent part of the perfect closure
terms, approximate closure models with a given set of model parameters generally cannot be
expected to be optimal for a wide variety of discretizations. An appropriate closure model and
its parameters rather have to be chosen discretization-specific by design. The second and more
obvious choice is the selection of the LES filter, which directly defines the coarse-scale space
and the unknown component of the closure term R(F (U)). More importantly, the chosen
filter function also predefines the coarse-scale solution U itself, and thus the overall target
quantity of LES. Altering the LES filter therefore not only changes the closure terms, but also
the exact coarse-scale solution.

REMARK 2.1. It is important to stress that, if the operator R̃ is linear, the distinction
between filtering the discrete or the continuous equations becomes expendable, since in this
special case the linear filter and the linear operator do, in fact, commute; disregarding possible
issues with violation of homogeneity on stretched grids. This is also typically the case, if
the coarse-scale solution is perfectly resolved by the numerical scheme and the closure term
does not introduce subfilter scales, since then the numerical approximation error becomes
negligible. Under these assumptions, also the discretization-dependence of approximate
closure models vanishes. Note that this special case is labeled explicitly filtered LES. Here, the
scale separation filter and the discretization are completely independent from each other, and
spatial convergence of the filtered solution is simply achieved by grid refinement. The opposite
approach is the implicitly filtered LES, in which discretization and filter are intrinsically
linked and the discretization operator defines the coarse-scale solution. This has tremendous
advantages in terms of computational efficiency, but makes analysis very tough. Our chosen
approach of the perfect LES is an attempt to improve this situation. We recognize that some
(unknown) filtering is introduced by the numerical scheme that defines the expected solution
and the closure terms. Note that we cannot specify a filter kernel, but we can make educated

1Note that (2.5) is written with the practical application of an implicitly filtered LES in mind. The explicitly
filtered LES formulation can be derived by applying an additional (̄.) filter to (2.5). In this case, grid refinement under
the filter will ensure R̃→ R̄.
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guesses for what the kernel might look like, as is discussed in Section 2.4. We also incorporate
the fact that we do know that spatial discretization is applied, i.e., we consider the effects of a
non-errorfree operator R̃ in Section 2.4.

2.3. Homogeneous isotropic turbulence. To investigate the nature of the LES closure,
it can be exploited that the perfect closure terms can be computed exactly from high-fidelity
DNS data, as indicated in Section 2.2. To this end, decaying homogeneous isotropic turbu-
lence (DHIT) is investigated, which is a common test case for LES closure models and is
studied extensively in the literature, e.g., [29]. For this test case, a periodic box is initial-
ized with a pseudo-turbulent flow field. The transfer of kinetic energy from lower to higher
wavenumbers and the viscous dissipation then lead to a decay of kinetic energy over time, as
is shown in Figure 2.1.

The DHIT simulations employ a cubic domain of size [0, 2π]
3 with periodic boundary

conditions. Random pseudo-turbulent flow field realizations for a prescribed spectral distri-
bution of kinetic energy proposed by Chasnov [5] are used as initial conditions. This initial
energy spectrum is given by

Ekin(k, t = 0) =
1

2
as u

2
0 k

−1
p

(
k

kp

)s
exp

[
− 1

2s

(
k

kp

)2
]
,

for which the parameters are chosen as s = 4, u0 = 5, kp = 4, as = 1.0638 and which is
displayed in Figure 2.1. The procedure proposed by Rogallo in [28] allows to derive arbitrary
many incompressible velocity fields which follow the given kinetic energy spectrum and
exhibit a root mean square velocity of unity. To obtain a compressible flow state from the
incompressible velocity field, the mean pressure of the initial flow field is chosen in order to
obtain a Mach number of 0.1 with respect to the maximum velocity in the flow field. The
pressure fluctuations are then set thermodynamically consistent to the prescribed flow field
with unit density. The Reynolds number with respect to the Taylor microscale is approximately
Reλ ≈ 180 at the onset of exponential energy decay. All time specifications in the following
are normalized by unit length and unit velocity. This test case of “turbulence in a box” can
be seen as the building block of turbulence in the absence of boundary conditions and is thus
highly suitable to study turbulent dynamics and model development.
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FIG. 2.1. The temporal evolution of the integral kinetic energy over time for several DNS of the DHIT test case
(left) and the distribution of kinetic energy over the wavenumbers k at distinct time instants for a single DNS (right).

The DNS of the test case were conducted with the discontinuous Galerkin solver
FLEXI [17] on the supercomputer Hazel Hen at the High-Performance Computing Center
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Stuttgart (HLRS). An eighth-order DG scheme was used on a Cartesian mesh with 643 ele-
ments, yielding around 134 million degrees of freedom per solution variable. The computa-
tional cost for a single DNS up to t = 3 was around 15,000 CPU-hours. In addition to the
solution U , also the term R(F (U)) was stored during the simulation.

2.4. The exact closure terms. The DNS solution is filtered in a post-processing step
to obtain the coarse-scale quantities, i.e., the coarse-scale solution U and the filtered DNS
divergence R(F (U)). Three distinct filter shapes are investigated in this work. As discussed
above, the actual filter that corresponds to a discretization is unknown and typically non-
linear and inhomogeneous, thus, we choose filter forms associated with typical discretization
operators. For all filters, the solution is eventually represented in the underlying discontinuous
Galerkin (DG) framework. The solution U is thus approximated in each element by means of
a polynomial basis

(2.6) U ≈
N∑

i,j,k=0

Ûijk ϕijk(x),

with the coefficients Ûijk and the three-dimensional polynomial basis functions ϕijk(x). In
this work, Lagrange polynomials of degree N on Gauss-Lobatto interpolation points are used
as basis functions with a tensor-product ansatz, which is a common representation for DG
methods. For more details, the reader is referred to [17]. The first filter arising naturally from
this DG framework is a local L2-projection onto piecewise polynomials. Accordingly, the
DNS solution is projected element-wise on a coarse LES grid with 83 equispaced elements,
each comprising a local polynomial basis of degree N = 5. This results in 8(N + 1) = 48
degrees of freedom in every spatial direction. The coefficients of the polynomial representation
for the coarse-scale solution can thus be obtained from the DNS solution U by performing the
L2-projection onto the basis functions ϕijk(x) for each element E as

(2.7) Û ijk := M−1

∫
E

U(x)ϕijk(x) dV,

with M the mass matrix of the DG scheme. This filter can be seen as an approximation to
the true DG filter function in the limit for N →∞, without regarding the interface coupling
between the individual elements.
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FIG. 2.2. Left: temporal evolution of kinetic energy for the filtered DNS and the perfect LES for the FV, DG,
and Fourier filter, respectively. Right: energy spectra at t = 1.4 for the DNS solution and the different LES filters.
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Secondly, the DNS solution is filtered by an L2-projection onto a piecewise constant
representation on a Cartesian mesh with 483 elements, again resulting in 48 degrees of
freedom in every spatial direction. This filter can be interpreted as a finite volume (FV)
flavored representation of the solution (sometimes called box filter) and directly follows from
(2.6) and (2.7) for N = 0, i.e., for a piece-wise constant basis. In contrast to the DG filter,
this representation is thus only first-order accurate. Due to the reduced number of points
per wavelength resolution capability [10], the spectral distribution of kinetic energy in the
coarse-scale solution exhibits greater deviations from the full DNS solution than the DG
representation does, as shown in Figure 2.2.

In contrast to the first two local LES filters, the third examined LES filter is a global
Fourier cutoff filter. Hence, a fast Fourier transform (FFT) is applied to the DNS solution
yielding a solution representation similar to (2.6), but with respect to a global Fourier basis
instead of an element-wise polynomial basis. Then, a cutoff filter at wavenumber kmax = 12
is applied as LES filter. This yields a truncated solution U in Fourier space containing the
first kmax global Fourier modes of the full solution, while the higher modes k > kmax are set
to zero. The coefficients of the filtered solution with respect to the global Fourier basis are
thus given as

Û k =

{
Ûk if k ≤ kmax,

0 otherwise.

The DG representation with N = 5 discussed above is then used to represent the filtered
solution again in physical space. The resolution of this DG discretization ensures that all
wavelengths present in the solution are represented accurately by the underlying DG represen-
tation, as can be seen in Figure 2.2. This choice of a globally defined filter and a discretization
scheme that resolves all occurring scales with only negligible error corresponds to the case of
the explicitly filtered LES described above.

DNS

−2

2

v 1

DG Filter FV Filter Fourier Filter

−20

20

R
(F

(U
))

1

FIG. 2.3. Two-dimensional slices of the full and the filtered x-velocity field (top) and flux divergence (bottom)
at t = 1.4. Shown is the field solution (from left to right) for the DNS, the local DG filter, the local FV filter, and the
global Fourier filter.

The three chosen filter types thus cover the range of typically used LES methods: from
the global filtering associated with pseudospectral methods to local filter operations onto a
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polynomial subspace with the FV discretization as the limit in terms of locality. The full and
the filtered field solution of the x-velocity v1 and the DNS operator R(F (U))1 are shown
in Figure 2.3 for all three filter forms. It is important to stress that only the Fourier filter is
strictly homogeneous, for which Moser et al. [24] argue that discretization effects do not have
to be modeled, since differentiation and filtering commute. In its own right, Figure 2.3 already
reveals some interesting insights. Firstly, as expected, the choice of the filter (̄.) defines the
resolved field Ū as a coarse-scale representation of the full solution. The resolved fields show
different properties in terms of locality and smoothness as caused by the filter. Even more
striking, however, is the difference in the closure terms induced by the filter, underlining the
statement that the optimal closure is a direct function of the LES filter form; and thus the
discretization operator and its properties.

It was verified that the derived closure terms are indeed perfect in the sense that they
recover the filtered DNS solution in every timestep. For this, we performed what we refer
to as perfect LES. This means that (2.5) is solved numerically with a given discretization
scheme R̃(·) and with a filtered DNS state U as initial condition. In this work, a third-order
Adams-Bashforth method with a fixed timestep of ∆t = 10−4 is used for time integration
and the simulation is run for t ∈ [1.40, 1.46]. For each of the simulation timesteps, the exact
closure terms, i.e., the right-hand side of (2.5), are computed in a preprocessing step from
DNS data for the given LES filter and discretization. In each timestep of the simulation,
these exact closure terms are then read from disk and added into the simulation. A more
throughout discussion of this methodology can be found in [3]. The results of these simulations
in Figure 2.2 demonstrate that the obtained coarse-scale solutions indeed coincide with the
respectively filtered DNS solution for all considered filter forms. This confirms our definition
of a perfect LES and of perfect closure terms.

−20 0 20
0

0.9

(R̃(U)−R(F (U)))0

PD
F

−50 0 50
0

0.15

(R̃(U)−R(F (U)))1

FV Fourier DG

-75 0 75
0

2
·10−4

(R̃(U)−R(F (U)))4 · 10−3

FIG. 2.4. Histograms of the magnitude of the full closure terms at t = 1.4. Shown are the distributions of
the DG filter, the FV filter, and the Fourier filter for the closure terms of the mass equation (left), the x-momentum
equation (center), and the energy equation (right). The histograms are normalized to integrate to unity.

Further examination of the closure terms reveals that their statistics strongly depend on
the chosen LES filter, as presented in Figure 2.4. While the Fourier and FV filter show similar
distributions of the closure terms in the momentum equation, the distribution of the DG-filtered
data exhibits significantly higher variance. This is caused by the element-wise L2-projection,
which leads to large localized discontinuities in the solution at the element interfaces, c.f. Fig-
ure 2.3. These discontinuities lead to large flux contributions by the interface coupling and
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therefore to an overall increase in magnitude for the closure terms. This again stresses the in-
fluence of the discretization on the LES closure terms for the implicitly filtered LES approach.

REMARK 2.2. A common assumption for low Mach number flows is that the closure
terms of the mass and energy equation become negligible in comparison to the momentum
closure, see, e.g., [9]. While this assumption is typically derived in context of the continuous
formulation, the assumption might be invalid if discretization effects must be taken into
account. As shown in Figure 2.4, while the closure terms for the Fourier-filtered approach
for the mass and energy equations are generally very close to zero as denoted by the sharp
peak, this is neither the case for the DG nor for the FV filter, which feature rather wide tails.
Interestingly, the momentum closure terms for the FV and Fourier filter are similar in shape,
while the DG data again shows a much wider distribution. We attribute this behavior to the
hybrid nature of the DG operator and the high order approximation used here. Our analysis
thus indicates that the LES filter (and the discretization scheme) does influence the validity of
the discussed assumption. This notion is also supported by Moser et al. [24]. In order to test
these propositions, the perfect LES computations from Figure 2.3 were repeated, but instead
of closing all five equations, only the momentum equations are closed in the perfect LES,
while leaving the mass and energy equation unclosed. For the Fourier filter, the results showed
only negligible deviations from the previous computation, and still matched the filtered DNS
data, as expected for the explicitly filtered approach. In contrast, the solution for the DG
filter diverged quickly and irrefutably from the filtered DNS data. This demonstrates that the
assumption that the closure terms in mass and energy equation are negligible for low Mach
number flows does hold for explicitly filtered LES, but not necessarily for implicitly filtered
LES, where discretization effects become important. In the following, only the closure of the
momentum equations is considered. Note however, that the results presented in Section 5 also
hold if instead the full closure, i.e., including the mass and energy equation, is considered as
target quantity. This was verified by training the GRU3 network on the DG data for the full
closure vector, which achieved similar accuracy to the reported case.

3. Artificial neural networks. Artificial neural networks (ANN) are general function
approximators, which can approximate any continuous functional relationship Y = f(X)
between some input data X and output data Y . This notion is supported by the variety of
universal approximation theorems for ANN in literature, e.g., [7, 15, 21]. The wide diversity
of applications for ANN gave rise to a certain richness in network architectures proposed in
literature, with each network type optimized for a specific range of tasks, and a specific nature
of data. For our application, we confine ourselves to the discussion of the most basic ANN
architecture, the multilayer perceptron in Section 3.1, and the gated recurrent unit (GRU) as a
representative of recurrent neural networks (RNN) for series modeling in Section 3.2.

3.1. Multilayer perceptron. A multilayer perceptron (MLP) consists of multiple layers,
with each layer comprising a number of neurons, as depicted in Figure 3.1. The layers that are
not directly connected to the input or output of the network are called hidden layers. Each
neuron j in layer n takes the outputs of the previous layer’s neurons as inputs xni , computes the
weighted sum of the inputs with the weightsWn

ij , and adds a bias bnj . Applying a non-linear
activation function fa then yields the neuron’s output ynj as

ynj = fa

(∑
i

Wn
ij x

n
i + bnj

)
with xni = yn−1

i .

Common choices for the activation function are the sigmoid function (σs = 1/ (1 + e−x)),
the hyperbolic tangent (σt = tanh (x)), or the rectified linear unit (ReLU, σr = max {x, 0}).
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FIG. 3.1. Shown on the left is the schematic architecture of an MLP with two hidden layers comprising 5
neurons each. Shown on the right is the layout of a single neuron j with the layer index n dropped for clarity.

The network parameters (i.e., the weight matrices and biases) are generally initialized in a
stochastic manner, e.g., with the initialization method proposed by Glorot and Bengio [11]
or the method by He et al. [12], which was proposed for networks using the ReLU activation
function. Given a dataset of training samples, where each sample consists of an input vector X
and the corresponding ground truth Y , the network parameters are optimized to minimize a
predefined loss function. The loss function is a measure of distance between the network’s
output Ŷ and the ground truth Y for a given training sample and thus quantifies the accuracy
of the network’s predictions. In the context of ANN, this optimization process is commonly
referred to as training or learning and is achieved by computing the gradient vector of the
loss function with respect to the weights efficiently by means of backpropagation. Training a
neural network therefore refers to finding a set of network parameters that minimizes the loss
function for a given training set.

3.2. Gated recurrent units. Recurrent neural networks (RNN) are the state-of-the-art
architecture for sequential data, i.e., when the ordering of the input data is important. The
underlying principle of RNN is illustrated in Figure 3.2. In addition to the current input
sample xn, RNN receive their last inner state hn−1 as input, which allows them to retain
information from previous input samples. Different types of RNN are known in the literature,
which differ predominantly in the way the new inner state hn and the output yn are computed.
The standard (vanilla) RNN works like an MLP when unrolled in time. The weight matrix
and bias are applied to the input (i.e., the current sample and the layer’s previous output),
followed by an activation function to obtain the state for the next sample. Important to note
is that in contrast to an MLP, the weights of an RNN are shared for all time steps. For long
input sequences, the RNN concept leads to very deep networks in time, which can cause
the gradients to vanish or explode during backpropagation, as is discussed in [4]. More
sophisticated RNN architectures alleviate this problem by introducing a gating mechanism
that determines the flow of information through the cell in the forward-pass and thus also the
propagation of errors during backpropagation. Common representatives of this approach are
the long short-term memory (LSTM) architecture proposed by Hochreiter and Schmidhuber
in [14] and the gated recurrent unit (GRU) proposed by Cho et al. [6].

The layout of a GRU cell is shown in Figure 3.2. The GRU receives two inputs, the current
sample xn and the previous state of the cell hn−1. The new state hn is an affine combination
of the old state hn−1 and a state candidate h̃n with

hn = (1− zn)� hn−1 + zn � h̃n.
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FIG. 3.2. Shown on the left is the schematic of a GRU unrolled in time. At each time instant, the sample xi and
the hidden state from the previous step hi−1 are fed into the GRU, yielding the new state hi = f(hi−1, xi). For the
GRU architecture, the hidden state coincides with the layer output, i.e., yn = hn. The detailed architecture of a GRU
cell is shown on the right. Here, all indicated operations are performed element-wise.

Here, � indicates element-wise multiplication. Important to note is that for the GRU, the inner
state coincides with the layer output, i.e., hn = yn. This is the major difference between the
GRU and the LSTM architecture, since the latter discriminates between the hidden state and
the output. The coefficient zn is determined by the update gate, which computes

(3.1) zn = σs (Wzxn + Uzhn−1 + bz) ,

with {Wz,Uz, bz} as trainable parameters, which are determined during the optimization
process. The sigmoid function σs ensures zn ∈ [0, 1]. The state candidate h̃n is given by

h̃n = σt (Whxn + Uh (rn � hn−1) + bz) ,

with σt as the hyperbolic tangent and {Wh,Uh, bh} as trainable parameters. The reset gate
computes rn, which determines how much of the previous state is incorporated into the new
state candidate. Analogously to (3.1), for the reset gate follows

rn = σs (Wrxn + Urhn−1 + br) .

Throughout this work, we will restrict ourselves to GRU networks, since they showed to be
easier to train and consistently outperformed the LSTM architecture in terms of accuracy for
our application.

4. Training the networks. In the following experiments, we use ANN with MLP and
GRU architecture to learn the underlying non-linear mapping between the coarse-scale velocity
vector [v1, v2, v3]

T as input and the filtered DNS operator R(F (U))1,2,3 as the target quantity,
since this is the only unknown contribution to the closure terms. The MLP networks addition-
ally receive the LES operator R̃(U)1,2,3 of the momentum equations as input, which improved
the prediction accuracy considerably, as was also reported for convolutional networks in [3].
The input vector for the MLP is therefore six-dimensional, containing the three velocity com-
ponents as well as the three components of the LES operator. For the GRU network, however,
including the LES operator to the input vector only results in minor improvements, which do
not justify the substantial increase in memory consumption. The GRU and MLP networks
receive and predict only pointwise data. For all considered networks, the input features are
scaled to zero mean and unit variance on the training set. To obtain training data, 10 DNS runs
of the DHIT test case with different initial conditions, drawn from the same distribution, are

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

128 M. KURZ AND A. BECK

computed. Thereof 9 runs are used for training and validation, while a single run is kept hidden
as test set to evaluate the models’ performance on unseen data. The training data is obtained
by sampling the simulation results between t = 1.0 and t = 1.9 with an interval of ∆t = 0.1.
The isotropy of the flow can be exploited for data augmentation by cyclic interchange of the
velocity components v1, v2, v3 in the different spatial directions. This allows to triple the
amount of training data to about 30 million point-wise training samples for each LES filter.
All networks are trained and evaluated separately for each particular LES filter.

FIG. 4.1. Architecture of the GRU network. The network consists of 5 hidden layers, with the number of neurons
denoted below each layer. The first two hidden layers are executed independently for each sample in the sequence, but
with the same weights. Using the many-to-one prediction mode, the GRU layer computes a single output vector from
the received inputs, as also shown in Figure 3.2.

The networks investigated in this work follow the sequential architecture of Figure 4.1
with 5 hidden layers. The first two layers are dense layers with 32 and 64 neurons, followed
by a GRU layer with 64 cells and again two dense layers with 48 and 24 neurons, respectively.
For the MLP network, the GRU layer is replaced by a dense layer comprising 64 neurons.
All layers except the GRU layer employ ReLU activation functions and are initialized with
the method proposed by He et al. [13]. For the GRU network, also the influence of different
sequence lengths and sampling frequencies for the input data is investigated, with an overview
of the different parameter combinations given in Table 4.1. The time increment between input
samples is deliberately chosen in the order of magnitude of a stable numerical timestep for
the LES computation, which is around ∆t ≈ 10−4, in order to examine the feasibility of the
described approach for a priori predictions in practical LES. Thus, the predictions of the GRU
networks are based on short-time dynamics in the order of the smallest resolved feature.

TABLE 4.1
Characteristics of the different input sequences for the GRU network. The total number of samples per sequence

is given by Nseq, the time increment between two samples is ∆tseq, and the total time interval of the sequence, i.e.,
the time interval between the first and the last sample, is denoted as ∆ttot.

GRU1 GRU2 GRU3

Nseq 3 10 21
∆tseq 1 · 10−3 1 · 10−4 1 · 10−4

∆ttot 2 · 10−3 9 · 10−4 2 · 10−3
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The mean squared error is used as loss function for all networks and Pearson’s correlation
coefficient is used as additional performance metric. The correlation coefficient between two
quantities a, b is defined as

(4.1) CC(a, b) =
Cov(a,b)√

Var(a)
√

Var(b)
,

with the covariance Cov(·) and the variance Var(·). In addition, the mean L2-error of the
prediction is reported, which is obtained by integrating the prediction errors element-wise on
the coarse mesh and averaging the error over all elements.

The whole framework is implemented in TensorFlow 2.1 [1]. The training was carried
out on an Nvidia K40c GPU. For all networks, the Adam algorithm by Kingma and Ba [16] is
used for optimization. The networks are trained for 50 epochs with a batch size of 256 and an
initial learning rate of 0.001, which is halved every 10 epochs. No additional regularization
is employed during training, since the training set was sufficiently large and no overfitting is
observed by comparing the losses on training and validation set.

5. Results. The results are split into three parts. In Section 5.1, the training performance
and the prediction accuracy of the networks on the test set for each LES filter are discussed.
The generalization abilities of the investigated networks across different LES resolutions and
filters are investigated in Section 5.2. Finally, the accuracy of the full ANN-based closure
terms is examined and compared to common analytical closure models in Section 5.3.

5.1. Training results. The GRU as well as the MLP architectures are able to learn the
unknown closure terms from the coarse-scale input data for all three considered filter forms,
whereby the GRU networks outperformed the MLP architecture. A detailed overview of the
networks’ performance for the different data sets is given in Table 5.1 and a comparison of
the predicted field solutions is shown in Figure 5.1. The predicted closure terms of the GRU3
network show excellent agreement with the exact closure terms for all considered filter forms.
In addition, the GRU3 network recovers the statistical distribution of the exact closure terms
almost perfectly. The MLP architecture, however, cannot reproduce the exact distribution, but
exhibits much lower variance in its predictions. The MLP therefore consistently underestimates
the occurring extrema of the closure terms. This effect is most pronounced for the DG-filtered
data, leading to only 24% correlation between the MLP prediction and the exact terms.

The sampling of the input sequence showed to be of only minor importance for the
accuracy of the GRU networks. The GRU3 network shows the best performance for all
considered datasets, since it receives all 21 available timesteps and therefore the most extensive
temporal information. However, the performance of the GRU1 and GRU2 networks show
to be only slightly inferior for most considered cases. Only for the DG-filtered data, the
GRU2 shows significantly higher prediction errors than the other two networks. A possible
explanation for the similar prediction performance is that for the low Mach number test case,
the numerical timestep (which is chosen as time increment in the input sequences) is small in
comparison to the relevant physical time scales. Due to the extensive temporal resolution, the
larger timestep of the GRU1 is still sufficient to resolve the relevant physical phenomena and
therefore to accurately predict the LES closure terms. This finding can be exploited to reduce
the temporal resolution in the input sequence during training, since storing large amounts
of DNS data is prohibitive in terms of storage capacity. Further experiments indicate that
the prediction accuracy of the GRU networks could be improved further by increasing the
network depth with additional GRU layers. However, the improvements with each additional
layer diminish quickly while the computational effort increases. Moreover, the networks
are deliberately chosen small with only around 32,000 parameters to allow their efficient
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FIG. 5.1. Two-dimensional slices of the exact closure term of the x-momentum equation with the predictions of
the GRU3 and the MLP architecture for the DG filter (top), the FV filter (center), and the Fourier filter (bottom). The
distributions of the exact and the predicted closure term are shown on the very right. The distributions are normalized
to integrate to unity.

evaluation for potential applications in data-driven closure models for practical LES. To
address the importance of closing the mass and energy equation for the DG data, which is
discussed in Remark 2.2, it was investigated whether the GRU networks can also predict
the closure terms for the full equation system. Accordingly, the input vector for the GRU
networks was extended by the density ρ and the energy e. After training the network, it was
able to predict the whole closure vector with all 5 entries up to a similar degree of accuracy as
reported here for the momentum equation.

The results presented in this section are rather remarkable. They indicate that for this
canonical turbulent flow, the exact closure terms can be predicted by a recurrent neural network
with (likely almost) arbitrary accuracy for a range of different filter forms. The achieved error
norms and correlations vastly outperform previously reported data, see, e.g., [3] for results
with convolutional neural networks. It should also be stressed that the exact evaluation of
the closure terms requires knowledge of the full fine scale solution U , while the ANN-based
approaches predict from the coarse-scale quantities Ū only. This astonishing capability of the
method used, which in a sense seems to entail some form of implicit filter inversion, will be
investigated further in the future.

5.2. Generalization. To test the generalization abilities of the networks, the trained
GRU3 networks from Section 5.1, which are each trained for one particular LES filter, are
applied to the test data of the other filter functions, which they have not seen during training.
The results given in Table 5.2 indicate, that all networks generalize well across the different
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TABLE 5.1
Prediction accuracy of the trained ANN on the respective test sets. The GRU1 and GRU2 networks for the

Fourier data are trained with halved initial learning rate, as they show divergent behavior otherwise. The best
performance on each dataset is highlighted in bold font.

DG Filter FV Filter Fourier Filter
L2-Error CC L2-Error CC L2-Error CC

MLP 2.56 · 10+2 0.2456 1.02 · 10+2 0.5744 3.08 · 10+1 0.6712

GRU1 9.44 · 10−1 0.9989 2.53 · 10−1 0.9992 1.09 · 10−1 0.9992

GRU2 1.07 · 10+2 0.8157 2.33 · 10−1 0.9992 9.25 · 10−2 0.9993

GRU3 9.14 · 10−1 0.9989 2.31 · 10−1 0.9992 9.15 · 10−2 0.9993

TABLE 5.2
Prediction accuracy of the GRU3 networks for each LES filter. The rows refer to the datasets the networks were

originally trained on and the columns refer to the test data the networks are evaluated on.

DG Data FV Data Fourier Data
L2-Error CC L2-Error CC L2-Error CC

GRU3-DG 9.14 · 10−1 0.9989 3.60 · 10−1 0.9988 2.57 · 10−1 0.9979

GRU3-FV 1.46 · 100 0.9867 2.31 · 10−1 0.9992 9.49 · 10−2 0.9993

GRU3-Fourier 9.15 · 100 0.8888 3.79 · 10−1 0.9988 9.15 · 10−2 0.9993

filter forms. Especially for the FV and Fourier data, all networks still achieve over 99%
correlation between the predicted and the exact closure terms. Only for the DG-filtered data,
the prediction accuracy of the network that is trained on the Fourier data drops significantly.
This is expected, since the distribution of the closure terms for the DG filter exhibits much
larger variance than the Fourier data. Since the network has never learned to reproduce
closure terms of this magnitude, it systematically under-predicts the extrema of the DG closure
terms leading to a less accurate prediction. These results indicate that, despite the statistical
differences between the closure terms for different LES filters, the relationship between the
temporal evolution of the coarse-scale solution and the corresponding closure terms seems to
exhibit a universal character and to transfer reasonably well across the different filter forms.
This is not surprising, since the target quantity R(F (U))i defines the temporal evolution of
the coarse-scale solution (see (2.4)) and thus, the inverse mapping allows to deduce the filtered
flux term R(F (U))i from the temporal evolution of the coarse-scale inputs, which is to some
extent independent of the used filter function.

In a following step, the influence of the LES filter width on the GRU3 networks’ prediction
accuracy is examined. For the implicit LES filters, this corresponds to changing the resolution
of the discretization. Thus, the number of elements in each spatial direction is reduced to
75% and 50% of the baseline resolution, on which the networks are trained. This yields a
total of 363 and 243 degrees of freedom for the FV and DG filter, and a cutoff wavenumber
of kmax = 9 and kmax = 6 for the Fourier filter, respectively. Due to the three-dimensional
domain, the lowest resolution corresponds to only one eighth of the total degrees of freedom
in comparison to the baseline resolution. Each network is only evaluated on the LES filter
it is trained on, but the original version trained on the finest grid is used, i.e., the networks
are not retrained on the coarser grids. The results in Table 5.3 indicate that all networks
are able to generalize across the different resolutions and retain low prediction errors for all
examined cases. The exact and the predicted field solution as well as the filtered velocity field
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FIG. 5.2. Filtered x-velocity as network input (top), the exact DNS part of the closure term as network target
quantity (center), and the predictions of a single GRU3 network for different cutoff wavenumbers kmax of the Fourier
filter (bottom). The network was only trained on Fourier-filtered data with kmax = 12.

TABLE 5.3
Prediction performance of the GRU3 networks on LES data with different resolutions, but with the LES filter

the respective networks are trained on. The resolution is quantified by the degrees of freedom (DOF) in each spatial
dimension. For the Fourier filter, the baseline resolution of 48 DOF refers to kmax = 12 and the lower resolutions to
kmax = 9 and kmax = 6, respectively.

DG Filter FV Filter Fourier Filter
L2-Error CC L2-Error CC L2-Error CC

48 DOF 9.14 · 10−1 0.9989 2.31 · 10−1 0.9992 9.15 · 10−2 0.9993

36 DOF 1.15 · 100 0.9984 2.94 · 10−1 0.9986 1.23 · 10−1 0.9989

24 DOF 1.10 · 100 0.9975 2.19 · 10−1 0.9984 1.16 · 10−2 0.9986

are exemplarily shown for the Fourier-filtered data in Figure 5.2 for the different resolutions.
This ability to generalize across different resolutions can be explained by the same arguments
as stated above.

5.3. Full closure terms. In a last step, the predictions of the ANN for R(F (U)) are
used to compute the full closure term R̃(U)−R(F (U)). It seems important to stress again
that R(F (U)) is the only unknown term in the full closure, since the coarse-scale solution U
and the discretization operator R̃(·) are known. Moreover, the obtained ANN-based closures
are compared to the predictions of the common gradient model (GM) [2] and the static
Smagorinsky model (SSM) [33] for the given filtered flow fields. These models are detailed in
Appendix A and B, respectively. The results presented in Figure 5.3 and Table 5.4 show that
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FIG. 5.3. Slices of the full closure term R̃(U)−R(F (U)) for the x-momentum equation with R(F (U)) either
(from left to right) computed exactly from DNS, as predictions of the GRU3 models or of the MLP models. The
normalized distributions of the closure terms for all three cases are shown on the right. The columns correspond to
the DG filter (top), the FV filter (middle) and the Fourier filter (bottom).

the predictions of the GRU models recover also the full closure term up to very high accuracy.
Interestingly, the correlations for the DG data are consistently higher than the ones reported for
the DNS term by itself in Section 5.1. For the Fourier and FV filters in contrast, the correlation
coefficients are similar. However, the full closures based on the MLP predictions show less
correlation than for the DNS term by itself. These differences in behavior stem from the
non-linearity of the correlation coefficient in (4.1), which does not guarantee that the sum of
two quantities achieves a correlation similar to the correlations of the individual quantities.

The SSM is a functional model, which mainly mimics the energy drain from the resolved
to the non-resolved length scales. This model is known to be only poorly correlated with the
perfect closure [27]. This also shows in Table 5.4, where the SSM achieves only |CC| < 0.2.
While the Smagorinsky model performs poorly in this a priori test, it can provide accurate
and stable results in practical simulations. In contrast, ANN-based closures are often found
to cause instabilities, despite achieving high accuracy in a priori tests [3]. This stresses
the importance of a posteriori analysis of the derived ANN models in future research. The
gradient model can be derived as an approximation to the exact subgrid stresses for a Gaussian
LES filter [27]. This explains why the model achieves decent accuracy on the data with
the smooth Fourier filter, but fails for the DG filter, where the solution and its gradients are
discontinuous, as is shown in Table 5.4. Such mismatches appear oftentimes when closure
models are derived in an explicitly filtered LES setting but are then applied for implicit LES.
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TABLE 5.4
Correlation coefficient CC(Mexact,MANN), where Mexact is the exact full closure term R̃(U) − R(F (U))

computed from DNS data, while MANN is the full closure term using an ANN-based prediction for R(F (U)). The
results are also compared to the gradient model (GM) and the static Smagorinsky model (SSM), which are detailed in
Appendix A and Appendix B, respectively.

MLP GRU1 GRU2 GRU3 GM SSM

DG 0.9267 0.9998 0.9748 0.9998 −0.2318 −0.0926

FV 0.3212 0.9989 0.9990 0.9990 0.1706 −0.1963

Fourier 0.5694 0.9990 0.9992 0.9992 0.4341 0.1709

With such approaches, the discretization effects are not accounted for. These restrictions are
alleviated in the proposed machine learning framework, which does not only incorporate the
discretization effects by construction, but also allows to transfer the trained ANN to other
discretizations and resolutions, as was demonstrated in Section 5.2.

6. Conclusions. In this work, we have derived a general framework for LES closure
models, with the emphasis put on the effects and influences of the discretization operator. In
practical LES, the discretization operator itself acts as the scale-separating filter. Its properties
(non-linearity, inhomogeneity) can make a rigorous analysis tough, and often lead to the fact
that the associated errors (often labeled commutation errors) are ignored or overlooked. As
a result of this, closure model development is in some cases “blind” towards the underlying
discretization and its induced filter form. This can be problematic, as the optimal closure terms
that should govern model development are indeed a function of the filter.

We have investigated the dependence of the closure on the filter functions through the case
of decaying homogeneous isotropic turbulence (DHIT), which serves as the simplest canonical
test case for turbulence. We have build a DNS database from an ensemble of runs and have
computed the exact closure terms for several LES filter functions. For this, we used filter
functions that mimic the action of a discretization filter. They are derived from the solution
representation of DG and FV schemes. A third, global Fourier cutoff filter represents the
explicitly filtered LES approach. We have demonstrated that the computed closure terms are
consistent in the sense that they are able to recover the filtered DNS solution in each time
step, thus forming the perfect LES model. Different neural networks with MLP and GRU
architecture have been trained to predict the unknown contributions of the closure terms for
each examined filter function solely from known coarse-scale data. We have demonstrated that
the GRU networks are able to approximate the exact closure terms up to a very high degree of
accuracy for all considered filter forms. The GRU networks have also been shown to generalize
well across different filter functions and filter widths that they have not seen during training.

These highly accurate predictions and the networks’ generalization abilities are encourag-
ing results and mark a starting point for the development of universal data-driven LES closure
models. Being able to predict the exact closure term that perfectly “fits” both the physical
closure problem as well as the discretization effects offers the chance to guide discretization-
adapted model development. Future work will be focused on applying the network predictions
as closure model during practical LES. Since direct incorporation of the network predic-
tions might cause instabilities, as was found in [3], also strategies to incorporate the ANN
predictions into a stable data-driven model have to be examined. Further, the application
and extension of the described methodology to other canonical turbulent flow problems, and
especially wall-bounded flows, will be investigated.
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Appendix A. Gradient model. The gradient model is a common closure model for LES
proposed in [2]. It can be derived by performing a Taylor expansion of the subgrid scale stress
tensor for a Gaussian LES filter [27]. The model thus reads

τGMij :=
∆

2

12

(
∂vi
∂xk

∂vj
∂xk
− 1

3

∂vl
∂xk

∂vl
∂xk

δij

)
,

with the grid spacing ∆, which was computed as the domain length divided by the number
of degrees of freedom in the respective direction. In this paper, the exact gradients are
approximated for all filters by the gradients of the underlying DG representation. This is
expected to give reasonable results for the Fourier-filtered case, where discretization effects
are negligible and the DG gradients are a good approximation. Generally, these subgrid
stresses are then added to the physical stresses in (2.2). For comparison with the ANN-
based models, we computed the subgrid forces which result from the subgrid stress predicted
by the gradient model.

Appendix B. Smagorinsky model. The static Smagorinsky model was originally pro-
posed by Smagorinsky in [33] and is a common representative of the functional modeling
approach. The model mimics the transport of kinetic energy from resolved to non-resolved
length scales by introducing an additional eddy-viscosity as

νSGS :=
(
Cs∆

)2√
2SijSij ,

with the model parameter Cs ≈ 0.17 and the filter width ∆, which was computed analogously
to Appendix A. The filtered rate-of-strain tensor Sij is defined as

Sij :=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
.

Similar to the gradient model in Appendix A, the gradients of the underlying DG scheme are
used to approximate the continuous derivatives. The viscosity can then be obtained from the
kinematic viscosity with µSGS = ρ νSGS .
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