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ERROR ESTIMATES FOR VARIATIONAL REGULARIZATION OF INVERSE
PROBLEMS WITH GENERAL NOISE MODELS FOR DATA AND OPERATOR∗

THORSTEN HOHAGE† AND FRANK WERNER‡

Abstract. This paper is concerned with variational regularization of inverse problems where both the data and
the forward operator are given only approximately. We propose a general approach to derive error estimates which
separates the analysis of smoothness of the exact solution from the analysis of the effect of errors in the data and the
operator. Our abstract error bounds are applied to both discrete and continuous data, random and deterministic types
of error, as well as Huber data fidelity terms for impulsive noise.
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1. Introduction. The general setting of this paper (to be specified later) is as follows:
Let X and Y be normed spaces and F : D(F ) ⊂ X → Y be a continuous forward operator.
We consider the inverse problem to reconstruct some unknown u† ∈ D(F ) from observations
of

g† := F (u†).

We assume that only approximations

gobs ≈ g† and Fh ≈ F

of the right-hand side g† and the operator F are at our disposal, where the precise meaning of
≈ depends on the specific model considered. Here

Fh : D(F )→ Yh

may be a numerical approximation of F in finite-dimensional spaces, or it may contain
modeling errors of the forward problem. We do not assume that Yh ⊂ Y or that gobs ∈ Y or
gobs ∈ Yh.

Famous examples of data noise models are deterministic ones where gobs ∈ Y satisfies
‖gobs − g†‖Y ≤ δ with some (small) noise parameter δ, or continuous random noise, where
in general gobs /∈ Y a.s., but E[gobs] = g in a suitable sense.

For the solution of this problem, we focus on variational regularization methods

(1.1) ûα ∈ argmin
u∈D(F )

[
1

α
S(Fh(u); gobs) +R(u)

]
where S(·; gobs) : Yh → (−∞,∞] is a so-called data fidelity term, R : X → (−∞,∞] is
a penalty term, and α > 0 is a regularization parameter (see, e.g., [31, 32] and references
therein). The precise choice of S and R depends solely on the specific problem instance.
Typically, S will be chosen as the negative log-likelihood of the data distribution, or an
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approximation thereof (maybe including discretization effects; see Sections 4–6 for some
examples), and R incorporates a priori information on u† in the sense that R(u) is small if
and only if u is compatible with this a priori information.

The existence of (global) minimizers of (1.1) can – at least in principle – be ensured by
standard arguments under reasonable assumptions on S andR; see, e.g., [10] or [31].

In this paper, we will just assume the existence of global minimizers of (1.1) and aim to
provide a general framework for the derivation of error bounds for the reconstructions ûα in
(1.1). As usual in inverse problems, these error bounds will depend on both the ill-posedness
of the inverse problem (in terms of smoothness of u† and smoothing properties of F ) and the
specific noise model. However, we avoid focusing on one specific noise model, but provide
abstract conditions under which error bounds can be obtained. Later on, we will discuss several
examples in detail, such as classical deterministic noise, Gaussian white noise, impulsive
noise, and the setting of discretized observations.

The abstract conditions formulated in this paper are threefold and can roughly be described
as follows.

(A) Smoothness of u†: We assume that u† satisfies a variational source condition (see
Assumption A below). This way of measuring the smoothness of u†, first formulated
in [15] (see also [11, 13, 39]) has turned out to be very useful, and in many situations
variational source conditions are necessary and sufficient for convergence rates [18].
As typical for source conditions in general, the smoothness of u† is measured relative
to the smoothing properties of F .

(B) Data and operator error: As the datum gobs as well as the approximation Fh of
the forward operator F occur in (1.1) only via the data fidelity functional u 7→
S(Fh(u); gobs), we introduce a variational noise functional err, which measures the
influence of gobs and Fh on S. Such a functional was first introduced in [43], and
since then has been proven to be useful in many models [19, 41]. Our only assumption
on the specific noise model considered for gobs and Fh is then a suitable (but not
uniform) upper bound for err which is compatible with the smoothing properties of
the true F assumed in condition (C); cf. Assumption B below.

(C) Smoothing properties of F : We assume an interpolation-type inequality which allows
us to interpolate data error bounds between the images of F and the loss functional `
to be introduced below; see Assumptions C1 and C2.

Under these assumptions, we are able to provide abstract error bounds for ûα as in (1.1);
see Theorems 3.1 and 3.4 below. Although rather technical, these error bounds are applicable
to a wide range of situations. We will discuss their implications for several data and operator
noise models, including Gaussian white noise, discrete data, and impulsive noise with a
Huber-type data fidelity term.

Let us discuss some results in the literature on the treatment of different types of noise in
the data and the operator in variational regularization: Neubauer and Scherzer [26, 27] consid-
ered nonlinear Tikhonov regularization in Hilbert spaces with finite-dimensional projections
using spectral methods; see also [25] for results on discrete data and operators in variable
Hilbert scales.

Concerning variational regularization in Banach spaces, consistency results for perturbed
operators were derived in [29]. In [23] an error bound for perturbed operators is derived under
the classical source condition ∂R(u†) ∈ range(F ′[u†]∗). Under the same source condition,
error bounds were also shown in [6, 7, 33] for more general data fidelity terms, in the first two
references for perturbed operators satisfying bounds in Banach lattices. We also refer to [14]
for convergence rates of wavelet thresholding methods for perturbed operators.
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Concerning convergence rates of variational regularization in Banach spaces with statisti-
cal errors in the data, we refer to [17, 41, 45], where the noise has been described by stochastic
processes in a continuous setting. Here we will also analyze more realistic discrete settings.

The proposed framework allows us to analyze for the first time convergence rates with
respect to perturbations for non-quadratic variational regularization if the solution is not smooth
enough to satisfy ∂R(u†) ∈ range(F ′[u†]∗). Moreover, we will derive new error bounds for
perturbed operators and discrete statistical noise models as well as discrete impulsive noise.

The outline of this paper is as follows. In Section 2 we present and discuss the assumptions
mentioned before in detail. Section 3 is then devoted to the main general results on error
bounds, including some discussions. We first apply these to perturbed data and operators in a
continuous setting in Section 4, and then to discrete data in Section 5. Finally, in Section 6
we study impulsive noise with a Huber-type data fidelity term, before we end this paper with
some conclusions in Section 7.

2. Assumptions and preparations.

2.1. Bounds on the approximation error. In this subsection we report on recent progress
in deriving sharp and computable bounds on the approximation error (or bias) of variational
estimators. The focus of this paper is on bounds of the propagated data error rather than the
bias, but it is convenient to start with the terminology needed for the bias bounds.

We study an estimator in which the data fidelity term S(Fh(u); gobs) in (1.1) is replaced
by an ideal noise-free data fidelity term involving the exact operator F and data fidelity
functional T : Y × Y → [0,∞]:

uα ∈ argmin
u∈D(F )

[
1

α
T (F (u); g†) +R(u)

]
.(2.1)

We will assume that

T (g; g†) = 0 ⇐⇒ g = g†.(2.2)

The approximation error will be measured in terms of a loss function ` : X×X → [0,∞],
i.e., we will consider `(uα, u†) as the distance between uα and u†. Note that ` does not have
to be a distance in the sense of a metric, as we do not assume definiteness, symmetry, or a
triangle inequality. The most common examples for ` are norm powers

`(u, u†) = ‖u− u†‖rX

with r ≥ 1 and the Bregman divergence

`(u, u†) = Du
∗

R (u;u†) = R(u)−R(u†)− 〈u∗, u− u†〉,

where u∗ ∈ ∂R(u†) is a subgradient of the penalty termR at u†. Often Bregman divergences
are an analytically convenient distance measure for the study of variational regularization
methods. In an r-convex Banach space with r ∈ [2,∞) andR(u) = (1/r)‖u‖rX (e.g., Lr or
W k,r; see [46, Section 1] for a definition and discussion), the Bregman divergence is lower-
bounded by a norm power (see [34, 46]), and in Hilbert spaces one even has equality. For
`1-type regularization, error bounds with respect to Bregman divergences are less informative,
and bounds with respect to the norm (r = 1) have been derived directly [17].
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ASSUMPTION A. Suppose that u† ∈ D(F ) satisfies a variational source condition

(2.3) `(u, u†) ≤ R(u)−R(u†) + ϕ(T (F (u);F (u†))) for all u ∈ D(F ),

with an index function ϕ : [0,∞)→ [0,∞); i.e., ϕ is continuous, increasing, and ϕ(0) = 0.
If ` and T are symmetric and Assumption A is satisfied for all u† in some subset D̃ ⊂

D(F ), then the global conditional stability estimate `(u1, u2) ≤ ϕ(T (F (u1);F (u2))) holds
true for all u1, u2 ∈ D̃. In particular, we have global uniqueness in D̃ if ` is positive definite.

Comparing uα with u† in the minimality condition from (2.1) and using (2.2), this implies

`(uα, u
†) ≤ R(uα)−R(u†) + ϕ(T (F (uα);F (u†)))

≤ − 1

α
T (F (uα);F (u†)) + ϕ(T (F (uα);F (u†))),

and using an argument due to Grasmair [13], Assumption A consequently yields the bias
bound `(uα, u†) ≤ ϕapp(α) with

(2.4) ϕapp(α) := sup
τ≥0

[
− 1

α
τ + ϕ(τ)

]
.

Note that

ϕapp(α) = (−ϕ)∗
(
− 1

α

)
, α > 0,

if ψ∗(t) := sups∈R[st−ψ(s)] denotes the Fenchel conjugate of a function ψ : R→ R∪{∞}
and if we set ϕ(t) := −∞ for t < 0.

REMARK 2.1. The function ϕapp has the following properties (see, e.g., [44]):
(a) ϕapp(α) ≥ 0 for all α > 0;
(b) if ϕ1+ε is concave for some ε > 0, then ϕapp satisfies

ϕapp(Cα) ≤ C1/εϕapp(α) for all C ≥ 1, α > 0;

(c) ϕapp is monotonically increasing; and
(d) if ϕ2 is concave, then ϕapp(α)↘ 0 as α↘ 0.
EXAMPLE 2.2. Let Ω ⊂ Rn and M ⊂ Rd be smooth bounded domains or smooth

bounded manifolds. Assume that F : D(F ) ⊂ L2(Ω)→ L2(M) is at most a-times smoothing
in the sense that there exists some CF such that

‖u− v‖H−a(Ω) ≤ CF ‖F (u)− F (v)‖L2(M) for all u, v ∈ D(F ),(2.5)

and that u† ∈ Hs
0(Ω) with 0 < s < a and ‖u†‖Hs ≤ ρ.

Interpolation in Sobolev spaces (see, e.g., [36, Section 4.3.1]) and Young’s inequality
yield

〈u†, u† − u〉 ≤ ‖u†‖Hs‖u† − u‖H−s

≤ ρ‖u† − u‖(a−s)/aL2 ‖u† − u‖s/aH−a

≤ 1

4
‖u† − u‖2L2 +

a+ s

2a

(
a

2a− 2s

)−(a−s)/(a+s)

ρ2a/(a+s)‖u† − u‖2s/(a+s)
H−a .
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If we furthermore plug in the identity 1
4‖u− u

†‖2L2 = 1
2‖u‖

2
L2 − 1

2‖u
†‖2L2 + 〈u†, u† − u〉 −

1
4‖u− u

†‖2L2 and (2.5), then we find that u† satisfies the variational source condition

1
4‖u− u

†‖2L2 ≤ 1
2‖u‖

2
L2 − 1

2‖u
†‖2L2 + Cρ2a/(a+s)‖F (u†)− F (u)‖2s/(a+s)

L2(2.6)
for all u ∈ D(F ),

with

C :=
a+ s

2a

(
a

2a− 2s

)−(a−s)/(a+s)

C
2s/(a+s)
F .

This is a specific instance of (2.3) with `(u, v) := 1
4‖u−v‖

2
L2 ,R(u) := 1

2‖u‖
2
L2 , T (u, u†) =

‖u−u†‖2L2 , and ϕ(t) = Cρ2a/(a+s)ts/(a+s). For the function ϕapp(α), one readily computes
by differentiation that

ϕapp(α) = C̃ρ2αs/a.

Assumption (2.5) has been verified for the Radon transform and parameter identification
problems in partial differential equations (PDEs) with distributed measurements [17], and it
holds true for injective, elliptic pseudo-differential operators of order −a since the existence
of a parametrix [35, Section 7.4] and mapping properties [35, Section 7.5] imply that such
operators are Fredholm with index 0 from Hs to Hs−a for all s.

A more systematic approach to the characterization of variational source conditions which
is applicable to a larger class of inverse problems has been developed in the Ph.D. thesis of
Weidling [39]. It is based on describing the smoothness of the solution and the local degree of
ill-posedness in terms of a family of finite-dimensional subspaces and has been successfully
applied to inverse medium scattering problems [40] and electrical impedance tomography.

REMARK 2.3. Using the approach in [39], the smoothness assumption u† ∈ Hs(Ω) in
Example 2.2 can be relaxed to u† ∈ Bs2,∞(Ω) under further assumptions on Ω, and s < a can
be improved to s ≤ a (with u† ∈ Ha(Ω) for s = a), also in Corollaries 4.1, 4.3, and 4.5.

2.2. Bounds on data noise and errors in operator. The main subject of this paper is
to derive bounds on the influence of the noise contained in the data gobs and the operator
Fh. Since gobs (and also Fh) is only accessed via its associated data fidelity functional
S(·; gobs) : Yh → (∞,∞], a straightforward idea may be to compare the data fidelity
term u 7→ S(Fh(u); gobs) in (1.1) to the ideal data fidelity functional u 7→ T (F (u); g†)
in (2.1). However, S has a free additive constant, i.e., nothing changes if S is replaced by
S + c for any c ∈ R. We do not assume positive definiteness as in (2.2), and for many
examples discussed below S may take negative values. Therefore, we compare T (F (·); g†) to
S(Fh(·); gobs)− S(Fh(u†); gobs):

DEFINITION 2.4. We call the functional err : D(F )→ [−∞,∞] given by

err(u) := T (F (u);F (u†))− (S(Fh(u); gobs)− S(Fh(u†); gobs))

the effective noise level functional on D(F ) ⊂ X .
If Yh = Y , we also introduce an effective noise level functional on Y by

(2.7) errY(g) := T (g; g†)− (S(g; gobs)− S(g†; gobs)), g ∈ Y.

Note that err = errY ◦F if Fh = F . Further note that the effective noise level functionals
may take negative values. If err(ûα) happens to be negative, this is a favorable event, as it

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

132 T. HOHAGE AND F. WERNER

FIG. 2.1. Illustration of the definition of the effective noise level functional in Y .

will allow for better bounds on the reconstruction error. However, in all our examples, we can
only derive positive bounds on err and errY .

The effective noise level functional yields the following estimate for the minimizers ûα
of generalized Tikhonov regularization (1.1):

R(ûα)−R(u†) ≤ 1

α
[S(Fh(u†); gobs)− S(Fh(ûα); gobs)]

=
1

α
[err(ûα)− T (F (ûα); g†)].(2.8)

By our assumption that T (g†; g†) = 0, this can be rewritten as

1

α
T (F (ûα); g†) +R(ûα) ≤ 1

α
T (F (u†); g†) +R(u†) +

1

α
err(ûα),

i.e., ûα minimizes the ideal Tikhonov functional u 7→ (1/α)T (F (u); g†) + R(u) up to
(1/α) err(ûα). As a consequence, wherever this term can be bounded uniformly (i.e., inde-
pendent of ûα), then the convergence analysis can be carried out as in the deterministic case.
However, in many interesting data models (especially random ones), this is not the case. We
will therefore impose the following weaker assumption.

ASSUMPTION B. Suppose that there exists a Banach space Yd ⊆ Y with R(F ) ⊂ Yd

and random variables (or constants) η0, η1 ≥ 0 and a parameter µ ≥ 1 such that

(2.9) err(u) ≤ η0 + η1‖F (u)− F (u†)‖µYd
for all u ∈ D(F ).

Whenever the specific data model for gobs satisfies Assumption B, we call it Yd-admissible.
Note that Yd-admissibility will allow us to treat deterministic and stochastic noise by the

same techniques.
REMARK 2.5. In some situations, it turns out to be useful to separate the noise into more

than the two terms η0 and η1 as in (2.9). In such situations, we assume the existence of M
Banach spaces Ymd , m = 1, . . . ,M , with R(F ) ⊆ Ymd and random variables (or constants)
η1, . . . , ηm ≥ 0 such that

err(u) ≤ η0 +

M∑
m=1

ηm‖F (u)− F (u†)‖µm

Ym
d
, u ∈ D(F ).(2.10)

In this case we call the noise model (Y1
d , . . . ,YMd )-admissible.
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In this paper, bounds of the form (2.9) and (2.10) will arise from two sources. As
approximation rates are determined by the smoothness of the function according to Jackson
inequalities, inequalities of the form (2.9) or (2.10) appear in the analysis of numerical
approximations of the forward operator F ; see (4.2). Furthermore, stochastic noise often
belongs to a larger space than Y , and in this case Yd will be the dual of this space; see
Section 4.2.

2.3. Interpolatory smoothing properties of F . In principle, Yd-admissibility allows
us to upper-bound the effective noise level functional for all g = F (u), u ∈ D(F ) by a
function depending on the potentially stronger norm ‖F (u) − g†‖Yd

. The latter can then
(hopefully) be controlled by interpolation, exploiting smoothing properties of the forward
operator F .

This property will be encoded in the following assumption:
ASSUMPTION C1. Suppose there exists a Banach space Yd ⊆ Y with R(F ) ⊂ Yd,

θ ∈ [0, 1], and constants Cθ > 0 and r ≥ 1 such that

(2.11) ‖F (u)− F (u†)‖Yd
≤ Cθ‖F (u)− F (u†)‖θY `(u, u†)(1−θ)/r for all u ∈ D(F ).

Whenever the operator F satisfies Assumption C1, then we say that it is (Yd, θ, `)-smoothing.
This assumption requires some discussion. The additional exponent r ≥ 1 is only to

take care of potential exponents in ` in case of norm losses. Secondly, we argue that (2.11) is
in fact a combination of a smoothing property of F together with intrinsic properties of the
corresponding image space:

REMARK 2.6. Suppose that Yd ⊆ Y is a Banach space and F : D(F ) ⊂ X → Y is a
continuous forward operator. If there exists a third Banach space YF,` such that YF,` ⊂ Yd ⊂
Y and F maps Lipschitz continuously to YF,` with respect to `, i.e., there exist constants
CL > 0 and r ≥ 1 such that

(2.12) ‖F (u)− F (u†)‖YF,`
≤ CL`(u, u†)1/r for all u ∈ D(F ),

and if the spaces YF,` ⊆ Yd ⊆ Y satisfy a classical interpolation inequality

(2.13) ‖g‖Yd
≤ C‖g‖θY‖g‖1−θYF,`

for all g ∈ YF,`

with C > 0, then F is (Yd, θ, `)-smoothing. In this case, Cθ = CC1−θ
L .

Proof. This follows immediately from combining (2.13) with (2.12) as

‖F (u)− F (u†)‖Yd
≤ C‖F (u)− F (u†)‖θY‖F (u)− F (u†)‖1−θYF,`

≤ C‖F (u)− F (u†)‖θY(CL`(u, u
†)1/r)1−θ

for all u ∈ D(F ).
Sometimes it turns out that an additive version of the smoothing property is easier to

verify:
ASSUMPTION C2. Suppose there exists a Banach space Yd ⊆ Y , a function γ : [0, δ0]→

[0,∞), and a constant r ≥ 1 such that

(2.14) ‖F (u)− F (u†)‖Yd
≤ γ(δ)l(u, u†)1/r +

1

δ
‖F (u)− F (u†)‖Y for all u ∈ D(F )

and all δ ∈ (0, δ0). In this case we say that F is additively (Yd, γ, `)-smoothing.
The additive formulation of the smoothing property allows for functions γ which decay

faster to 0 than power-type functions as in (2.11), as we will see at the end of Section 6.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

134 T. HOHAGE AND F. WERNER

REMARK 2.7. Suppose that Yd ⊆ Y is a Banach space and F : D(F ) ⊂ X → Y is
a continuous forward operator. If there exists a third Banach space YF,` such that YF,` ⊂
Yd ⊂ Y and F maps in fact Lipschitz continuously to YF,` with respect to `, i.e., there exist
constants CL > 0 and r ≥ 1 such that (2.12) holds true, and the spaces YF,` ⊂ Yd ⊂ Y
satisfy an additive interpolation inequality

(2.15) ‖g‖Yd
≤ γ̃(δ)‖g‖YF,`

+
1

δ
‖g‖Y for all g ∈ YF,`

and δ ∈ (0, δ0), then F is additively (Yd, CLγ̃, `)-smoothing.
Concerning (2.15), we already argued in [19] that, for power-type functions γ, this can be

interpreted as an interpolation-type inequality:
• The classical interpolation inequality (2.13), which holds true, e.g., in Sobolev or

Besov scales, implies (2.15) with

γ(δ) = (1− θ)C1/(1−θ)θθ/(1−θ)δθ/(1−θ)

by Hölder’s inequality.
• Vice versa, if YF,` is continuously embedded in Y with embedding constant

A := sup
g 6=0

‖g‖Y
‖g‖YF,`

,

the optimal value of δ in (2.15) for γ(δ) = δθ/(1−θ) is attained either at

δ̄ :=

(
‖g‖Y

‖g‖YF,`
(1− θ)/θ

)1−θ

or at the boundary δ0. However, the continuity of the embedding yields δ̄ ≤ δmax :=
(A(1− θ)/θ)1−θ, and hence (2.15) with γ(δ) = δθ/(1−θ) implies

‖g‖Yd
≤ inf
δ∈(0,δ0)

[
δθ/(1−θ)‖g‖YF,`

+
1

δ
‖g‖Y

]
≤ δmax

δ0
inf

δ∈(0,δmax)

[
δθ/(1−θ)‖g‖YF,`

+
1

δ
‖g‖Y

]
=
δmax

δ0

[
δ̄θ/(1−θ)‖g‖YF,`

+
1

δ̄
‖g‖Y

]
= C‖g‖θY‖g‖1−θYF,`

for some constant C > 0.
REMARK 2.8. In the setting of Remark 2.5, we have (in the multiplicative case) to

assume that F is (Ymd , θm, `)-smoothing for all 1 ≤ m ≤M , i.e., on each Ymd there holds an
interpolation inequality of the form

‖F (u1)− F (u2)‖Ym
d
≤ C(m)

θ ‖F (u1)− F (u2)‖θmY `(u1, u2)(1−θm)/r(2.16)

for all u1, u2 ∈ D(F ) with parameters θm, C
(m)
θ . Alternatively, we can also assume that F is

additively (Ymd , γm, `)-smoothing for all 1 ≤ m ≤M .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

INVERSE PROBLEMS WITH GENERAL NOISE MODELS 135

3. Error bounds. Now we are in position to derive error bounds for the reconstructions
ûα in (1.1).

The following theorem is the first main result of this paper. It provides abstract, but also
somewhat technical and lengthy, error bounds under the assumptions discussed in Section 2.
We will later on discuss several examples in which the error bounds simplify. The proof makes
use of Young’s inequality with ε > 0, stating that

(3.1) ab ≤ εap +
1

p′

(
1

pε

)p′/p
bp
′

for all a, b ≥ 0, p ≥ 1, where 1/p′ + 1/p = 1.
THEOREM 3.1. Suppose the data model for gobs is Yd-admissible with η0, η1 ≥ 0 and

parameter µ ≥ 1 (cf. Assumption B), and the variational source condition (2.3) is satisfied
(cf. Assumption A). If η1 > 0, let F additionally be (Yd, θ, `)-smoothing in the sense of
Assumption C1 and suppose there exist constants CT ≥ 0, t ≥ 1, such that

(3.2) ‖g − g†‖Y ≤ CT T (g; g†)1/t for all g ∈ R(F ).

Let θµ < t.
(a) If t(1−θ)µ < r(t−µθ), then each global minimizer ûα of (1.1) (if it exists) satisfies

the error bound

`(ûα, u
†) ≤ 4η0

α
+Cα−r(t−µθ)/[r(t−µθ)−t(1−θ)µ]η

rt/[r(t−µθ)−t(1−θ)µ]
1 +4ϕapp(2α)

with ϕapp as in (2.4).
(b) Suppose t(1− θ)µ = r(t− µθ). If t− µθ > 0, then there exist constants c, C > 0

such that for ηt/(t−µθ)1 < cα each global minimizer ûα of (1.1) (if it exists) satisfies
the error bound

`(ûα, u
†) ≤ C

[
η0

α
+ ϕapp(2α)

]
with ϕapp as in (2.4). The same holds true if t− µθ = 0 and CT η < 1.

Proof. We estimate

`(ûα, u
†)

(2.3)
≤ R(ûα)−R(u†) + ϕ(T (F (ûα); g†))

(2.8)
=

1

α
err(ûα)− 1

α
T (F (ûα); g†) + ϕ(T (F (ûα); g†))

≤ 1

α
err(ûα)− q

α
T (F (ûα); g†) + sup

τ≥0

[
ϕ(τ)− (1− q)τ

α

]
=

1

α
err(ûα)− q

α
T (F (ûα); g†) + ϕapp

(
α

1− q

)
with arbitrary q ∈ [0, 1). Thus we especially have the inequalities

`(ûα, u
†) ≤ 1

α
err(ûα) + ϕapp(α),(3.3a)

T (F (ûα); g†) ≤ 2 err(ûα) + 2αϕapp(2α).(3.3b)
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To treat the effective noise level functional, we combine Yd-admissibility with the
(Yd, θ, `)-smoothing property of F to obtain

err(ûα)
(2.9)
≤ η0 + η1‖F (ûα)− F (u†)‖µYd

(2.11)
≤ η0 + η1C

µ
θ `(ûα, u

†)(1−θ)µ/r‖F (ûα)− F (u†)‖µθY
(3.2)
≤ η0 + η1C

µ
θ C

µθ
T `(ûα, u

†)(1−θ)µ/rT (F (ûα); g†)µθ/t

(3.3b)
≤ η0 + η1C`(ûα, u

†)(1−θ)µ/r[err(ûα) + α4ϕapp(2α)]µθ/t

(3.1)
≤ η0 + Cη

t/(t−θµ)
1 `(ûα, u

†)(1−θ)µt/[r(t−µθ)] + 1
2 err(ûα) + 1

2αϕapp(2α)

with some generic constant C > 0, where we have used ε = 1
2 and p = t/θµ in the last line.

Rearranging this implies

(3.4) err(ûα) ≤ 2η0 + Cη
t/(t−µθ)
1 `(ûα, u

†)tµ(1−θ)/(r(t−µθ)) + αϕapp(2α).

Combining this with (3.3a) yields by monotonicity of α 7→ ϕapp(α) that

`(ûα, u
†)

(3.3a)
≤ 1

α
err(ûα) + ϕapp(α)

(3.4)
≤ 2η0

α
+
C

α
η
t/(t−µθ)
1 `(ûα, u

†)tµ(1−θ)/(r(t−µθ)) + 2ϕapp(2α).

If t(1− θ)µ = r(t− µθ), then we can rearrange to(
1− Cη

t/(t−µθ)
1

α

)
`(ûα, u

†) ≤ 2η0

α
+ 2ϕapp(2α).

Otherwise, we apply Young’s inequality (3.1) with ε = 1
2 and p = r(t− µθ)/(t(1− θ)µ) to

obtain the bound

`(ûα, u
†) ≤ 2η0

α
+

1

2
`(ûα, u

†)

+ Cα−r(t−θµ)/[r(t−θµ)−t(1−θ)µ]η
rt/[r(t−θµ)−t(1−θ)µ]
1 + 2ϕapp(2α),

which proves the claim.
The assertion for the case t− µθ = 0 follows directly from the first equation of this proof

if we choose q > CT η.
REMARK 3.2. The above theorem can be generalized to the situation of Remarks 2.5

and 2.8. In this case, suppose that θmµm ≤ t and t(1 − θm)µm ≤ r(t − µmθm) for all
1 ≤ m ≤M and denote

I = {m ∈ {1, . . . ,M} | t(1− θm)µm = r(t− µmθm)}.

If ηt/(t−µmθm)
m /α is sufficiently small for all m ∈ I with t−µmθm > 0 and ηm is sufficiently

small for all m ∈ I with t− µmθm = 0, then we obtain the error bound

`(ûα, u
†) ≤ 2(M + 1)η0

α
+ 2(M + 1)4ϕapp(2α)

+ C
∑

m∈{1,...,M}\I

α−r(t−µmθm)/[r(t−µmθm)−t(1−θm)µm]

× ηrt/[r(t−µmθm)−t(1−θm)µm]
m .
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REMARK 3.3. It is obvious from the proof that one can replace both the upper bound
‖F (u) − F (u†)‖Ym

d
in the admissibility assumption (2.10) and the lower bound

‖F (u) − F (u†)‖Ym
d

in the smoothingness assumption (2.16) by a common term
‖Gm(u) − Gm(u†)‖Ym

d
for some m ∈ {1, . . . ,M} with any other operator Gm with do-

main D(F ), and the results of Theorem 3.1 and Remark 3.2 remain valid. This is of particular
interest for the case G = Fh.

In the case of the additive smoothing property in Assumption C2, we have to restrict
ourselves to the case that t = µ = 1. The corresponding result, which is the second main
theorem of this paper, is as follows.

THEOREM 3.4. Suppose the data model for gobs is Yd-admissible with η0, η1 ≥ 0 and
parameter µ = 1 (cf. Assumption B), and the variational source condition (2.3) is satisfied
(cf. Assumption A). If η1 > 0, let F additionally be additively (Yd, γ, `)-smoothing (see
Assumption C2) and suppose there exists a constant CT ≥ 0 such that (3.2) holds true with
t = 1. If 4CT η1 < δ0, then each global minimizer ûα of (1.1) (if it exists) satisfies the error
bound

`(ûα, u
†) ≤ 4η0

α
+ C

(
η1

α

)r/(r−1)

γ(4CT η1)r/(r−1) + 4ϕapp(2α).

Proof. The estimates (3.3) are still valid, as shown in the proof of Theorem 3.1. To
bound the effective noise level functional, we combine Yd-admissibility with the additive
(Yd, γ, `)-smoothing property of F to obtain

err(ûα)
(2.9)
≤ η0 + η1‖F (ûα)− F (u†)‖Yd

(2.14)
≤ η0 + η1γ(δ)`(ûα, u

†)1/r +
η1

δ
‖F (ûα)− F (u†)‖Y

(3.2)
≤ η0 + η1γ(δ)`(ûα, u

†)1/r + CT
η1

δ
T (F (ûα); g†)

(3.3b)
≤ η0 + η1γ(δ)`(ûα, u

†)1/r + 2CT
η1

δ
[err(ûα) + αϕapp(2α)]

for all 0 < δ ≤ δ0. Setting δ = 4CT η1 yields

(3.5) err(ûα) ≤ 2η0 + 2η1γ(4CT η1)`(ûα, u
†)1/r + αϕapp(2α).

Combining this with (3.3a) we get

`(ûα, u
†)

(3.3a)
≤ 1

α
err(ûα) + ϕapp(2α)

(3.5)
≤ 2η0

α
+

2η1

α
γ(4CT η1)`(ûα, u

†)1/r + 2ϕapp(2α)

(3.1)
≤ 2η0

α
+ C

(
2η1

α
γ(4CT η1)

)r/(r−1)

+
1

2
`(ûα, u

†) + 2ϕapp(2α),

where we have used ε = 1
2 in the last line. Rearranging terms implies the claim.

REMARK 3.5. Also this result can be generalized to the situations of Remarks 2.5 and
2.8 with a result similar to the one described in Remark 3.2. Moreover, it is possible to replace
‖F (u)− F (u†)‖Ym

d
in both the admissibility assumption and the smoothingness assumption

by ‖G(u)−G(u†)‖Yd
for another operator G, e.g., G = Fh in analogy to Remark 3.3.
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4. Examples with noise models in continuous spaces. Let us now discuss different
examples to interpret the results of Theorems 3.1 and 3.4 and get an impression of the range
of applicability. We start with focusing on continuous data models.

4.1. Operator approximations in classical deterministic noise models. Consider the
situation that the datum gobs belongs to the Banach space Y and satisfies the classical deter-
ministic noise assumption

‖g† − gobs‖Y ≤ δ.(4.1)

Moreover, we assume that a family of numerical approximations Fh : D(F ) → Y of F is
given satisfying an error bound

‖F (u)− Fh(u)‖Y ≤ Cwhw‖F (u)‖Yd
for all u ∈ D(F ),(4.2)

some w > 0, and a Banach space Yd continuously embedded in Y . This type of assumption
is satisfied for many commonly used numerical approximation schemes. For example, if
Fh = PhF with some projection operator onto finite element, spline, or wavelet spaces, then
(4.2) typically holds true for many pairs of Besov spaces Y = B0

p,q(M) and Yd = Bsp,q(M)

with some bounded open domain M ⊂ Rd; see, e.g., [9, 12, 28] and the discussion in
Section 4.2 below. Estimates of the form (4.2) can also be shown if F (u†) is a solution to an
elliptic PDE, and Fh(u†) is a finite element solution of the PDE; see [5].

As we are working in a Banach space Y , we follow a general paradigm (see, e.g.,
[4, 20, 21]) and choose

S(g; gobs) =
1

t
‖g − gobs‖tY , T (g; g†) =

21−t

t
‖g − g†‖tY

with some t ∈ [1,∞). Note the different scaling factors in S and T , which are needed to
establish the following estimates. From the triangle inequality we first obtain

t err(u) = 21−t‖F (u)− F (u†)‖tY − ‖Fh(u)− gobs‖tY + ‖Fh(u†)− gobs‖tY
≤ 21−t‖F (u)− F (u†)‖tY + ‖Fh(u†)− gobs‖tY
−
∣∣‖F (u)− F (u†)‖Y − ‖(F (u)− Fh(u))− (F (u†)− gobs)‖Y

∣∣t.
Now using |a− b|t ≥ 21−tat − bt and |a+ b|t ≤ 2t−1(at + bt) for a, b ≥ 0, we find

t err(u) ≤
∣∣‖F (u)− Fh(u)‖Y + ‖F (u†)− gobs‖Y

∣∣t + ‖Fh(u†)− gobs‖tY ,

and thus by plugging (4.2) and (4.1) in we finally obtain

t err(u) ≤ (2t−1 + 1)‖Fh(u†)− gobs‖tY + 2t−1Ctwh
wt‖F (u)‖tYd

≤ (2t−1 + 1)(Cwh
w‖g†‖Yd

+ δ)t + 22t−2Ctwh
wt(‖g†‖tYd

+ ‖F (u)− g†‖tYd
).

Consequently, (2.9) in Assumption B holds true with

η0 = c1h
wt‖g†‖tYd

+ c2δ
t, η1 = c3h

wt, µ = t,

and constants c1 = (1/t)Ctw(22t−1+2t−1), c2 = (1/t)22t−2+2t−1, and c3 = (1/t)22t−2Ctw.
Let us now focus on the case Y = L2(M). In the setting of an a-times smoothing operator

as in Example 2.2 with a ≥ w, the variational source condition (2.6) corresponds to ϕ(λ) =
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Cρ2a/(a+s)λ(2/t)u/(a+s) and `(u1, u2) = ‖u1 − u2‖2L2 in Assumption A, equation (2.3), for
this choice of T . Hence, ϕapp(α) = C̃ρ2ta/(ta−(2−t)s)α2s/(ta−(2−t)s).

Complementing assumption (2.5) (“F is at most a-times smoothing”), we also assume
that F is at least a-times smoothing in the sense that

‖F (u)− F (u†)‖Ha ≤ CF ‖u− u†‖L2 for all u ∈ D(F ).(4.3)

By Sobolev interpolation we have

‖F (u)− F (u†)‖Hw ≤ ‖F (u)− F (u†)‖(a−w)/a
L2 ‖F (u)− F (u†)‖w/aHa

≤ Cw/aF ‖F (u)− F (u†)‖(a−w)/a
L2 ‖u− u†‖w/aL2

for 0 < w ≤ a such that Assumption C1 holds true with Yd = Hw(M), θ = (a− w)/a, and
r = 2.

We have now verified all assumptions of Theorem 3.1. (Note, in particular, that θµ < t as
µ = t and w > 0.) Therefore, we obtain the error bound

‖ûα − u†‖2L2 ≤



C

[
δt + hwt

α
+

(
hat

α

)2/(2−t)

+ ρ2ta/(ta−(2−t)s)α2s/(ta−(2−t)s)
]
, if t < 2,

C

[
δ2 + h2w

α
+ ρ2αs/a

]
, if t = 2 and h2a ≤ cα.

For h = 0, i.e., Fh = F , the parameter choice rule

α∗ ∼ ρ−2a/(a+s)δ(ta−(2−t)s)/(a+s)(4.4)

yields the rate

‖ûα∗ − u†‖2L2 = O(ρ2a/(s+a)δ2s/(s+a)) as δ ↘ 0,(4.5)

which is well known to be optimal; see, e.g., [18]. This rate is also achieved if

hw ≤ Chδ.(4.6)

In fact, for the first terms in the error bound, (4.6) yields htw = O(δt), and for t = 2 we have
h2a/α∗ = O(δp) with p = 2a/w − 2a/(a + s) > 0. Similarly, for t < 2 we find that the
term (hat/α∗)

2/(2−t) = O(δp
′
) with p′ = (2at/(2− t))(1/w − 1/(a+ s)) + 2s/(a+ s) is

of higher order in δ and hence negligible as w ≤ a < a+ s.
We summarize our results in the following corollary.
COROLLARY 4.1. Suppose the operator F : D(F ) ⊂ L2(Ω) → L2(M) is a-times

smoothing in the sense that (2.5) and (4.3) hold true, u† ∈ Hs(Ω) with 0 < s < a, and the
data gobs ∈ L2(M) and numerical approximation Fh : D(F ) → L2(M) satisfy (4.1) and
(4.2) with 0 < w ≤ a. Then the estimator

ûα ∈ argmin
u∈D(F )

[
1

αt
‖Fh(u)− gobs‖tL2 +

1

2
‖u‖2L2

]
(if it exists) with t ≤ 2, α = α∗ given by (4.4), and h satisfying (4.6) obeys the optimal error
bound (4.5).
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REMARK 4.2. Let us compare our assumption (4.2) to the standard assumption

(4.7) ‖T − Th‖L(X ,Y) ≤ h

that is often used in Hilbert space analysis; see, e.g., [16, 24, 25]. Note that, for a linear
operator F , (4.2) implies ‖F − Fh‖L(X ,Y) ≤ cwhw‖F‖L(X ,Yd), i.e., (4.7) is weaker than our
assumption (4.2). On the other hand, as argued above, (4.2) is still easy to verify in many
practical examples, and (4.7) is much more difficult to deal with. In particular, one needs to
require the function ϕ in the (spectral) source condition to be operator monotone on some
interval in order to obtain an inequality ‖ϕ(A)− ϕ(B)‖ ≤ Cϕ(‖A−B‖) + C ′‖A−B‖ for
any self-adjoint operators A and B; see [24].

4.2. Gaussian white noise. Let Y be a Hilbert space. We now consider inverse problems
with right-hand sides perturbed by Gaussian white noise processes Z, which often appear as
limits of discrete noise processes. This is a Hilbert space process Z on Y satisfying E[Z] = 0
and Cov[Z] = idY such that, for each finite number of elements g1, . . . , gn ∈ Y , the vector

(〈g1, Z〉, . . . , 〈gn, Z〉) ∈ Rn

is a multivariate normal random vector. Precisely, the available data gobs is assumed to be of
the form

(4.8) gobs = g† + σZ.

If dim(Y) =∞, then Z /∈ Y holds with probability 1, and thus the model has (in general) to
be understood in a weak sense; see, e.g., [3]. This implies that we have (only) access to dual
products of the form

〈g, gobs〉 = 〈g, g†〉+ σ〈g, Z〉

for all g ∈ Y , and thus the choice

(4.9) S(g; gobs) := 1
2‖g‖

2
Y − 〈g, gobs〉, T (g; g†) := 1

2‖g − g
†‖2Y

ensures well-definedness of the data fidelity term. Note that this choice of S equals the negative
log-likelihood ratio in the Cameron–Martin–Girsanov sense; cf. [42]. In the finite-dimensional
case, this equals the classical negative log-likelihood term up to the constant ‖gobs‖2Y . For
errY as in (2.7), we compute

errY(g) = 1
2‖g − g

†‖2Y − 1
2‖g‖

2
Y + 〈gobs, g〉+ 1

2‖g
†‖2Y − 〈gobs, g†〉

= ‖g†‖2Y − 〈g, g†〉+ 〈g† + σZ, g − g†〉
= σ〈Z, g − g†〉.

In the following, let M denote a smooth bounded domain M ⊂ Rd and Y = L2(M).
By Theorem A.1, Gaussian white noise Z on L2(M) is a.s. contained in the Besov space
Y∗d = B

−d/2
p,∞ (M) with arbitrary p ∈ [1,∞). For the dual spaces

Yd = B̃
d/2
p′,1(M)

(note that, due to (A.2), we can also take Bd/2p′,1(M) if d/2 − 1/p′ /∈ Z), the following
interpolation inequality for any q ∈ [1,∞] and 1/p′ + 1/p = 1 holds true by K-interpolation

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

INVERSE PROBLEMS WITH GENERAL NOISE MODELS 141

theory (see [36, Sections 4.3.2 and 4.11.1])

‖g‖
B

d/2

p′,1(M)
≤ C‖g‖1−d/(2a)

B0
p′,2(M)

‖g‖d/(2a)
Ba

p′,q(M)

≤ C‖g‖1−d/(2a)
L2(M) ‖g‖d/(2a)

Ba
p′,q(M),

where the second inequality follows by Besov embedding theorems [36, Section 4.6.2] for
p ∈ [2,∞). This yields the following corollary with error bounds which for an a-smoothing
operator are well known to be order-optimal in a minimax sense; see, e.g., [41].

COROLLARY 4.3. Let Y = L2(M), consider the noise model (4.8) with a Gaussian
white noise Z, suppose that S and T are given by (4.9), and that u† ∈ D(F ) satisfies the
variational source condition (2.3). Assume furthermore that F : D(F ) ⊂ X → Y satisfies

‖F (u1)− F (u2)‖Ba
p′,q(M) ≤ CL`(u1, u2)1/r(4.10)

for some p ∈ [2,∞) with d/2 − 1/p′ /∈ Z, q ∈ [1,∞], r > 2d/(2a + d), CL > 0, and all
u1, u2 ∈ D(F ). If Fh = F on D(F ) and Yh = Y , then we obtain for every global minimizer
ûα of the Tikhonov functional (1.1) the a.s. error bound

`(ûα, u
†) ≤ Cα−(2a+d)/(2a+d−2d/r)(σ‖Z‖

B
−d/2
p,∞ (M)

)4a/(2a+d(1−2/r)) + 4ϕapp(2α).

In the situation of Example 2.2, i.e., under (2.5) and (4.3), R(u) = 1
2‖u‖

2
X , `(u, u†) =

1
4‖u − u

†‖2X , and ‖u‖Hs ≤ ρ with 0 < s < a, we obtain by Ba2,2(M) = Ha(M) the upper
bound

(4.11) ‖ûα − u†‖2X ≤ C[α−(2a+d)/(2a)(σ‖Z‖
B
−d/2
2,∞ (M)

)2 + ρ2αs/a]

a.s. For the choice α ∼ (σ/ρ)4a/(2s+2a+d), this yields the order-optimal rate of convergence

E[‖ûα − u†‖2X ]1/2 = O(ρ(2a+d)/(s+a+d/2)σs/(s+a+d/2)) as σ → 0.

Proof. The claimed error bounds follow directly from Theorem 3.1. According to [38,
Corollary 3.7], the random variable ‖Z‖

B
−d/2
2,∞ (Td)

has finite second moment on the torus

Td = Rd/Zd. By Remark A.2 this also holds true for ‖Z‖
B
−d/2
2,∞ (M)

. As a consequence, we
can take the expectation in (4.11) to obtain the final statement on the rate of convergence in
expectation.

REMARK 4.4. The above result can be generalized to arbitrary (i.e., non-Gaussian)
Hilbert space processes Z on Y with ‖Cov[Z]‖Y→Y ≤ 1 as long as a space Yd is known
such that ‖Z‖Y′d is a.s. finite and has finite moments.

4.3. Operator approximations in statistical inverse problems. In this section, we
study statistical inverse problems with noisy operator

gobs = Fh(u†) + σZ,(4.12)

where Z is white noise on Y := L2(M) with some bounded open domain M ⊂ Rd, and the
approximations of the forward operator are of the form

Fh = PnFη,

with a sequence of orthogonal projection operators Pn in L2(M) and some approximation
Fη ≈ F , e.g., Fη = FQn with projections operators Qn in X . Here Fη may also involve
other approximations or errors, and it may be nonlinear.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

142 T. HOHAGE AND F. WERNER

For many useful projection operators Pn (e.g., by finite elements), the range of Pn is not
contained in the range of F , and therefore it would be very restrictive to impose the condition
(4.10) on Fh instead of on F . However, we will assume that

‖Fη(u1)− Fη(u2)‖Ha(M) ≤ Ca‖F (u1)− F (u2)‖Ha(M).(4.13)

This condition is obviously satisfied if Fη = FQn with uniformly bounded projection opera-
tors Qn. We further assume the Jackson-type inequality

‖(I − Pn)g‖Y ≤ CPn−a‖g‖Ha(M) for all g ∈ Ha(M).(4.14)

Such inequalities, e.g., for trigonometric or spline projections, are standard results from
approximation theory; see, e.g., [30, Theorem 2.26 and Corollary 2.47].

We also assume an approximation property with respect to η:

‖Fη(u)− F (u)‖Y ≤ Cwηw‖u‖X .(4.15)

Note that if Fη = FQn with orthogonal projectionsQn, then (4.15) follows from Jackson-type
inequalities for Qn applied to the adjoint operators.

Due to the Hilbert space structure and the white noise assumption on Z, it seems appro-
priate to choose S and T as in (4.9), i.e.,

(4.16) S(g; gobs) := 1
2‖g‖

2
Y − 〈g, gobs〉, T (g; g†) := 1

2‖g − g
†‖2Y .

This yields

err(u) = 1
2‖F (u)− F (u†)‖2Y − 1

2‖Fh(u)‖2Y + 〈gobs, Fh(u)〉
+ 1

2‖Fh(u†)‖2Y − 〈gobs, Fh(u†)〉
= 1

2‖F (u)− F (u†)‖2Y − 1
2‖Fh(u)− Fh(u†)‖2Y + σ〈Z,Fh(u)− Fh(u†)〉.(4.17)

To estimate the last term, we move Pn in Fh = PnFη to the left-hand side. In order to
show that supn ‖P ∗nZ‖B−d/2

2,∞
<∞, we impose the condition

CP := sup
n
‖Pn‖Bd/2

p,∞(M)→Bd/2
p,∞(M)

<∞.(4.18)

This condition can, e.g., on the torus Td := Rd/Zd, be shown by interpolation for orthog-
onal trigonometric projection operators Pn (as supn ‖Pn‖Hs

p(Td) < ∞ for all s ∈ R and

(Hs
p(Td), Ht

p(Td))θ,∞ = B
(1−θ)s+θt
p,∞ (Td)), but also in an analogous manner for hierarchical

finite element discretizations (see [28, Theorem 15]), or more directly for wavelet projec-
tions truncating all wavelet coefficients above level n using Besov norms in terms of wavelet
coefficients; see [12, Section 4.3.1]. Then we obtain

σ|〈Z,Fh(u)− Fh(u†)〉| ≤ σCP ‖Z‖B−d/2
2,∞
‖Fη(u)− Fη(u†)‖

B
d/2
2,1
.

Now the first two terms in (4.17) can be expanded as

1
2‖F (u)− F (u†)‖2Y − 1

2‖Fh(u)− Fh(u†)‖2Y
= 1

2 〈F (u)− F (u†)− Fh(u) + Fh(u†), F (u)− F (u†) + Fh(u)− Fh(u†)〉
= 1

2 〈(I − Pn)(F (u)− F (u†)) + Pn(F (u)− F (u†)− Fη(u) + Fη(u†)),

2(F (u)− F (u†)) + (Pn − I)(Fη(u)− Fη(u†))

+ Fη(u)− Fη(u†)− (F (u)− F (u†))〉.
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Using the Cauchy–Schwarz inequality, we obtain

1
2‖F (u)− F (u†)‖2Y − 1

2‖Fh(u)− Fh(u†)‖2Y
≤ 1

2‖(I − Pn)(F (u)− F (u†)) + Pn(F (u)− F (u†)− Fη(u) + Fη(u†))‖Y
× ‖2(F (u)− F (u†)) + (Pn − I)(Fη(u)− Fη(u†))

+ Fη(u)− Fη(u†)− (F (u)− F (u†))‖Y .

Both terms in this product can be estimated by means of (4.14), namely as

‖(I − Pn)(F (u)− F (u†)) + Pn(F (u)− F (u†)− Fη(u) + Fη(u†))‖Y
≤ CPn−a‖F (u)− F (u†)‖Ha(M) + ‖F (u)− Fη(u)‖Y + ‖F (u†)− Fη(u†)‖Y
≤ CPn−a‖F (u)− F (u†)‖Ha(M) + Cηη

w(‖u‖X + ‖u†‖X ),

and by (4.13) furthermore

‖2(F (u)− F (u†)) + (Pn − I)(Fη(u)− Fη(u†))

+ Fη(u)− Fη(u†)− (F (u)− F (u†))‖Y
≤ 2‖F (u)− F (u†)‖Y + CPn

−a‖Fη(u)− Fη(u†)‖Ha(M)

+ ‖F (u)− Fη(u)‖Y + ‖F (u†)− Fη(u†)‖Y
≤ 2‖F (u)− F (u†)‖Y + CPCan

−a‖F (u)− F (u†)‖Ha(M)

+ Cηη
w(‖u‖X + ‖u†‖X ).

If we now assume furthermore that F is at most a smoothing in the sense that

(4.19) ‖u− v‖X ≤ CF ‖F (u)− F (v)‖Ha(M) for all u, v ∈ D(F )

(in addition to (2.5)), then we can estimate

‖u‖X ≤ ‖u− u†‖X + ‖u†‖X ≤ ‖u†‖X + CF ‖F (u)− F (u†)‖Ha(M)

and obtain by (3.1) with p = p′ = 2 as well as
(∑n

j=1 aj
)2 ≤ n

∑n
j=1 a

2
j for n = 2, 3 the

overall bound

1

2
‖F (u)− F (u†)‖2L2(M) −

1

2
‖Fh(u)− Fh(u†)‖2L2(M)

≤ C

ε
(n−2a + η2w)‖F (u)− F (u†)‖2Ha(M) +

C

ε
η2w‖u†‖2X + ε‖F (u)− F (u†)‖2L2(M)

for some constant C > 0 and some ε ∈ (0, 1) to be determined later.
We summarize the setting of Theorem 3.1 in its generalization of Remark 3.2 in Table 4.1.
Note that for m = 1 we use Remark 3.3 with G = Fη. As t = 2, in order to meet the

condition t(1− θm)µm ≥ r(t− µmθm) for m = 2, we must have r ≥ 2. For simplicity, we
only consider the case r = 2. Then t(1 − θ2)µ2 = r(t − µ2θ2) and t(1 − θ3)µ3 = r(t −
µ3θ3), so we have to meet the additional constraints η2 . α and η3 . 1 which hold true if
max{η2w + n−2a}α−1 . ε . 1. Choosing ε = η3 > 0 sufficiently small, we obtain the
constraint α & max{η2w + n−2a} on the choice of α.

COROLLARY 4.5. Let X = Y = L2(M) and consider the estimator (1.1) with
R(u) = 1

2‖u‖
2
L2 and S given by (4.16) for the noise model (4.12). Suppose that F sat-

isfies (4.10) and (4.19) with Bap,q = Ba2,2 = Ha, `(u1, u2) = ‖u1 − u2‖2L2 , and r = 2,
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assume that the approximation Fh = PnFη to F satisifies (4.13), (4.14), (4.15), (4.18), and
that u† ∈ Hs(Ω) with ‖u†‖Hs ≤ ρ for some s ∈ (0, a) and ρ > 0. If α is chosen such that
α & max{η2w + n−2a}, then we obtain the error bound

‖ûα − u†‖2L2 ≤ C
[
ρ2αs/a + α−2a/(2a+d)(σ‖Z‖

B
−d/2
2,∞

)2 +
η2w

α

]
.(4.20)

In particular, if

n−2a . α ∼
(
σ

ρ

)4a/(2a+2s+d)

and η2w . ρ(d−2a)/(2s+2a+d)σ(2s+4a)/(2s+2a+d),

then the second term in (4.20) dominates the first one (i.e., the errors in the operator are
negligible), and the reconstruction error tends to 0 with the rate

E[‖ûα − u†‖2L2 ]1/2 = O(ρ(a+d/2)/(s+a+d/2)σs/(s+a+d/2)) as σ → 0.

Note that the latter rate equals the optimal rate of convergence under white noise, as discussed
in Corollary 4.3.

TABLE 4.1
Verifications of the assumptions of Theorem 3.1/ Remark 3.2 for Corollary 4.5.

Term m Space Yd,m Power µm Interpol. par. θm Error ηm

0 — — — (C/ε)η2w‖u†‖2X

1 B
d/2
2,1 (M) 1 1− d/(2a) σCP ‖Z‖B−d/2

2,∞

2 Ha(M) 2 0 (C/ε)(n−2a + η2w)

3 Y = L2(M) 2 1 ε

5. Discrete sampled data. Let us continue our discussion of the applicability of
Theorems 3.1 and 3.4 with a focus on discrete noise models.

In many applications, the data does actually consist of samples of a function g†. To model
this mathematically, suppose that M ⊂ Rd is a bounded Lipschitz domain and suppose that
g† ∈ C (M). Let x(n)

1 , . . . , x
(n)
n ∈M be points and consider the data model

(5.1) gobs ∈ Rn, gobs
i = g†(x

(n)
i ) + εi, i = 1, . . . , n

with scalar noise εi. Suppose that

Qnϕ :=

n∑
i=1

α
(n)
i ϕ(x

(n)
i ) ≈ Qϕ :=

∫
M
ϕ(x) dx

is a quadrature rule and choose

S(g; gobs) :=
1

2
‖g‖2L2(M) −

n∑
i=1

α
(n)
i gobs

i g(x
(n)
i ),(5.2a)

T (g; g†) :=
1

2
‖g − g†‖2L2(M).(5.2b)
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This choice includes the discretization effects contained in the model (5.1) and, besides that,
is similar to (4.9). From that point of view, the data is handled in a least-squares sense, which
corresponds to the negative log-likelihood functional if εi are independent random normals.

Now we compute that

errY(g) =
1

2
‖g†‖2 − 1

2
‖g‖2 +

1

2
‖g − g†‖2 +

n∑
i=1

αig
obs
i (g(x

(n)
i )− g†(x(n)

i ))

=
1

2
‖g†‖2 − 1

2
‖g‖2 +

1

2
‖g − g†‖2 + 〈g†, g − g†〉

+ (Qn −Q)(g†(g − g†)) +

n∑
i=1

α
(n)
i εi(g(x

(n)
i )− g†(x(n)

i ))

= (Qn −Q)(g†(g − g†)) +

n∑
i=1

α
(n)
i εi(g(x

(n)
i )− g†(x(n)

i )).(5.3)

This shows that the effective noise level functional can once again be bounded by a sum
of two error terms as in Remark 3.2. The first term on the right-hand side of (5.3) can be
controlled depending on the order of the quadrature rule as long as the function g†(g − g†)
is sufficiently smooth. Therefore, assume that g† ∈ C s(M) with some s ∈ N, s > d/2, and
choose Y1

d = Hs(M). If the quadrature rule furthermore satisfies

|Qn(g)−Q(g)| ≤ CQn−κ‖g‖Hs(M) for all g ∈ Hs(M),(5.4)

then it follows from the standard estimate

‖g†(g − g†)‖Hs(M) ≤M‖g†‖C s(M)‖g − g†‖Hs(M)

that the first term in (5.3) can be bounded by

(Qn −Q)(g†(g − g†)) ≤ n−κ‖g†(g − g†)‖Hs(M) ≤M‖g†‖C s(M)‖g − g†‖Hs(M).

To treat the second term, we recall from the uniform boundedness principle that a necessary
condition for convergence, limn→∞Qnϕ = Qϕ for all ϕ ∈ C (Ω), is that

A := sup
n

n∑
i=1

|α(n)
i | <∞.(5.5)

This gives the following lemma.
LEMMA 5.1. Let M ⊂ Rd be a bounded Lipschitz domain. Suppose that g† ∈ C s(M)

with some s ∈ N such that s > d/2 and let Qn be a quadrature rule obeying (5.5) and (5.4).
Then the data model (5.1) yields the estimate

errY(g) ≤ n−κCQM‖g†‖C s(M)‖g† − g‖Hs(M) +Aδ‖g† − g‖L∞(M)

with δ := max1≤i≤n |εi|.
As a next step, we need to verify the interpolation inequalities for the spaces Y1

d = Hs(M)
and Y2

d = L∞(M) in Remark 3.2. The former is readily obtained by Remark 2.6 with
θ1 = 1− s/a as long as F : D(F ) ⊂ X → Y satisfies

‖F (u1)− F (u2)‖Ha(M) ≤ CL`(u1, u2)1/r(5.6)
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for some a > s, r ≥ 1, CL > 0, and all u1, u2 ∈ D(F ). On Y2
d = L∞(M) we exploit

Agmon’s inequality (see, e.g., [1]), which states that there exists a constant C > 0 such that

‖g‖L∞(M) ≤ C‖g‖
(2a−d)/(2a)
L2(M) ‖g‖d/(2a)

Ha(M)

for all g ∈ Ha(M). Together with (5.6), this implies the interpolation inequality (2.11) on Y2
d

with θ2 = (2a− d)/(2a). Now we are in position to apply Remark 3.2 to obtain the following
corollary.

COROLLARY 5.2. Consider the data model (5.1) on a bounded Lipschitz domain M ⊂
Rd, and suppose that u† satisfies the variational source condition (2.3) and is such that
g† = F (u†) ∈ C s(M) with some s ∈ N, s > d/2. Furthermore let Qn be a quadrature
rule satisfying (5.4) and (5.5), and choose S and T as in (5.2). If F satisfies (5.6) and if
2s/a < r(1 + s/a) and d/a < r(1 + d/(2a)), then there exists a constant C > 0 such that

`(ûα, u
†) ≤ C(n−2aκ/(a+s(1−2/r))α−(a+s)/(a+s(1−2/r))

+ α−(2a+d)/(2a+d(1−2/r))δ4a/(2a+d(1−2/r)) + ϕapp(2α)).

In the situation of Example 2.2, i.e., under (2.5) and (4.3), R(u) = 1
2‖u‖

2
X , `(u, u†) =

1
4‖u− u

†‖2X , and ‖u‖Ht ≤ ρ with max{0, s− a+ d/2} ≤ t < a, we obtain the upper bound

‖ûα − u†‖2X ≤ C(n−2κα−(a+s)/a + α−(2a+d)/(2a)δ2 + ρ2αt/a).

If we choose α ∼ max{(δ/ρ)4a/(2a+2t+d), (1/(nκρ))2a/(t+a+s)}, we obtain the convergence
rate

‖ûα − u†‖2X
= O(max{ρ(2a+d)/(t+a+d/2)δs/(s+a+d/2), ρ(2a+2s+t)/(a+s+t)n−2tκ/(a+s+t)})

as δ → 0, n→∞,

where δ := max1≤i≤n |εi|. Thus, as long as n−κ/(a+s+t) . δ2/(2t+2a+d), the discretization
error is negligible.

REMARK 5.3. With our techniques, it is also possible to allow for random noise εi in
(5.1). However, in this case one should not estimate the right-hand side of (5.3) by δ as above,
but again by a smoother (discrete) norm of g − g† and a weaker (discrete) norm of the noise
contributions εi. This then requires one to control the supremum of a corresponding empirical
process, which is possible by standard techniques such as chaining (see, e.g., [37, Corollary
2.2.5]), but beyond the scope of this paper.

6. Impulsive noise. In [19] and [22] we have shown that the techniques discussed in this
paper can also be used to derive rates of convergence for inverse problems with impulsive noise,
i.e., in situations where the noise can be understood as a function ξ : M→ R which is large on
a small part of M, and small or even zero elsewhere. Here and in what follows, M is a manifold
with finite Lebesgue measure |M| in Rd. In this section, we extend the previously mentioned
results by additionally allowing for a perturbed operator Fh : D(F ) ⊂ X → Yh := L1(Mh)
and consider with Y = L1(M) the noise model

(6.1) gobs = Fh(u†) + ξ,

where ξ is a function on a (possibly discrete) finite measure space (Mh,Σ, ν). If Fh not only
is a projection of F , i.e., Fh = PhF for some operator Ph : L1(M) → L1(Mh), but also
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contains modeling or numerical approximation errors, then ξ contains not only measurement
but also modeling errors.

ASSUMPTION IN. Suppose that the noise function ξ ∈ L1(Mh) and there exists a
measurable set Mc ⊂Mh such that

‖ξ‖L1(Mh\Mc) ≤ ε, ν(Mc) ≤ η

for two noise parameters ε, η ≥ 0.
We refer to [19] for a detailed motivation of this assumption. It exactly describes the

setting that ξ is small on a large part Mh \Mc of the domain M, but might be arbitrarily large
on the corrupted part Mc. Note that we do not impose a bound on |ξ| on Mc, but only assume
that ξ ∈ L1(Mh) in total.

Moreover, we assume that the perturbed operator Fh satisfies the error bounds

‖F (u)− F (u†)‖L1(M) − ‖Fh(u)− Fh(u†)‖L1(Mh) ≤ Cwhw‖F (u)− F (u†)‖Yd
,

‖Fh(u)− Fh(u†)‖L∞(Mh) ≤ Cw‖F (u)− F (u†)‖L∞(M)

(6.2)

for all u ∈ D(F ) with some constants Cw, w ≥ 0 and a norm ‖ · ‖Yd
.

As argued in [8, 19, 22], the natural choice of S would be

S(g; gobs) = ‖g − gobs‖L1(Mh),

as the L1-norm is more robust to the outliers in Mc compared to a standard least-squares
approach involving an L2-norm. Unfortunately, the corresponding optimization problem
(1.1) is non-smooth due to the L1-norm. Following [8] one can also consider the Huber-type
smoothing

Hβ(g) :=

∫
Mh

hβ(g(x)) dν(x), hβ(v) :=


v − β/2 if v > β,

−v − β/2 if v < −β,
(1/(2β))v2 if |v| ≤ β,

with some parameter β ≥ 0. As ν(Mh) <∞, one clearly has

(6.3) ‖g‖L1(Mh) −
β

2
ν(Mh) ≤ Hβ(g) ≤ ‖g‖L1(Mh), g ∈ L1(Mh), β ≥ 0,

and hence in particularH0(g) = ‖g‖L1(Mh) for all g ∈ L1(Mh). If we choose

(6.4) S(g; gobs) = Hβ(g − gobs), T (g; g†) = ‖g − g†‖L1(M),

the corresponding problem (1.1) might be smooth depending on R and hence the non-
differentiability due to the L1-norm can be overcome. Note that neither Mh \Mc nor Mc need
to be known for computing the Tikhonov regularizer ûα in (1.1) for these choices, but they are
rather of theoretical interest. Again, the error introduced by the operator approximation Fh
is reflected in the choice of S and T , namely by the L1(M)-norm in T compared to the Mh

integrals in S.
We now argue that the additional error due to the smoothing parameter β ≥ 0 can be

included in the effective noise level. For β = 0, we have shown in [19, equation (3.1)]
that Assumption IN implies that the noise model (6.1) is L∞(Mh)-admissible with η0 = 2ε,
η1 = 2η, and µ = 1, i.e., we have the estimate

‖g − Fh(u†)‖L1(Mh) − (‖g − gobs‖L1(Mh) − ‖ξ‖L1(Mh)) ≤ 2ε+ 2η‖g − Fh(u†)‖L∞(Mh)
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for all g ∈ L∞(Mh). For general β ≥ 0, this together with the estimate (6.3) implies

err(u) = ‖F (u)− F (u†)‖L1(M) −Hβ(Fh(u)− gobs) +Hβ(ξ)

≤ ‖F (u)− F (u†)‖L1(M) − ‖Fh(u)− gobs‖L1(Mh) + ‖ξ‖L1(Mh) +
β

2
ν(Mh)

≤ 2ε+
β

2
ν(Mh) + 2η‖Fh(u)− Fh(u†)‖L∞(Mh) + Cwh

w‖F (u)− F (u†)‖Yd

≤ 2ε+
β

2
ν(Mh) + 2Cwη‖F (u)− F (u†)‖L∞(M) + Cwh

w‖F (u)− F (u†)‖Yd

for all u ∈ D(F ) after adding and subtracting ‖Fh(u)− Fh(u†)‖L1(Mh) and using (6.2).
This shows that, even with Huber-type smoothing, the noise model (6.1) is (L∞(M),Yd)-

admissible (in the sense of Remark 2.5) with parameters η0 = 2ε+ (β/2)ν(Mh), η1 = 2Cwη,
η2 = Cwh

w, and µ1 = µ2 = 1.
In [19, Lemma 3.2] we have furthermore shown that Ehrling’s lemma implies for bounded

Lipschitz domains M an additive interpolation inequality of the form (2.15) with Yd =
L∞(M), YF,` = W k,p(M), and γ1(δ) = δk/d−1/p whenever k > d/p. Consequently, it
follows from Remark 2.7 that Lipschitz continuity

(6.5) ‖F (u)− F (u†)‖Wk,p(M) ≤ L`(u, u†)1/r for all u ∈ X

of F with respect to ` implies that the operator F is additively (L∞(M), γ1, `)-smoothing. As
a corollary of our main result in Theorem 3.4, we obtain the following.

COROLLARY 6.1. Suppose that Assumptions IN and A are satisfied and that the oper-
ator F maps X Lipschitz continuously into W k,p(M) in the sense of (6.5) with k > d/p.
Furthermore let the approximation Fh satisfy (6.2) and assume that F is additively (Yd, γ2, `)-
smoothing. If now ûα is a minimizer of the Tikhonov functional (1.1) with S as in (6.4) with
some β ≥ 0, then there exists a constant C > 0 such that the error bound

(6.6) `(ûα, u
†) ≤ 16ε+ βν(Mh)

2α
+ C

ηr
′ϑ

αr′
+ C

(
hw

α

)r′
γ2(4hw)r

′
+ 4ϕapp(2α)

holds true with ϑ = k/d− 1/p+ 1 and the conjugate exponent r′ = r/(r − 1) of r.
In [22] we have furthermore shown that this result can be generalized to exponentially

smoothing operators, i.e., situations in which the range of F consists of analytic functions. In
this case, the function γ can be described as the Fenchel conjugate of a function measuring
the growth of the holomorphic extension along the imaginary axis; cf. [22, equation (3.3)].
There we have furthermore discussed the examples of the backwards heat equation (where
we obtained γ(δ) ∼ exp(−1/δ2)) and three-dimensional satellite gradiometry (where we
obtained γ(δ) ∼ δ−5/2R−

√
4π/δ−4 with the radius R > 1 of the measurement shell).

To specify the result from Corollary 6.1 further, let us consider the following natural noise
model.

EXAMPLE 6.2. We consider the following random-valued impulsive noise (RVIN) model;
see, e.g., [8]. Suppose that Mh = {x1,h, . . . , xn,h} is discrete with ν({xi}) = |M|/n for all i
and

ξ(xi,h) = (1−Bi)ξi,h +Biζi,h, i = 1, . . . , n,(6.7)

where Bi are independent Bernoulli-distributed random variables with parameter pn (i.e.,
P [Bi = 0] = 1 − pn and P [Bi = 1] = pn), and ξh = (ξi,h) and ζh = (ζi,h) are arbitrary
deterministic or random vectors with ‖ξ‖L1(Mh) ≤ ε.
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In the setting of Example 6.2, it is natural to consider Mc = {xi,h : Bi = 1} such that
η ∼ n−1|M|Bin(n, pn). This yields the following bound.

COROLLARY 6.3. Suppose that the observations are discrete as described in Example 6.2
and let Assumption A be satisfied. Assume furthermore that F maps X Lipschitz continuously
into W k,p(M) in the sense of (6.5) with k > d/p. Furthermore let the approximation Fh
satisfy (6.2) and assume that F is additively (Yd, γ2, `)-smoothing. If now ûα is a minimizer of
the Tikhonov functional (1.1) with S as in (6.4) with some β ≥ 0, then there exists a constant
C > 0 such that the error bound

(6.8) `(ûα, u
†) ≤ 16ε+ β|M|

2α
+ C

(
hw

α

)r′
γ2(4hw)r

′
+ C

ηr
′ϑ

αr′
+ 4ϕapp(2α)

holds true a.s. with the random variable η ∼ n−1|M|Bin(n, pn) and the exponents ϑ =
k/d− 1/p+ 1 and r′ = r/(r − 1).

Due to the explicitly known distribution of η, this allows us to derive convergence rates
in expectation for `(ûα, u†). As the moments of a binomially distributed random variable
X ∼ Bin(n, p) satisfy

E[Xc] ≤ (np)c exp

(
c2

2np

)
(see [2]), we obtain

E[`(ûα, u
†)] ≤ 16ε+ β|M|

2α
+ C

(npn)r
′ϑ exp[(r′ϑ)2/(2npn)]

αr′

+ C

(
hw

α

)r′
γ2(4hw)r

′
+ 4ϕapp(2α).

Furthermore, as a binomially distributed random variable X ∼ Bin(n, p) is sub-Gaussian with
parameter σ = n/2, it satisfies the deviation inequality P[X ≥ δ] ≤ exp[−2(δ − np)2/n2]
for all δ ≥ np. As a consequence, also deviation results for `(ûα, u†) can be derived from
(6.8).

REMARK 6.4. In view of (6.6) and (6.8), it seems on first glance that the smoothing
parameter β ≥ 0 has only negative effects on the derived error bounds. However, if the noise
functions ξ or ξh on Mc are huge, it might numerically be helpful to choose β > 0 not too
small. The error bounds (6.6) and (6.8) describe a worst-case effect of this approximation.

In the model described in Example 6.2, we do not impose any assumptions on the
distributions of ζh and ξh besides the requirement ‖ξ‖L1(Mh) ≤ ε for the function ξ as in
(6.7). The reason is that we cannot make use of their distributions, in particular potential
independence of the error components in our current analysis. For such situations, a positive β
might also improve error bounds.

7. Conclusion and outlook. We have proposed a flexible unified framework which
allows one to bound the effects of noise both in the data and in the forward operator in
variational regularization of inverse problems.

We have shown this approach at work for several examples with deterministic and stochas-
tic data, in both continuous and discrete settings. Our analysis provided optimal rates of
convergence in the data noise level and conditions on additional discretization and other error
parameters which guarantee that these additional sources of error do not become dominant.
Whereas errors in the measured data are usually difficult or impossible to improve, discretiza-
tion parameters are at our disposal, and our analysis provides guidelines on how they should
be chosen asymptotically.
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Further investigations involving the theory of stochastic processes are required to analyze
discrete sampled stochastic data. A further interesting topic of future research are a-posteriori
stopping rules for general noise models.

Appendix A. Besov spaces and Gaussian white noise. In [38] it has been shown
that white noise on the torus Td almost surely belongs to the Besov spaces B−d/2p,∞ (Td) for
p ∈ [1,∞), but not to any smaller Besov spaces. In this appendix we will use this result to
derive Besov regularity of Gaussian white noise on smooth, bounded domains M ⊂ Rd.

Recall that there are different possibilities to define Besov spaces on domains, in particular

Bsp,q(M) := {f |M : f ∈ Bsp,q(Rd)}, ‖g‖Bs
p,q(M) := inf

f |Ω=g
‖f‖Bs

p,q(Rd),

B̃sp,q(M) := {f ∈ Bsp,q(Rd) : supp f ⊂M}, ‖f‖B̃s
p,q(M) = ‖f‖Bs

p,q(M)

(see [36, Sections 4.1 and 4.3]). For negative s, the spaces B̃sp,q(M) may contain distributions
f with supp f ⊂ ∂M, and such elements f are not contained in Bsp,q(M). On the other hand,
for positive s, the space B̃sp,q(M) is a subspace of Bsp,q(M). More precisely, if ν is the outer
unit normal vector on ∂M, s > 1/p− 1, s− 1/p /∈ Z, p ∈ (1,∞), and q ∈ [1,∞], then there
exists a bounded linear trace operator

R : Bsp,q(M)→
K∏
k=0

Bs−1/p−k
p,q (∂M), f 7→

(
∂kf

∂νk

∣∣∣∣
∂M

)
k=0,...,K

,(A.1)

with K := max{k ∈ Z : s− 1/p− k > 0}, and

B̃sp,q(M) = {f ∈ Bsp,q(M) : Rf = 0}(A.2)

(see [36, Sections 4.3 and 4.7]). In particular, B̃sp,q(M) = Bsp,q(M) for s ∈ (1/p− 1, 1/p) as
K < 0 and hence range(R) = {0}. We also have

B̃sp,q(M)′ = B−sp′,q′(M)(A.3)

for s ∈ R, p ∈ (1,∞), and q ∈ [1,∞) with 1/p+ 1/p′ = 1/q + 1/q′ = 1; see [36, Section
4.8.1].

THEOREM A.1. Let M ⊂ Rd be a smooth bounded domain and let Z be Gaussian white
noise on L2(M). Then Z ∈ B−d/2p,∞ (M) for all p ∈ (1,∞) with d/2 + 1/p /∈ N almost surely.

Proof. Choose R sufficiently large such that M ⊂ (−R/2, R/2)d and consider M as
a subset of the torus TdR := (R \ (RZ))d. Let p′ ∈ (1,∞) be such that 1/p + 1/p′ = 1.
As d/2 − 1/p′ /∈ Z, it follows from [36, Sections 2.9.3 and 4.7] that the trace operator R
in (A.1) is a retraction from B

d/2
p′,1(TdR) to Z :=

∏K
k=0B

d/2−1/p′−k
p′,1 (∂M); in particular, it

has a bounded right inverse R† : Z → B
d/2
p′,1(TdR) and RR† = I . Using (A.2) this yields a

topological decomposition

B
d/2
p′,1(TdR) = B̃

d/2
p′,1(M)⊕ range(R†)⊕ B̃d/2p′,1(TdR \M)

with bounded projections PMf := 1M · (f − R†Rf), P∂Mf := R†Rf , and PMc :=
1Td

R\M
· (f − R†Rf); in fact, PM + P∂M + PMc = I , idempotency follows from RR† = I ,

and boundedness from (A.2). We also obtain a corresponding topological decomposition of
the dual space (see (A.3)):

B−d/2p,∞ (TdR) = B−d/2p,∞ (M)⊕ range(R†)′ ⊕B−d/2p,∞ (TdR \M)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

INVERSE PROBLEMS WITH GENERAL NOISE MODELS 151

with bounded projections P ′M, P ′∂M, and P ′Mc . To see this, note that, for F ∈ B−d/2p,∞ (TdR), we
have 〈P ′MF, f〉 = 〈F, PMf〉 = 0 for f ∈ B̃d/2p′,1(TdR\M) and f ∈ range(R†), and 〈P ′MF, f〉 =

〈F, f〉 for f ∈ B̃d/2p′,1(M), so P ′MF = F |M ∈ B−d/2p,∞ (M). Similarly, P ′McF ∈ B−d/2p,∞ (TdR\M).
Moreover, suppP ′∂MF ⊂ ∂M as Rf = 0 for all f ∈ C∞0 (TdR \ ∂M). (Note, however, that
P ′∂MF 6= 0 in general even for F ∈ C∞(TdR).)

Let Z be Gaussian white noise on L2(TdR). As mentioned above, Z ∈ B−d/2p,∞ (TdR) a.s.;
see [38]. Then the restriction ZM of Z to the closed subspace L2(M) ⊂ L2(TdR) (where
functions in L2(M) are extended by 0 to TdR \M) is Gaussian white noise on L2(M) since
the covariance operator of ZM is the identity. As 〈ZM, f〉 = 〈P ′MZ, f〉 for all f in the dense
subset B̃d/2p′,1(M) ⊂ L2(M), we have ZM = P ′MZ, and hence ZM ∈ B−d/2p,∞ (M) a.s.

REMARK A.2. Note that ‖ZM‖B−d/2
p,∞ (M)

≤ C‖Z‖
B
−d/2
p,∞ (Td

R)
with C := ‖P ′M‖.
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