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A HYBRID OBJECTIVE FUNCTION FOR ROBUSTNESS OF ARTIFICIAL
NEURAL NETWORKS—ESTIMATION OF PARAMETERS IN A

MECHANICAL SYSTEM∗
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Abstract. In several studies, hybrid neural networks have proven to be more robust against noisy input data
compared to plain data driven neural networks. We consider the task of estimating parameters of a mechanical vehicle
model based on acceleration profiles. We introduce a convolutional neural network architecture that given sequential
data, is capable to predict the parameters for a family of vehicle models that differ in the unknown parameters. This
network is trained with two objective functions. The first one constitutes a more naive approach that assumes that
the true parameters are known. The second objective incorporates the knowledge of the underlying dynamics and is
therefore considered as hybrid approach. We show that in terms of robustness, the latter outperforms the first objective
on unknown noisy input data.
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1. Introduction. Physical, biological, and chemical models are important tools in nearly
all fields of the engineering disciplines. Often, a major barrier for their application in practical
cases is the lack of sufficient knowledge about the actual parameters [15].

As a consequence, a lot of technical knowledge in terms of well established equations
cannot be exploit. The resulting problems to determine unknown parameters of a mathematical
system from observations are typically described in the field of System Identification [5, 17].

In this work, we consider the case that a linear dynamical system is given in terms
of a multi-dimensional ordinary differential equation. More specifically, we address the
challenge of identification of parameters in a mechanical vehicle model, that is a coupled
mass-spring-damper system [21].

The practical application that we are targeting at is as follows. Given a family of such
models, we assume that only the parameters that scale with the occupant’s mass are unknown
and the remaining parameters are fixed. We want to create a common model that predicts
the unknown parameters based on acceleration profiles induced by realistic but randomly
generated road profiles.

Deep neural networks have proven to bear great potential in many complex tasks. The
remarkable improvements in computer vision [16, 19, 36] and natural language processing
[9, 23] are undoubtedly among the most famous achievements in this context. In the course
of this progress, deep neural networks have successfully applied in various other disciplines
like reinforcement learning [25] or practical applications in health informatics [33] and the
prediction of energy consumption [22].

In a considerable line of publications, researchers attempted to tackle problems emerging
in the context of physical equations. Mostly, data driven approaches can be used to generate
approximative functions of a PDE structure [34] or to simulate the dynamical behaviour of
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time-dependent ODEs [28, 35]. An appropriate network structure that fits the nature of the
considered problem is often the key to successful results [7, 40].

A common challenge naturally occurring in those works, is the open question of how
to combine neural networks with prior knowledge. That is here, the understanding of the
underlying physical laws [8, 27, 30, 31] that define the connection of the neural network’s
input (observations) and the output (system properties).

In the present work, we use convolutional neural networks to process acceleration profiles.
In that respect, we follow [39] and [41]. By doing so, we show that, based on simulated
data, this kind of network can predict the unknown parameters. Our work is mostly related
to [11, 3, 29].

This work provides the following contributions: We compare the performance of a convo-
lutional neural network architecture for two different optimization processes. For both training
processes, the target is to approximate a subset of the parameters of a system matrix that
describes a set of ordinary differential equations. The first naive approach uses the true coeffi-
cients of the system matrix as labels, the second one recomputes the input data to indirectly
approximate the parameters that are hidden within the data. We observe improved robustness
against noisy test samples when using the second approach for neural network training.

The paper is organized as follows: We discuss a methodology to compute an appropriate
dataset that can be used to (partially) identify the system matrix of the underlying differential
equations in Section 2. Therefore, we describe, how to model the displacement of the road
(Section 2.1) that can be used to compute the displacement of a passenger in an approximative
vehicle model (Section 2.2), mathematically defined via a system of second order ordinary
differential equations. Structure-preserving numerical algorithms like semi-implicit Euler
methods (Section 2.3) can then help to generate synthetic datasets, consisting of the discrete
acceleration profiles for the system of second order ODE. Then, this sequential data can
be used and processed by convolutional neural networks (Section 2.4), using multiple input
channels to achieve good approximations of the true system parameters in the output layer.
The concept of Section 2 is validated in Section 3, using a neural network to predict the
missing parameters that are necessary to describe the acceleration of the observable states. We
can further assume that the true parameters are known for the training process (Section 3.1)
as a labelled learning approach and compare it to unlabelled learning; Section 3.2. For the
unlabelled approach, the output of the neural network is used to reproduce the acceleration
in the neural network’s output space. Then, the true parameter values should result from
minimizing the distance of true and reproduced acceleration. We can compare the performance
of these two objectives for clean training and clean test data to clean training and noisy test
data; Section 3.3. Finally, we can draw a conclusion, when to prefer a labelled or an unlabelled
approach with prior knowledge in Section 4.

2. Methodology. We use a general non-homogeneous system of ordinary differential
equations, mathematically defined by

(2.1) ρ̇(t) = A · ρ(t) + f(t),

where ρ ∈ C1([t0, tN ],Rd), with N, d ∈ N, is a multi-dimensional time-dependent state
variable and the derivative with respect to time is denoted by ρ̇(t) = dρ(t)

dt , an exterior term
f ∈ C([t0, tN ],Rd) that reacts on the dynamical system and A ∈ Rd×d the so called system
matrix with T := [t0, tN ] ⊂ [0,∞). We, therefore, discuss in this section, how to model a
dynamical system of coupled rigid bodies, as mathematically described by (2.1) in order to
develop appropriate data and a sufficient neural network architecture for robust parameter
estimation [14, 26, 32] for elements of the system matrix.
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Appropriate data samples that represent a realisation of (2.1) for varying system matrices
A can be computed by numerically solving the differential equation. Accordingly, we choose
a physical model that can accurately be described by a simple system of second order ODEs.
This system of second order ODEs can easily be reduced to a first order ODE system, which can
in general be described using a representation as given by (2.1). Using a structure-preserving
numerical solution algorithm then helps to generate data samples with a discrete representation
of the dynamical behaviour as described by the underlying ODEs.

In this context, we use acceleration that can physically be described in terms of state and
velocity with constant coefficients.

2.1. Road modelling. Before describing the dynamical system itself, we discuss in
detail, how an appropriate non-homogeneous term f(t) with t ∈ [t0, tN ] can be derived in a
meaningful way for a mechanical system. The following description of modelling road profiles
complient to ISO 8606 standard is based on [37].

Assume the distance, a car reaches on a specific road with absolute constant velocity, can
be described by the continuous interval S := [s0, sN ] ⊂ [0,∞), where sN is the maximum
distance with respect to the starting point s0. We define the state r : S→ R that describes the
displacement of the road at a point s via:

r(s) =

M∑
i=1

Ai sin(ωis− ϕi),

where M ∈ N is the number of relevant frequencies and the amplitude

Ai =

√
Φ(ωi)

(
∆ω

π

)
, i = 1, 2, . . . ,M

depends on the degree of roughness

Φ(ωi) = Φ(ω0)

(
ωi
ω0

)−2

, i = 1, 2, . . . ,M

with

Φ(ω0) = 2k · 10−6

and k ∈ {0, 2, 4, 6, 8}. We say that the road is of class A, if k = 0, of class B, if k = 2, up
to class E with k = 8. It is obvious then that a higher value for k results in a higher general
amplitude of the road displacement r(s) for all s ∈ S and therefore describes a road with
a higher degree of roughness. Furthermore, the frequency domain is defined by the vector
ω = (ω0, ω1, . . . , ωM )T with ω0 = 1, ω1 = 0.02π, ωM = 6π, and ωi = ω1 + (i − 1) ·∆ω
for i ∈ {2, 3, . . . ,M − 1}, where ∆ω = ωM−ω1

M−1 . The phase is given by realisations ϕi with
i ∈ {1, 2, . . . ,M} of a uniformly distributed random variable ϕ ∼ U([0, 2π)).

In order to discuss time-dependent dynamical models, we need to switch from a constantly
increasing distance domain described by set S to a time domain T. Therefore, we assume that
the vehicle drives with constant velocity v > 0. It is obvious that for all s ∈ S, we have s = t·v
for all t ∈ [t0, tN ]. And consequently, the road profile can be defined time-dependently by

(2.2) r(t) =

M∑
i=1

Ai sin(ωitv − ϕi).

The state as given by (2.2) can now be used to induce a force as described by (2.1).
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2.2. Quarter-Car-Model. In a less formal way, the vehicle model can be described
as follows: A vehicle, as schematically given by Figure 2.1, drives along a specified road,
whose displacement at a time t ∈ [t0, tN ] is given by a real valued scalar term r(t). This
displacement drives the dynamics of the wheel suspensions x(t) and from there moves
the remaining components y(t) and z(t) in the coupled system. The states are connected
hierarchically by elements called springs and dampers. Regarding (2.3)–(2.5), we see that the
number of coefficients corresponds to the number of connected springs and dampers as shown
in Figure 2.1. Due to the coupled structure of the model, the rigid bodies are not reacting
simultaneously, but following a hierarchical, time-dependent structure.

FIG. 2.1. Scheme of a Quarter-Car-Model: The approximative model of a car consists of the wheel suspensions
(mass m1 with state x), the car body (mass m2 with state y) and the passenger on seat (mass m3 with state z).
The states are given by vertical displacement over time. The rigid masses are coupled using a total number of three
springs and two dampers. A dynamical behaviour is experienced by the displacement of the road r that results in a
movement of the coupled mass-spring-damper system.

In this section we introduce a system of second order ordinary differential equations that
can be employed as a Quarter-Car-Model (QCM) [12, 20], which constitutes an approximation
of a Half-Car-Model [2] or Full-Car-Model [24]. Our parameters are taken from [21]. The
accelerations at a time t ∈ [t0, tN ] ⊂ [0,∞) of the three rigid bodies of the QCM can then be
described by the following equations

z̈(t) = −C3

m3

(
ż(t)− ẏ(t)

)
− K3

m3

(
z(t)− y(t)

)
,(2.3)

ÿ(t) = −C3

m2

(
ẏ(t)− ż(t)

)
− C2

m2

(
ẏ(t)− ẋ(t)

)
− K3

m2

(
y(t)− z(t)

)
− K2

m2

(
y(t)− x(t)

)
,

(2.4)

ẍ(t) = −C2

m1

(
ẋ(t)− ẏ(t)

)
− K2

m1

(
x(t)− y(t)

)
− K1

m1

(
x(t)− r(t)

)
,(2.5)

where C2 and C3 are the damping constants with C2 = 4741 Ns
m and C3 = 615 Ns

m , K1, K2,
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and K3 are the spring constants with K1 =40 000 N
m , K2 =149 171 N

m , and K3 =98 935 N
m

and m1 = 145 kg is the mass of the wheel suspensions, m2 = 2160 kg the mass of the car
body and m3 ∈ {50, 51, . . . , 200} kg the mass of the passenger plus the seat’s mass. A more
complex dynamical human model can be developed following [1] but the simple version is
sufficient for the observations considered in this approach. Furthermore, the states x, y, and z
describe the relative displacement of the rigid bodies with masses m1 for x, m2 for y, and m3

for z. The velocities are given by ẋ(t) = dx(t)
dt , ẏ(t) = dy(t)

dt , and ż(t) = dz(t)
dt and finally the

accelerations by ẍ(t) = d2x(t)
dt2 , ÿ(t) = d2y(t)

dt2 , and z̈(t) = d2z(t)
dt2 . The term r(t) describes the

displacement of the road as defined in Section 2.1.
Referring back to the initial statement that a dynamical system can be represented by

(2.1), it is obvious to see that the system being described by (2.3)–(2.5) can be equivalently
written in the form

z̈(t)
ÿ(t)
ẍ(t)
ż(t)
ẏ(t)
ẋ(t)


︸ ︷︷ ︸

=:ρ̇(t)

=



− C3

m3

C3

m3
0 −K3

m3

K3

m3
0

C3

m2
−C2+C3

m2

C2

m2

K3

m2
−K2+K3

m2

K2

m2

0 C2

m1
− C2

m1
0 K2

m1
−K1+K2

m1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


︸ ︷︷ ︸

=:A


ż(t)
ẏ(t)
ẋ(t)
z(t)
y(t)
x(t)


︸ ︷︷ ︸

=:ρ(t)

+



0
0

K1

m1
r(t)

0
0
0

 .

︸ ︷︷ ︸
=:f(t)

(2.6)

Therefore, equation (2.6) can be seen as a system of first order ordinary differential equations.
We assume that the states have a continuous dynamical behaviour, thus the system can
(numerically) be solved, if the initial values

ρ(t0) = (ż(t0), ẏ(t0), ẋ(t0), z(t0), y(t0), x(t0))T = (ż0, ẏ0, ẋ0, z0, y0, x0)T

are known. Hold in mind that due to the hierarchical structure of the model, it can be preferable
to use a structure preserving integration scheme, instead of a simple forward Euler integration
method. Hence, we use a symplectic (semi-implicit) Euler integration scheme.

2.3. Dataset. To generate a synthetic dataset, the above ODE system, defined by (2.6),
is numerically solved using a symplectic Euler scheme for geometric integration [13]. This
guarantees that the interdependent relation between the coupled states is considered when
computing the approximate solution of the differential equations. For simplification, we set
ż = w, ẏ = v, and ẋ = u, which then results in an exact description of (2.6) as a first order
non-homogeneous system of ODE. We can then use the following iterative structure to come
to an appropriate numerical solution of our system:

(2.7)

uk+1 = uk + h
(
C2

m1
vk − C2

m1
uk + K2

m1
yk − K1+K2

m1
xk + K1

m1
rk

)
vk+1 = vk + h

(
C3

m2
wk − C2+C3

m2
vk + C2

m2
uk+1 + K3

m2
zk − K2+K3

m2
yk + K2

m2
xk

)
wk+1 = wk + h

(
− C3

m3
wk + C3

m3
vk+1 − K3

m3
zk + K3

m3
yk

)
xk+1 = xk + huk+1

yk+1 = yk + hvk+1

zk+1 = zk + hwk+1

We use a discrete time scheme to compute the approximate solution with the above equations.
Note that for instance uk = u(tk) with tk = kh, where k ∈ {0, . . . , N} with N ∈ N the
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number of discrete time steps and h = tN−t0
N the step-width. The same scheme is analogously

applied to v(tk), w(tk), x(tk), y(tk), z(tk) and also to the road displacement r(tk) for all
k ∈ {0, . . . , N}. The above iterative structure ensures a representation of the dynamical
behaviour of a QCM.

We can now generate a synthetic dataset using the above described symplectic scheme
and further assume that the dynamical system is in equilibrium at t = t0. Consequently, we
initially have u0 = v0 = w0 = x0 = y0 = z0 = 0, interpreted as relative states and velocities
to the corresponding rigid masses. We further assume that the following experiment can be
described by the dataset: The spring and damping parameters are equal for all samples of the
dataset. This means that we always regard the same vehicle for all samples. The shape of the
road’s displacement is equal for a total number of Lm ∈ N samples. For each sample, the
mass of the seat and the passenger is drawn from a uniformly distributed random variable
constraint by the mass being integer-valued.

We compute Lr ∈ N random shapes of the road’s displacement as described in Section 2.1
for discrete time steps tk. Deviations from profile to profile are guaranteed by the randomly
drawn phase for all M ∈ N sine waves for all time steps. In addition to that, the degree
of roughness, characterized by Φ(ω0) is also randomly drawn with respect to one of the
five acceptable classes A–E. Then, for one of the road profiles rj , j ∈ {1, 2, . . . , Lr},
we generate mij

3 , i ∈ {1, 2, . . . , Lm} and apply the scheme given by (2.7). Thus, we get
ûij , v̂ij , ŵij , x̂ij , ŷij , ẑij ∈ RN as discrete solution of the non-homogeneous system with
road profile rj and mass mij

3 .
Then, the discrete accelerations ˆ̈zij and ˆ̈yij can be computed using (2.3) and (2.4) by

ˆ̈zij = − C3

mij
3

(
ŵij − v̂ij

)
− K3

mij
3

(
ẑij − ŷij

)
,(2.8)

ˆ̈yij = −C3

m2

(
v̂ij − ŵij

)
− C2

m2

(
v̂ij − ûij

)
− K3

m2

(
ŷij − ẑij

)
− K2

m2

(
ŷij − x̂ij

)
.

The discrete accelerations ˆ̈zij and ˆ̈yij can then be interpreted to be recordings of two
g-sensors, one measuring acceleration of the seat and one measuring acceleration of the
car body in vertical direction. Therefore, computing the system’s accelerations for different
passenger’s masses, simulates a car driving on different roads with different passengers.

We can then define our labelled dataset by

X =
{(

ˆ̈zij , ˆ̈yij
)
∈ RN×2 | i ∈ {1, 2, . . . , Lm}, j ∈ {1, 2, . . . , Lr}

}
,

M =
{
mij ∈ {50, 51, . . . , 200} | i ∈ {1, 2, . . . , Lm}, j ∈ {1, 2, . . . , Lr}

}
,

both with a cardinality of L = Lr · Lm samples per set. Then, the labelled dataset can be
described by (X,M) ⊂ RL×N×2 × RL. Hold in mind that (ˆ̈zij , ˆ̈yij) for i ∈ {1, 2, . . . , Lr}
corresponds to the discrete vertical accelerations of the Quarter-Car-Model induced by the
road profile rj for j ∈ {1, 2, . . . , Lr}. Then, we can separate the index set {1, 2, . . . , Lr} that
identifies the road profiles using an integer-valued separator Lb ≤ Lr such that we can define
the labelled training dataset by

Xtrain =
{(

ˆ̈zij , ˆ̈yij
)
∈ RN×2 | i ∈ {1, 2, . . . , Lm}, j ∈ {1, 2, . . . , Lb}

}
,

Mtrain =
{
mij ∈ {50, 51, . . . , 200} | i ∈ {1, 2, . . . , Lm}, j ∈ {1, 2, . . . , Lb}

}
,
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and the labelled test dataset by

Xtest =
{(

ˆ̈zij , ˆ̈yij
)
∈ RN×2 | i ∈ {1, 2, . . . , Lm}, j ∈ {Lb + 1, Lb + 2, . . . , Lr}

}
,

Mtest =
{
mij ∈ {50, 51, . . . , 200} | i ∈ {1, 2, . . . , Lm}, j ∈ {Lb + 1, Lb + 2, . . . , Lr}

}
.

Now it can be guaranteed that no road profile used to generate training data simultaneously is
used for the test dataset. As far as our investigations are concerned, we choose the parameters
N = 6000, Lr = 100, Lm = 100, and Lb = 8000. Consequently the dataset simulates
a Quarter-Car-Model on a total number of 100 roads, where for each road there are 100
passengers with arbitrary weight in the previously defined interval. A total number of 80 roads
are used for generating the training dataset and 20 for the test dataset. Therefore, for our
following investigations the relation of training to test samples is 4 : 1 .

2.4. Neural Network. The previous section described precisely, how an appropriate
sequential dataset representing realizations of a coupled mass-spring-damper system can
be generated using a symplectic integration technique like the semi-implicit Euler method.
Convolutional neural networks have shown to achieve comparable results like recurrent neural
networks [4] for sequential data processing [10]. In addition, convolutional neural networks
with multi input channels can easily be used to process a set of sequential data in parallel.
Therefore, we also consider a convolutional neural network architecture to analyze the dataset
we developed in Section 2.3.

Comparable to image recognition tasks, the pair (ˆ̈z, ˆ̈y), which either belongs to the training
or the test set as defined in Section 2.3, can technically be processed like one row of an MNIST
sample [6], using a one-dimensional convolutional operation. In this case, one dimensional
means that the convolution is applied only to one direction.

We use augmentation strategies combined with batch-optimization to achieve a better
generalization performance for unknown test samples. Therefore, instead of choosing the
complete sample (ˆ̈z, ˆ̈y) ∈ RN×2, where the discrete values of the acceleration are by definition
as described in (2.7) restricted to the index set I := {0, 1, . . . , N − 1}, we randomly choose
subintervals of the whole sample as an augmentation method. Then, a subset Il ⊂ I can be
defined using a smaller frame of N̄ = 500 discrete steps with randomly drawn starting point
index l ∈ {0, 1, . . . , 5500}, due to 5500 is the maximum index number, such that a vector of
size 500 can be described within the index set I .

In detail, the subinterval is given by Il = {l, l + 1, . . . , l + N̄ − 1}. Therefore, following
the notation of Section 2.3, we can define the randomly chosen subset of the input by

(
ˆ̈z, ˆ̈y
)
Il

=


ˆ̈zl ˆ̈yl

ˆ̈zl+1
ˆ̈yl+1

...
...

ˆ̈zl+N̄−1
ˆ̈yl+N̄−1

 .
Assume that there are two unknown entries within the system matrix A, given by the two-
dimensional vector

p =

(
p1

p2

)
=

(
C3

m3
K3

m3

)
,

consisting of the two parameters that describe the acceleration z̈ of the passenger in (2.6).
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Then, a deep convolutional neural network can be defined by the following function

gθ : R500×2 −→ R2(
ˆ̈z, ˆ̈y
)
I·
7−→

(
p̃1

p̃2

)
,

where θ describes the set of weights and biases of the convolutional neural network, p̃1 is
the prediction of the first parameter p1 and analogously p̃2 is the prediction for the second
parameter p2. This means that there are two unknown parameters within our system matrix A,
we want the neural network to predict from the dataset.

Therefore, we use the following network structure, also described by Figure 2.2: The
first layer is a convolutional one with input dimension according to the domain of gθ with
100 filters of size 50 and the hyperbolic tangent as activation function. This is followed by a
second convolutional layer with another 100 filters but of size 10. The output is then flattened
and further processed using three fully-connected layers with 100, 10, and 2 neurons with
fitting weighting matrices and biases. For the output layer, we map the computational results
of weighting and biasing to the absolute value in order to guarantee positive predictions of the
parameters.

FIG. 2.2. Neural network for parameter prediction, consisting of one convolutional layer with 50 filters of
size 100 and hyperbolic tangent as activation, one convolutional layer with 100 filters of size 50, followed by one
fully-connected layer with 100 neurons, one fully-connected layer with 10 neurons and a fully-connected layer with 2
neurons as output layer.

2.5. Loss functions. Following the notation of the previous section, the output of the
neural network can be denoted by gθ(ˆ̈z, ˆ̈y) = (p̃1, p̃2)

T
= p̃. Therefore, the neural network’s

output can be separated into the prediction for the first parameter p̃1 = gθ;1(ˆ̈z, ˆ̈y) and for
the second one p̃2 = gθ;2(ˆ̈z, ˆ̈y), respectively. We will now introduce two loss functions JL
and JU . The first of which measures the deviation of system parameter predictions to the
correct parameter, i.e., labels, and the second measures the deviation of the data reconstruction
that results from mapping the predicted system parameters to the input data. Both training
processes can be compared later on, as they use the same neural network architecture.p Since
the first loss requires labels, we will refer to it as labelled loss and as the second one does not
require the parameter labels, we will consequently refer to it as unlabelled loss.

Labelled Loss JL. For the first objective, we assume that the true underlying parameter
values are known for the training process. Therefore, a neural network to predict the two
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parameters can be trained using the labelled objective

JL(p, gθ(ˆ̈z, ˆ̈y)) =

d∑
i=1

|pi − gθ;i(ˆ̈z, ˆ̈y)|,

where for this special case we have d = 2 being the number of parameters to predict.
Unlabelled Loss JU . As mentioned in the beginning, the second loss function intends to

minimize the distance in the data space. We first explain, how acceleration data is generated
based on the system parameters predicted by the neural network. Afterwards, we can explicitly
define the unlabelled objective JU . We know by (2.3) that the acceleration of the passenger
can be computed by

z̈ = −C3

m3
(ż − ẏ)− K3

m3
(z − y) = −p1(ż − ẏ)− p2(z − y).

We assume that the device recording the acceleration data delivers it without noise, or more
realistic, we assume that the acceleration data already has been de-noised. Then, it is possible
to get a discrete approximation of the velocities ẏ, ż and consequently also approximations of
the states y, z with a numerical integration scheme. For a discrete time frame t0 < . . . < tN
with h = tk+1 − tk for all k ∈ {0, 1, . . . , N − 1} the recorded acceleration is given by

ˆ̈zk = z̈(tk)

and the same holds for the recorded acceleration of the car body ˆ̈yk = ÿ(tk). Consequently,
using a symplectic Euler integration scheme, we get ˆ̇zk for all k ∈ {1, 2, . . . , N − 1} by

ˆ̇zk = ˆ̇zk−1 +

∫ tk

tk−1

ˆ̈zk−1 ds = ˆ̇zk−1 + h · ˆ̈zk−1

and analogously the state ẑk by

ẑk = ẑk−1 +

∫ tk

tk−1

ˆ̇zk ds = ẑk−1 + h · ˆ̇zk,

which reduces the approximation error that follows from simple forward Euler integration [38].
The same scheme can be applied to compute the integrated values of the car body’s accelera-
tion ˆ̈yk. Then, using the output of the neural network for these specific values, we can make a
prediction of the original acceleration, which corresponds to the computation of the discrete
acceleration for the dataset in (2.8), by

˜̈zk = −gθ;1(ˆ̈z, ˆ̈y)(ˆ̇zk − ˆ̇yk)− gθ;2(ˆ̈z, ˆ̈y)(ẑk − ŷk)

for all k ∈ {0, 1, . . . , N − 1}. Finally, we can define an objective for unlabelled learning by

JU (ˆ̈z, gθ(ˆ̈z, ˆ̈y)) =
∑
l∈Il

|ˆ̈zl − (−gθ;1(ˆ̈z, ˆ̈y)(ˆ̇zl − ˆ̇yl)− gθ;2(ˆ̈z, ˆ̈y)(ẑl − ŷl))|2,

where Il is the randomly drawn index set described in Section 2.4. Comparable to an auto-
encoder neural network, the original data is rebuilt out of a data representation in a low-
dimensional (latent) space [18], here being described by the parameter vector p̃.

3. Numerical examples. In the preciding section, it is explained how neural networks
are employed to predict a set of parameters of a dynamical system using partial observations
of the system. In this section, we report results from numerical experiments minimizing the
loss functions JL and JU for comparable tasks.
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3.1. Labelled system identification. In a first experiment, the objective is to mini-
mize JL. Therefore we discuss the initial results of the training dataset before any of the
network’s parameters have been optimized. We statistically evaluate our methods, with respect
to absolute and relative mean error with corresponding variance.

We predict the values of the parameters p1 and p2 for the training dataset with the help of
a one-dimensional convolutional neural network, with objective JL for training. Figure 3.1 and
Figure 3.3 show the predictions and the true values for p1 (Figure 3.1) and for p2 (Figure 3.3),
where Figure 3.2 and Figure 3.4 show the relative deviations between the true parameter values
and the predictions coming from the output layer of the neural network. More precisely, as
far as Figure 3.1 and Figure 3.3 are concerned, we sorted the training dataset according to
the value of the true parameter. Thus, we can recognize numbers reaching from 1 to 8000
on the abscissa and a sequence of growing parameter values on the ordinate, represented by
the green curve. This curve then describes the true parameter value for p1 (Figure 3.1) and
p2 (Figure 3.3) for the entire training dataset. In contrast, the red points correspond to the
network’s prediction. Consequently, for each green point on the "curve" there is exactly one
corresponding red point on the same vertical level.

Optimally, the red points should therefore fit the green line of the true parameter values.
This property can be interpreted as prediction being equal to the underlying label of the input
data.

Besides, Figure 3.2 and Figure 3.4 show the relative deviation of prediction to true
parameter value plotted as histograms. The relative deviation of a true parameter pj with
respect to the neural network’s prediction p̃j for j ∈ {1, 2} is then given by

|pj − p̃j |
pj

.

The histograms then show the relative deviation on the abscissa, where the number of samples,
that approximately lie within the same error range is shown on the ordinate. The four plots
show the results at i = 0 optimization steps. Therefore, we actually cannot see any valuable
results, but the initialization is adequate to get an impression, how the optimal solution should
look like. Weights and biases are randomly initialized, therefore we also get random outputs
of the neural network. Optimally, the figures in Figure 3.1 and Figure 3.3 should show an
approximation of the red point cloud to the green label line, while the bars of the histograms
of Figure 3.2 and Figure 3.4 should be close to zero on the x-axis, corresponding to a small
error for all samples of the training set.

The results in Figure 3.5 and Figure 3.6 show the prediction of the parameters and the
true parameter values for the entire training dataset after i = 500 000 optimization steps,
using Adam optimization for the training process with learning-rate η = 0.001 and batch-size
M = 100. As already described for i = 0 optimization steps, while training, the red point
cloud should converge to the green label line. As we can see from both Figure 3.5 as well as
from Figure 3.7, the red cloud indeed comes closer to the optimal label values.

In addition also the histograms of the relative deviation, as can be seen in Figure 3.6 and
Figure 3.8, show the expected result: The main samples have a relative deviation close to zero
as can be seen by a left-skewed distribution of the relative deviation. Precisely, we have a
relative mean deviation of µ = 0.062 and a mean standard deviation of this error of σ = 0.091.
For the second parameter, we have µ = 0.043 and σ = 0.083.
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The architecture of the convolutional neural network is therefore sufficient as far as the
task of labelled learning for the given dataset is concerned.

Furthermore, we also want to discuss the generalization quality of the neural network.
Therefore, we analyze the same plots as already discussed for the training data, but now for
the unknown test dataset. Consequently, instead of 8000 samples, as shown on the abscissa
for Figure 3.1, Figure 3.3, Figure 3.5, and Figure 3.7, there is a range of 2000 samples for the
test data, as can be seen in Figure 3.9 and Figure 3.11. The results are similar to those of the
training dataset, as far as prediction accuracy and maximum relative deviation (Figure 3.10
and Figure 3.12) are considered. For the first parameter p1 we have on average µ = 0.060 and
σ = 0.079, where for p2 we get µ = 0.042 and σ = 0.084.

In summary, we conclude that the mean training and test error are close to each other, as
well as the corresponding standard deviation. Therefore, the convolutional neural network
generalizes well with the given architecture using objective function JL for the data of our
Quarter-Car-Model.

FIG. 3.1. Index of the training samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p1 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 0 w.r.t. the objective function JL.

FIG. 3.2. Relative error (abscissa) between neural network’s prediction and true label for p1 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all training
samples at optimization step i = 0 for the objective function JL.
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FIG. 3.3. Index of the training samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p2 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 0 w.r.t. the objective function JL.

FIG. 3.4. Relative error (abscissa) between neural network’s prediction and true label for p2 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all training
samples at optimization step i = 0 for the objective function JL.

FIG. 3.5. Index of the training samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p1 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 500 000 w.r.t. the objective function JL.
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FIG. 3.6. Relative error (abscissa) between neural network’s prediction and true label for p1 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all training
samples at optimization step i = 500 000 for the objective function JL.

FIG. 3.7. Index of the training samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p2 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 500 000 w.r.t. the objective function JL.

FIG. 3.8. Relative error (abscissa) between neural network’s prediction and true label for p2 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all training
samples at optimization step i = 500 000 for the objective function JL.
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FIG. 3.9. Index of the test samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p1 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 500 000 w.r.t. the objective function JL.

FIG. 3.10. Relative error (abscissa) between neural network’s prediction and true label for p1 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all test samples
at optimization step i = 500 000 for the objective function JL.

FIG. 3.11. Index of the test samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p2 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 500 000 w.r.t. the objective function JL.
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FIG. 3.12. Relative error (abscissa) between neural network’s prediction and true label for p2 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all test samples
at optimization step i = 500 000 for the objective function JL.

3.2. Unlabelled system identification. Let us now assume that the true values of the
parameters p1 and p2 are not known for any sample of the training dataset. Nevertheless, we
want to identify the unknown parameters via usage of our deep convolutional neural network.
Therefore, as initially described, we use our unlabelled objective function JU to minimize the
squared difference of ˆ̈zl and the reproduction ˜̈zl for l ∈ Il.

Compared to the labelled approach, we skip the initialization analysis. We directly have
a look at the usual plots for our experiments for the entire training data after i = 500 000
optimization steps. Again we use Adam optimization with the same learning-rate and batch-
size as described for the first experiment. Here, the absolute deviation of parameter p1 and
p2 are shown in Figure 3.13 and Figure 3.15, where the corresponding relative deviations are
shown by the histograms in Figure 3.14 and Figure 3.16. Comparable to the first experiment,
we see that the red points come closer to the green optimal label line. Although we can
recognize that there is a larger deviation, when regarding large parameter values for both
p1 as well as p2. Again, the precise values are given by µ = 0.102 and σ = 0.131 for p1

and µ = 0.082 and σ = 0.131 for p2. Consequently, the mean error for the training data is
approximately 4% higher compared to the results of Section 3.1.

We can make similar observations, when comparing training and test. Again, the red points
seem to approximately fit the label points with high deviations for large parameter values;
Figure 3.17 and Figure 3.19. The deviation (Figure 3.18 and Figure 3.20) can be described
by µ = 0.097 and σ = 0.127 for the first parameter and µ = 0.076 and σ = 0.127 for the
second one.

To summarize the results, we observe that the values for µ and σ lie within an comparable
range for the training as well as for the test data. Therefore, also minimizing the objective
function JU results in a good generalizability for the neural network. Nevertheless, the
prediction quality is slightly worse with mean relative deviation of around 8–10% compared
to objective JL with 4–8%.
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FIG. 3.13. Index of the training samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p1 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 500 000 w.r.t. the objective function JU .

FIG. 3.14. Relative error (abscissa) between neural network’s prediction and true label for p1 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all training
samples at optimization step i = 500 000 for the objective function JU .

FIG. 3.15. Index of the training samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p2 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 500 000 w.r.t. the objective function JU .
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FIG. 3.16. Relative error (abscissa) between neural network’s prediction and true label for p2 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all training
samples at optimization step i = 500 000 for the objective function JU .

FIG. 3.17. Index of the test samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p1 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 500 000 w.r.t. the objective function JU .

FIG. 3.18. Relative error (abscissa) between neural network’s prediction and true label for p1 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all test samples
at optimization step i = 500 000 for the objective function JU .
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FIG. 3.19. Index of the test samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p2 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 500 000 w.r.t. the objective function JU .

FIG. 3.20. Relative error (abscissa) between neural network’s prediction and true label for p2 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all test samples
at optimization step i = 500 000 for the objective function JU .

3.3. Robustness for noisy test data. For the experiments of the previous sections, we
have always considered the training and test data to be clean or already de-noised. We have
also discussed the performance of a convolutional neural network for time series, being
trained with a labelled and an unlabelled objective function. For these two experiments, the
labelled approach is superior in terms of training and test error compared to the unlabelled
approach. We now want to consider the case, where the model, for both—labelled and
unlabelled learning—is trained using de-noised acceleration data. Therefore, the data quality
for the objective JU is ensured, using numerical integration to approximate the values of the
corresponding velocity and state.

Now assume that the acceleration data of the test dataset is noisy, meaning for each
(ˆ̈z, ˆ̈y) ∈ Xtest within our test data, there is one corresponding Gaussian noise ξ ∈ RN for z̈ and
one corresponding Gaussian noise ν ∈ RN for ÿ such that the input of the neural network is
given by

(¯̈z, ¯̈y) =
(

ˆ̈z + ξ, ˆ̈y + ν
)
.
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We compare which approach is more adequate to process noisy test data. Usually, neural
networks can react very sensitive to data noise. Therefore, we test both trained networks, at
the one hand the labelled and on the other hand the unlabelled approach and compare the
performance for the noisy test data with ξk, νk ∼ N (0, 0.01) for all k ∈ {0, 1, . . . , N − 1}.

As can be seen for the objective function JL and the test dataset (compare Figure 3.21–
Figure 3.24), the output of the neural network is quite sensitive to the Gaussian noise added
to the test dataset, as expected. We can recognize a decreased performance of the prediction
quality. Although the most part of the red point cloud is concentrated around the green labels,
we can see that there are more values spread compared to the clean test data in Section 3.1. As
mentioned previously, we can recognize that the objective JL can give highly precise values
for the training data: For both parameters p1 and p2 we get mean relative deviations of 4–8%.
Contrarily, the performance for the noisy test dataset is much worse in this case: For both
p1 and p2 the test deviation lies between 26–28%. The generalizability for the convolutional
neural network is for this specific case not given any more. There are significantly better
results in predicting the values of the test data when the unlabelled objective JU is used for the
training procedure; compare Figure 3.25–Figure 3.28. For the training dataset, the unlabelled
objective function results in an adjustment of the network’s parameters to predict with a
relative deviation of 8–10%. The noisy test data results in a relative deviation of around 16%.
Consequently, the performance for the training data is relatively close to the performance of
the test data and therefore the second objective is more robust than the labelled one.

The robustness of the second objective compared to the first one becomes obvious in
Figure 3.29–Figure 3.32. In Figure 3.29, the mean relative deviations, for both parameter p1

and parameter p2, are shown at every i = λ · 100 000 iteration steps with λ ∈ {1, 2, 3, 4, 5}
for the training as well as for the test dataset using objective JL. The straight lines represents
the evaluation for the optimization process using the de-noised test data, the dashed line
for the noisy test data. In an analogous way, Figure 3.31 displays the results for the mean
standard deviation also using objective JL. As can be seen in Figure 3.29 and Figure 3.31, the
performance lines are close to each other in case of the clean test dataset. When considering
the noisy test data for parameter p1 (violet dashed line) and p2 (cyan dashed line) there is a
large gap compared to the training deviation.

Therefore, we again see that the approach using JL works well as far as generalizability
for de-noised test data is concerned but fails for noisy samples.

In contrast to that, we can have a look at the mean relative deviation for JU in Figure 3.30
and the corresponding mean standard deviation in Figure 3.32. As can be seen, the dashed
lines and the straight lines are more close to each other with an absolute smaller error for the
noisy test data and the unlabelled approach.

Therefore, we conclude that the second objective is more robust for parameter estimation
using noisy test data in a convolutional neural network.
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FIG. 3.21. Index of the noisy test samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p1 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 500 000 w.r.t. the objective function JL.

FIG. 3.22. Relative error (abscissa) between neural network’s prediction and true label for p1 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all noisy test
samples at optimization step i = 500 000 for the objective function JL.

FIG. 3.23. Index of the noisy test samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p2 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 500 000 w.r.t. the objective function JL.
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FIG. 3.24. Relative error (abscissa) between neural network’s prediction and true label for p2 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all noisy test
samples at optimization step i = 500 000 for the objective function JL.

FIG. 3.25. Index of the noisy test samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p1 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 500 000 w.r.t. the objective function JU .

FIG. 3.26. Relative error (abscissa) between neural network’s prediction and true label for p1 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all noisy test
samples at optimization step i = 500 000 for the objective function JU .
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FIG. 3.27. Index of the noisy test samples (abscissa) sorted according to the value of the label (ordinate). The
prediction of the neural network (red) for parameter p2 compared to the underlying label value (green). The figure
shows the prediction for all training samples at optimization step i = 500 000 w.r.t. the objective function JU .

FIG. 3.28. Relative error (abscissa) between neural network’s prediction and true label for p2 and quantity of
samples with same deviation (ordinate) shown as histogram. The plot shows the relative deviation for all noisy test
samples at optimization step i = 500 000 for the objective function JU .

4. Conclusion. We have shown that a hybrid objective function, which uses knowledge
about the underlying data’s dynamics, can be used in a meaningful way to develop a more
robust tool for parameter estimation with respect to noisy test data, compared to standard
neural network optimization using the data samples’ labels.

Therefore, we have discussed the problem of system identification for approximative
vehicle models given by a non-homogeneous system of second order ordinary differential equa-
tions. Data has been generated in terms of discrete representations of the system components’
acceleration, using a symplectic Euler integration scheme to numerically solve the differential
equations. Variation of the samples has been guaranteed by randomly generating the road
profile and the mass for the uppermost component of the dynamical system. An architecture
for a convolutional neural network has been developed as a data driven model to predict the
coefficients of the relevant differential equation, based on the generated acceleration data.

The training of the neural network’s parameters has been carried out with respect to two
different objective functions, one of which uses the true values of the equation’s parameters for
labelled optimization and the second of which uses reproduction of the input data, comparable
to the principle of auto-encoders, for unlabelled optimization.
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FIG. 3.29. Mean relative deviation of p1 and p2 for each 100 000 steps for two optimization processes using
JL: (1) Optimization process using de-noised training and de-noised test data. Mean deviation is shown for p1
training (red line), p1 test (violet line), p2 training (blue line) and p2 test (cyan line). (2) Optimization process using
de-noised training and noisy test data. Mean deviation is shown for p1 training (red dashed line), p1 test (violet
dashed line), p2 training (blue dashed lined) and p2 (cyan dashed line).

FIG. 3.30. Mean relative deviation of p1 and p2 for each 100 000 steps for two optimization processes using
JU : (1) Optimization process using de-noised training and de-noised test data. Mean deviation is shown for p1
training (red line), p1 test (violet line), p2 training (blue line) and p2 test (cyan line). (2) Optimization process using
de-noised training and noisy test data. Mean deviation is shown for p1 training (red dashed line), p1 test (violet
dashed line), p2 training (blue dashed lined) and p2 (cyan dashed line).

It has been shown that both objectives can be used to train the neural network’s parameters,
such that the prediction performance is acceptable for both clean training and clean test data.
Here, the labelled approach slightly outperforms the unlabelled approach. Nevertheless, none
of the objectives leads to overfitting, when comparing the training and test performance.

In contrast, if test samples are used that have been modified by adding Gaussian noise
to the clean data, we can recognize that the unlabelled approach is significantly more robust
against noise compared to the labelled one. It is therefore preferable to use prior knowledge
about data, when the inner structure is known. As a consequence, it is worth doing further
investigations in this field to find the root cause of the results. Simple mathematical models that
show similar results following the approaches in this work, could be taken into consideration
to get a deeper understanding of this robustness effect.
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FIG. 3.31. Mean standard deviation of p1 and p2 for each 100 000 steps for two optimization processes using
JL: (1) Optimization process using de-noised training and de-noised test data. Mean deviation is shown for p1
training (red line), p1 test (violet line), p2 training (blue line) and p2 test (cyan line). (2) Optimization process using
de-noised training and noisy test data. Mean deviation is shown for p1 training (red dashed line), p1 test (violet
dashed line), p2 training (blue dashed lined) and p2 (cyan dashed line).

FIG. 3.32. Mean standard deviation of p1 and p2 for each 100 000 steps for two optimization processes using
JU : (1) Optimization process using de-noised training and de-noised test data. Mean deviation is shown for p1
training (red line), p1 test (violet line), p2 training (blue line) and p2 test (cyan line). (2) Optimization process using
de-noised training and noisy test data. Mean deviation is shown for p1 training (red dashed line), p1 test (violet
dashed line), p2 training (blue dashed lined) and p2 (cyan dashed line).
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