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REGULARIZED FUNCTIONAL MATCHING PURSUIT FOR THE SPHERICAL

MULTIPLE-SHELL ELECTRO-MAGNETOENCEPHALOGRAPHY PROBLEM∗

SARAH LEWEKE† AND VOLKER MICHEL†

Abstract. Reconstruction of the neuronal current inside the human brain from non-invasive measurements
of the magnetic flux density via magnetoencephalography (MEG) or of electric potential differences via electro-
encephalography (EEG) is an invaluable tool for neuroscientific research, as it provides measures of activity in
the brain. However, it is also a severely ill-posed inverse problem. Assuming spherical geometries, we consider
the spherical multiple-shell model for the inverse MEG and EEG problem and apply the regularized functional
matching pursuit algorithm (RFMP) for its solution. We present a new convergence proof for the RFMP for operators
between two infinite-dimensional Hilbert spaces. Moreover, we utilize the complementarity of EEG and MEG data to
combine inversions of simultaneous electric and magnetic measurements. Finally, we test the algorithm numerically
on synthetic data using several Sobolev norms as penalty term and apply it to real data.
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1. Introduction. In this paper, we apply the regularized functional matching pursuit
algorithm (RFMP) to the inverse electro-magnetoencephalography problem in the spherical
multiple-shell model. The RFMP was originally invented for the inversion of gravitational data
and normal-mode anomalies; see [5, 15, 16]. Especially for the inversion of gravitational data,
several different approaches with different function systems and bases exist; e.g., spherical
harmonics, wavelets, Slepian functions, and splines. Since each of these systems has advan-
tages but also disadvantages, an algorithm was sought that allows several different function
types to be combined. This leads to a dictionary that may contain linearly dependent functions
and may be redundant. The aim of this method is to acquire all the advantages of the different
systems and to reduce their respective disadvantages.

In the meantime, several variants of the RFMP have been presented in the literature and
applied to several ill-posed inverse problems in the geosciences; see [17, 18, 20, 44, 49, 50].
They are based on a greedy algorithm introduced in [41] and enhanced in [58] that is called the
matching pursuit algorithm. The novelty of the RFMP is its applicability to ill-posed inverse
problems.

The RFMP iteratively builds a linear combination of dictionary elements to approximate
the minimizer of the Tikhonov functional. To this end, the dictionary element and the linear
factor of the next iteration are chosen such that the Tikhonov functional is optimally reduced.
An improvement of the method, called the regularized orthogonal functional matching pursuit
(ROFMP), is described in [50, 57] and limits the search of the dictionary elements in each
iteration to those in the orthogonal complement of the ones used in the previous iterations.

In [15, 16], convergence results of the RFMP are stated for the first time. Therein, only
operators mapping from L2(G,R) to R

ℓ are considered, where the usual classes of L2(G,R)
denote the space of square-integrable functions G → R with respect to the Lebesgue measure
and G ⊂ R

d is a compact domain. The convergence results of the RFMP consist of two
statements: the sequence of approximations produced by the RFMP converges, and the RFMP
is a convergent regularization method. The convergence result was transferred to an arbitrary
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separable Hilbert space as the domain of the operator in [47, 57]. In this context, the statement
concerning the convergence of the sequence of approximations produced by the RFMP was
improved by the authors in [47].

In [33, 34], the RFMP was considered as a particular case of the newly introduced
regularized weak functional matching pursuit (RWFMP), which is applicable to operators
between two (infinite-dimensional) Hilbert spaces. This approach yields a characterization of
the convergence order of the regularization induced by the RWFMP, which also follows for
the RFMP. In this work, we present an alternative approach to achieve this convergence result
without the technique required for the RWFMP. The transition to the infinite-dimensional
setting in the operator range requires only a small adjustment to the proof stated in [47].

Finally, we apply the RFMP algorithm to the spherical multiple-shell electro-magneto-
encephalography problem; see [38]. This problem deals with the reconstruction of the vector-
valued neuronal current inside the human brain from non-invasive measurements of the electric
potential on the scalp and the induced magnetic field outside the head. Instead of the real brain
geometry, a spherical geometry is assumed, and multiple shells are employed to represent
the different conductive tissues that the signals need to traverse. In [38], the problem is cast
as Fredholm integral equations and shown to be severely ill-posed, since the singular values
decay exponentially fast and the kernels of the integral operators are infinite-dimensional.
Normally, joint inversions of different data types require sophisticated methodologies; see,
e.g., [23]. However, we prove in this paper for this particular application that the simultaneous
inversion does not yield more information than the combination of independently inverted
magnetoencephalography (MEG) and electroencephalography (EEG) data. Furthermore, we
test the algorithm on synthetic data and show the results of inverting real data.

2. Notation. We write N0 := N ∪ {0} for the set of natural numbers including 0.
Similarly, R+

0 := R
+ ∪ {0} denotes the set of non-negative reals. We use BR ⊂ R

3 for
the ball with radius R and centre 0 and S ⊂ R

3 for the unit sphere in the three-dimensional
space R

3, whereas Bext
R := R

3 \BR is the complement of a ball. The standard basis of R3 is
denoted by εj , j = 1, 2, 3, that is, ε1 := (1, 0, 0)⊺, etc.

The Euclidean inner product is denoted by · , the vector product by ×, and the tensor
product by ⊗. In addition, throughout the paper we will use the abbreviations x = rξ, y = sη,
and z = vζ with unit vectors ξ, η, ζ ∈ S and radii r = |x|, s = |y|, and v = |z|. This
decomposition is unique for all elements in R

3 \ {0}.
In our notation, ∇∗

ξ denotes the part of the gradient ∇ containing the tangential derivatives
multiplied by r; see [21, eq. (2.136)]. The operator ∇∗

ξ is often called the surface gradient.
The differential operator L∗ (independent of the radius r) is defined by

L∗
ξ := x×∇x = ξ ×∇∗

ξ

and called the surface curl operator. The Beltrami operator is given by ∆∗
ξ = ∇∗

ξ · ∇∗
ξ (see

[21, eq. (2.140)]) and is the part of the Laplacian independent of the radius. Note that variables
as indices of operators indicate the dependence to which the operator is applied, since this is
not always unique otherwise; see, e.g., equation (3.1) below.

3. Construction of suitable orthonormal basis functions. The RFMP uses a dictionary
for approximating the unknown neuronal current. We will populate the dictionary with both
global and localized functions. Both of these function types are built from an orthonormal
basis adapted to the particular problem, which is also used in the singular value decomposition
(SVD) of the MEG and EEG operators; see [35, 38].

The construction of our basis functions is based on spherical harmonics. Recall that a
function of Harmn(S) (i.e., the space of all homogeneous, harmonic polynomials of degree n
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restricted to the unit sphere S; see [21, Def. 3.22]) is called a spherical harmonic of degree
n ∈ N0. By {Yn,j}j=1,...,2n+1 , we denote an L2(S)-orthonormal set in Harmn(S) (see
[21, Rem. 3.25]), where L2(S) := L2(S,R). For more details on scalar spherical harmonics
and their properties, see, for instance, [21]. For an introduction to (vector-valued) Lebesgue
spaces, see [3].

By means of the scalar spherical harmonics, we can define a complete L2(S,R3)-ortho-
normal system of vector-valued spherical harmonics (see [21, Thm. 5.56]), which goes back
to Edmonds (see [12]), and is defined (see [21, eqs. (5.309)–(5.311)]) by

ỹ
(i)
n,j(ξ) := (µ̃(i)

n )−1/2õ
(i)
n,ξYn,j(ξ), ξ ∈ S,

where

µ̃(i)
n :=











(n+ 1)(2n+ 1), for i = 1,

n(2n+ 1), for i = 2,

n(n+ 1), for i = 3,

õ
(i)
n,ξ :=











(n+ 1)ξ −∇∗
ξ , for i = 1,

nξ +∇∗
ξ , for i = 2,

L∗
ξ , for i = 3,

for all i ∈ {1, 2, 3}, n ∈ N0i , and j = 1, . . . , 2n+1. We use N0i as an abbreviation for N0 in
the case of i = 1 and for N in the case of i ∈ {2, 3}. Note that these vector-valued spherical
harmonics are homogeneous harmonic polynomials. These and more information on vector
spherical harmonics can be found in [21]. In analogy, we can define, for all i ∈ {1, 2, 3} and
n ∈ N0i , Edmonds vector Legendre polynomials by means of the scalar Legendre polynomials
Pn (see [21, eq. (3.165)]) of degree n ∈ N0 and type i ∈ {1, 2, 3} as in [21, Lem. 5.63]:

(3.1) p̃(i)n (ξ, η) := (µ̃(i)
n )−1/2õ

(i)
n,ξPn(ξ · η), ξ, η ∈ S.

Besides this, the Legendre polynomials and their vectorial counterparts possess addition
theorems; see [21, Thms. 3.26 and 5.64]. These imply, for all types, degrees, and ξ, η ∈ S,
the representations

(3.2)
2n+1
∑

j=1

Yn,j(ξ)Yn,j(η) =
2n+ 1

4π
Pn(ξ · η),

2n+1
∑

j=1

ỹ
(i)
n,j(ξ)Yn,j(η) =

2n+ 1

4π
p̃(i)n (ξ, η).

Furthermore, we also obtain for (pointwise) Euclidean norms,

2n+1
∑

j=1

∣

∣

∣
ỹ
(i)
n,j(ξ)

∣

∣

∣

2

=
2n+ 1

4π
, ξ ∈ S.

Based on a separation ansatz, we combine the vector spherical harmonics with orthogonal

Jacobi polynomials P (α,β)
m for the radial part in order to achieve an orthonormal set of functions

over the ball. For further details on Jacobi polynomials, see [56].

THEOREM 3.1. The set of vector-valued functions g̃
(i)
m,n,j(R; ·) for i ∈ {1, 2, 3}, m ∈ N0,

n ∈ N0i , and j = 1, . . . , 2n+ 1 with the parameter

t(i)n :=

{

n, for i = 1, 3,

n− 1, for i = 2,

is defined via

g̃
(i)
m,n,j(R;x) :=

√

4m+ 2t
(i)
n + 3

R3

( r

R

)t(i)n

P
(0,t(i)n +1/2)
m

(

2
r2

R2
− 1

)

ỹ
(i)
n,j(ξ), x ∈ BR.
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It is a complete orthonormal system in L2(BR,R
3). Using the abbreviation f∧(i,m, n, j) :=

〈f, g̃(i)m,n,j(R; ·)〉L2(BR,R3), each f ∈ L2(BR,R
3) has the representation

f =
3
∑

i=1

∞
∑

m=0

∞
∑

n=0i

2n+1
∑

j=1

f∧(i,m, n, j)g̃
(i)
m,n,j(R; ·),

which converges unconditionally and strongly in the L2(BR,R
3)-sense.

For the derivation of this basis, see [35, 38, 46]. Recall that we showed in these papers

that other choices for the parameter sequence (t
(i)
n )n are also possible as long as the condition

infn∈N0i
t
(i)
n ≥ −3/2 is satisfied. However, the sequence (t

(i)
n )n stated in Theorem 3.1 is the

natural choice for our application, as shown in [35]. For x ∈ BR, a scalar-valued analogue
can be defined via

(3.3) G
(i)
m,n,j(R;x) :=

√

4m+ 2t
(i)
n + 3

R3

( r

R

)t(i)n

P
(0,t(i)n +1/2)
m

(

2
r2

R2
− 1

)

Yn,j(ξ).

4. Regularized functional matching pursuit. Before we apply the RFMP and its en-
hancement, the ROFMP, to the inverse MEG and EEG problem, we give a brief survey on
the idea of the algorithm and the main theoretical results concerning the convergence of the
algorithm. The problem can be described as follows: Let X and Y be two (possibly infinite-
dimensional) Hilbert spaces. Let g ∈ Y be the given data (function) and A : X → Y be a given
linear and continuous operator. The task is to find a solution f ∈ X such that

Af = g.

We proceed by considering the RFMP iteration in detail, which constructs a sequence
{fk}k∈N ⊂ X of approximations to the (unknown) solution f . The approximations fk are
linear combinations of elements from a so-called dictionary D ⊂ X containing possibly useful
trial functions. Thus, in the kth step we have already calculated the approximation fk and we
are searching for a tuple (αk+1, dk+1) ∈ R ×D containing the best-fitting next dictionary
element and its coefficient. In this context, a best-fitting element is meant as a minimizer of
the resulting regularized Tikhonov functional, that is,

(αk+1, dk+1) = argmin
(α,d)∈R×D

Jλ(g, fk, d, α),(4.1)

Jλ(g, f, d, α) := ‖g −A(f + αd)‖2
Y
+ λ ‖f + αd‖2

X
.

Assume that the next chosen dictionary element dk+1 is already known. Then the
optimal coefficient αk+1 can be calculated as the root of the derivative with respect to α
of this regularized Tikhonov functional; see [15]. In addition, the second derivative with
respect to α of the regularized Tikhonov functional is non-negative in general and positive for
dk+1 ∈ X \ kerA, that is,

∂2

∂α2
(‖g −A(fk + αdk+1)‖2Y + λ ‖fk + αdk+1‖2X) = 2 ‖Adk+1‖2Y + 2λ ‖dk+1‖2X ≥ 0.

Thus, the regularized Tikhonov functional is convex as a function in α and the optimal
coefficient αk+1 is unique. This greedy procedure leads to the next algorithm.
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ALGORITHM 4.1 (RFMP, [47, Algo. 2]). Choose a dictionary D ⊂ X \ {0} , an initial

approximation f0 ∈ X (for example, f0 = 0), and a regularization parameter λ ∈ R
+.

1. Initialize the step counter to k := 0, define the residual r0 := g −Af0, and choose a

stopping criterion.

2. Find

dk+1 := argmax
d∈D

(〈rk,Ad〉Y − λ〈fk, d〉X)2
‖Ad‖2

Y
+ λ‖d‖2

X

(4.2)

and set

αk+1 :=
〈rk,Adk+1〉Y − λ〈fk, dk+1〉X

‖Adk+1‖2Y + λ‖dk+1‖2X
,

as well as fk+1 := fk + αk+1dk+1 and rk+1 := g −Afk+1 = rk − αk+1Adk+1.

3. If the stopping criterion is fulfilled, then fk+1 is the output. Otherwise, increase k by

1 and go to step 2.

Hence, in each step of the algorithm, the next dictionary element must be chosen and
the corresponding coefficient must be calculated. In both cases, common expressions such
as inner products between the dictionary elements or the forward operator action Ad for all
dictionary elements d ∈ D arise. These quantities can be calculated in a preprocessing step in
order to accelerate the algorithm.

In practice, the algorithm will be stopped when some stopping criterion is satisfied; see
[44]. The stopping criterion can, for instance, be a (relative) bound for the residual or an upper
bound for the number of iterations. However, we neglect the stopping criterion for the analysis
of the convergence of the sequence produced by the algorithm.

Several properties required for the convergence theorem of the RFMP are analysed in
[15, 35, 44]. Note that in earlier publications the L2-space is used instead of a general Hilbert
space X. The proofs are, however, easily transferable to the general case, as demonstrated in
[47] for the convergence theorem.

The following theorem improves former results from [15, 16, 44, 49]. In [47], the result
is formulated for the case of a finite-dimensional Hilbert space Y. However, the proof of this
result is in fact independent of the structure of the operator range and the space Y. Thus, the
next theorem is also valid in the context of infinite-dimensional Hilbert spaces Y. The latest
approach to the convergence results can be found in [33, 34, 45].

THEOREM 4.2 (Convergence theorem, [45]). Let an arbitrary regularization parameter

λ ∈ R
+ be given. If the sequence {fk}k∈N is produced by the RFMP, then {fk}k∈N converges

in X to f∞ := f0 +
∑∞

k=1 αkdk ∈ X and the sequence of residuals {rk}k∈N converges in

Y. Moreover, if the span of the dictionary is dense in X or (kerA)⊥, then for all gδ ∈ Y, the

function f∞ obtained by the RFMP solves the Tikhonov-regularized normal equation

(4.3) (A∗A+ λI)f∞ = A∗gδ,

where A∗ is the adjoint operator of A and I is the identity operator on X.

Proof. The case spanD = X, where the closure of the span of the dictionary equals the
Hilbert space X , is proven in [45, Thms. 5.4.10 and 5.4.11] and [47, Thm. 4], where the latter
is the idea generator for this proof. Since (kerA)⊥ is a closed subspace of the Hilbert space
X, the space ((kerA)⊥, 〈·, ·〉X) is a (complete) Hilbert space. Hence, if spanD = (kerA)⊥,
then we can replace X by (kerA)⊥ in the known propositions and f∞,(kerA)⊥ exists as the

limit of (fk)k produced by the RFMP in (kerA)⊥. We define the auxiliary operators

A(kerA)⊥ := AP(kerA)⊥ : X → Y,
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A∗
(kerA)⊥ = (AP(kerA)⊥)

∗ = P(kerA)⊥A∗ = A∗,

where the last equation is due to the fact that ranA∗ = (kerA)⊥. We get that f∞,(kerA)⊥

solves the Tikhonov-regularized normal equation in ((kerA)⊥, 〈·, ·〉X), that is,

(A∗A(kerA)⊥ + λI(kerA)⊥)f∞,(kerA)⊥ = A∗gδ.

In addition, we have Af = A(kerA)⊥f for all f ∈ X. Thus, we arrive at

(A∗A+ λI(kerA)⊥)f∞,(kerA)⊥ = A∗gδ.

Since I(kerA)⊥f∞,(kerA)⊥ = f∞,(kerA)⊥ , we arrive at the desired result.
It is a basic result of Tikhonov regularization that every solution of equation (4.3) min-

imizes the regularized Tikhonov–Philips functional. Since λ > 0, this minimizer and the
solution of the Tikhonov-regularized normal equation are both uniquely determined by

f∞ = (A∗A+ λI)−1A∗gδ, gδ ∈ Y.

If the smoothness of the function f is unknown, it may be necessary to regularize with certain
different norms that are generated by a pseudo-differential operator; see [39, Ch. 4.2]. By
means of the pseudo-differential operators, we are able to define a function space similar to
the Sobolev spaces on the ball.

DEFINITION 4.3. Let B : (kerA)⊥ → X be a densely defined pseudo-differential operator

with ‖Bf‖X ≥ β‖f‖X for a β > 0 and all f ∈ domB. Furthermore, let its singular system

(xk, yk;βk) be given such that

Bf =

∞
∑

k=1

βk〈f, xk〉Xyk.

With the definition

E :=

{

f ∈ (kerA)⊥

∣

∣

∣

∣

∣

∞
∑

k=1

β2
k〈f, xk〉2X < ∞

}

,

we get domB = E, which is dense in X with respect to the X-norm. In addition, based on the

inner product

〈f, h〉
H

:=

∞
∑

k=1

β2
k〈f, xk〉X〈h, xk〉X = 〈Bf,Bh〉

X
,

we define H as the completion of E .

Next, we use the Hilbert space generated by the pseudo-differential operator as the penalty
term in the Tikhonov functional.

THEOREM 4.4. Let H ⊂ X as in Definition 4.3, and let gδ ∈ Y. Then, the solution of the

RFMP with respect to the Tikhonov functional

Jλ(f) =
∥

∥Af − gδ
∥

∥

2

Y
+ λ ‖f‖2

H

converges to f∞ ∈ H fulfilling

(PHA∗A+ λB∗B)f∞ = PHA∗gδ.

Note that B∗ is the adjoint operator of B with respect to the topology in X.
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Proof. In order to apply Theorem 4.2 to the problem (AH,H,Y) with AH := A|H, we
need the continuity of AH, which is given by

‖AH‖L(H,Y) = sup
f∈H,f 6=0

‖AHf‖Y
‖f‖H

= sup
f∈H,f 6=0

‖Af‖Y
‖f‖H

≤ sup
f∈H,f 6=0

‖A‖L(X,Y)‖f‖X
‖f‖H

≤ 1

β
‖A‖L(X,Y) < ∞.

Here, we have used that A : X → Y is a bounded linear operator and ‖f‖H ≥ β‖f‖X for a
β > 0. Thus, the sequence produced by the RFMP converges to f∞ ∈ H, which fulfils

(4.4) (A∗
HAH + λIH)f∞ = A∗

Hgδ;

see Theorem 4.2. Note that the adjoint operator A∗
H of AH is subject to the H-inner product.

For all f ∈ H, gδ ∈ Y, we also get the relations
〈

f,A∗
Hgδ

〉

H
=
〈

AHf, gδ
〉

Y
=
〈

Af, gδ
〉

Y
=
〈

f,A∗gδ
〉

X
,

〈

f,A∗
Hgδ

〉

H
=
〈

Bf,BA∗
Hgδ

〉

X
=
〈

f,B∗BA∗
Hgδ

〉

X
.

Thus,
〈

f,B∗BA∗
Hgδ −A∗gδ

〉

X
= 0 for all f ∈ H,

which implies (B∗BA∗
H − PHA∗)gδ ∈ H⊥ = {0} since H is dense in X and ranB∗ =

(kerB)⊥ = domB ⊂ H. Accordingly, we get B∗BA∗
H = PHA∗ because gδ can be arbitrary.

Due to its definition, the operator B∗B has a bounded inverse. Thus, for the adjoint operator
A∗

H, the identity A∗
H = (B∗B)−1PHA∗ holds true. Inserting this into equation (4.4), we

immediately get

((B∗B)−1PHA∗AH + λIH)f∞ = (B∗B)−1PHA∗gδ,

⇐⇒ (PHA∗A+ λB∗B)f∞ = PHA∗gδ.

If more knowledge on the operator A is available, for instance an SVD {xk, yk;σk}k∈N ,
then the spanning condition for the dictionary in Theorem 4.2 can be weakened.

THEOREM 4.5 ([47, Thm. 6]). Let additionally A be assumed to be a compact operator

with singular system {xk, yk;σk}k∈N . Let the conditions of Theorem 4.2 be fulfilled, except

that the dictionary is only a spanning set for V := span {xk}k∈J , where J ⊂ N is a countable

index set.

Then the solution f∞,V ∈ V produced by the RFMP and the unique solution of the

Tikhonov-regularized normal equation f∞ ∈ X satisfy

(A∗A+ λI)f∞,V = (A∗A+ λI)PVf∞.

Since λ > 0, the operator A∗A+ λI is one-to-one and we obtain f∞,V = PVf∞.

For a fixed regularization parameter λ > 0, we have already seen that the limit of the
sequence {fk}k∈N of approximations obtained by the RFMP converges to f∞, which is the
unique minimizer of the Tikhonov–Philips functional. In [33], this is generalized to our setting
under appropriate assumptions. Therein, it is additionally taken into account that the RFMP
stops after a finite number of iterations K.

THEOREM 4.6 ([33, Thm. 9.35]). Let {fδ
λ,k}k∈N0 be the sequence of iterations of the

RFMP to the inverse problem Af = gδ with gδ ∈ Y fulfilling ‖g − gδ‖Y ≤ δ using the

regularization parameter λ > 0. We assume that
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• the dictionary is normalized in the sense that ‖Ad‖2Y + ‖d‖2X = 1 for all d ∈ D,

• the best approximate solution f+ fulfils a Hölder-type source condition for ν = 1,

• the function |fδ
λ,k|D is uniformly bounded with respect to λ, where |·|D is a certain

measure for the sparsity (see [33, Lem. 9.30]) and

• there exist constants m1, m2 > 0 such that λ(δ) = m1δ
2/3 and K(δ) = m2δ

−6.

Then there exists a constant C > 0 such that

∥

∥

∥
fδ
λ,K(δ) − f+

∥

∥

∥

X
≤ Cδ2/3.

Eventually, this theorem shows that the RFMP has a convergence rate of δ2/3 for δ → 0+
and that this rate can even be retained when only a finite number of iterations is used; see
[33, p. 160]. This convergence rate is not surprising, since the order of convergence of the
Tikhonov regularization is also δ2/3, which is optimal with respect to the source condition.

A problem of the RFMP occurring in numerical tests is that certain dictionary elements
may be chosen repeatedly. This can be understood as a correction for some previously
chosen coefficients α1, . . . , αk. A reason for this phenomenon is that the residual rk is not
orthogonal to the image of the span of the previously chosen dictionary elements, that is,
span {Ad1, . . . ,Adk} . In order to get rid of this unwanted effect, an enhancement of the
RFMP is developed in [50, 57]. Therein, an orthogonalization step based on the idea of
[52, 58] is introduced. The final algorithm is called the regularized orthogonal functional
matching pursuit algorithm (ROFMP).

ALGORITHM 4.7 (ROFMP, [20, Algo. 8]). Let A and g be given as in equation (4.1)
with Y := R

ℓ and ℓ ∈ N. Choose a stopping criterion, a dictionary D ⊂ X, an initial

approximation f0 ∈ X, and a regularization parameter λ ∈ R
+.

1. Initialize the step counter to k := 0, define the residual r0 := g −Af0, set V0 := ∅,

W0 := V⊥
0 , and B0(d) := IX.

2. Find

dk+1 := argmax
d∈D

(〈rk,PWk
(Ad)〉Rℓ + λ〈fk,Bk(d)− d〉X)2

‖PWk
(Ad)‖2

Rℓ + λ‖Bk(d)− d‖2
X

and set

αk+1 :=
〈rk,PWk

(Adk+1)〉Rℓ + λ〈fk,Bk(dk+1)− dk+1〉X
‖PWk

(Adk+1)‖2Rℓ + λ‖Bk+1(dk+1)− dk+1‖2X
.

3. For all d ∈ D, define the mappings

β
(k)
k (d) :=

〈Ad,PWk−1
Adk〉Rℓ

‖PWk−1
Adk‖2Rℓ

,

β
(k)
i (d) = β

(k−1)
i (d)− β

(k)
k (d)β

(k−1)
i (dk), for i = 1, . . . , k − 1,

Bk(d) :=

k
∑

i=1

β
(k)
i (d)di.

4. Update the coefficients as follows:

α
(k+1)
i = α

(k)
i − αk+1β

(k)
i (dk+1), for i = 1, . . . , k,

α
(k+1)
k+1 = αk+1,
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and set fk+1 :=
∑k+1

i=1 α
(k+1)
i di as well as rk+1 := g −Afk+1. Update the spaces

such that

Vk+1 := span {Ad1, . . . ,Adk+1} , Wk+1 = V⊥
k+1.

5. If the stopping criterion is satisfied, then use fk+1 as an approximate solution to

Af = g. Otherwise, increase k by 1 and go to step 2.

Note that the recurrence formula for the β
(k)
i can be resolved to get a closed formula; see

[54, Thm. 4.4.3].
In order to obtain convergence of the ROFMP, an iterative refinement is necessary. In

this case, after a certain number of steps K ∈ N, the algorithm is restarted with g −AfK as
the new data vector. This allows us, in particular, to use the entire dictionary again after K
iterations. It may be useful to keep the previous approximation in the penalty term; see [50].

5. The inverse electro-magnetoencephalography problem. For the inverse electro-
magnetoencephalography problem, one is interested in the reconstruction of the human
neuronal current from indirect measurements outside the head, namely the electric potential
differences on the scalp and the magnetic flux density at the MEG sensors. The flux density is
the part of the magnetic field pointing towards the normal direction ν of the sensor surface.
However, this problem cannot be analysed in detail without modelling the head appropriately.
Within our approach, we use the common multiple-shell model; see [10, 38]. For our nu-
merical tests, we use the particular case of the three-shell model even though the model can
accommodate an arbitrary number of shells L ∈ N. In detail, we assume that

• the cerebrum is a closed ball with radius ̺0, that is, B̺0
,

• surrounding the cerebrum, there are L ≥ 2 spherical shells S[̺l,̺l+1] := B̺l+1
\B̺l

,
for l = 0, . . . , L− 1, modelling the various head tissues,

• each tissue (i.e., each shell S[̺l,̺l+1] and the cerebrum B̺0 ) has a constant conductiv-
ity σl > 0 for all l = 0, . . . , L−1, and outside the head the conductivity is vanishing,
i.e., σL = 0,

• the permeability is constant everywhere and equals the permeability of vacuum, µ0,
• the relation between the neuronal current and the induced quantities can be modelled

by means of quasi-static Maxwell’s equations (see [53]), and
• the continuously distributed neuronal current J ∈ L2(B̺0 ,R

3) is non-vanishing only
inside the cerebrum.

Note that we do not assume further smoothness or boundary conditions for the neuronal
current.

The relation between the sought current and the measurements is, hence, given via partial
differential equations. Starting from there, a derivation of Fredholm integral equations of the
first kind is detailed in [38]. We, eventually, obtain the functionals

Aℓ
MJ = ν(yℓ) ·

(

µ0∇y

∫

B̺0

J(x) · kM(x, y) dx

)
∣

∣

∣

∣

∣

y=yℓ

, ℓ = 1, . . . , ℓM,(5.1)

Aℓ
EJ =

∫

B̺0

J(x) · kE(x, yℓM+k) dx, ℓ = ℓM + 1, . . . , ℓM + ℓE,

and associated operators

(AMJ) (y) = µ0∇y

∫

B̺0

J(x) · kM(x, y) dx, y ∈ Bext
̺L

,(5.2)
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(AEJ) (y) =

∫

B̺0

J(x) · kE(x, y) dx, y ∈ Bext
̺L

.(5.3)

We refer to [38] for precise representations of the occurring integral kernels kM ∈ L2(B̺0 ×
Bext

̺L
,R3) and kE ∈ L2(B̺0 ×Bext

̺L
,R3). In the MEG case, the above considered functionals

Aℓ
M : L2(B̺0

,R3) → R map the neuronal current onto the magnetic flux density evaluated

at the sensor positions yℓ ∈ R3 \B̺L
, ℓ = 1, . . . , ℓM, outside the head. In the EEG case,

the functionals Aℓ
E : L

2(B̺0 ,R
3) → R, ℓ = ℓM + 1, . . . , ℓM + ℓE, map the current onto the

electric potential difference measured at several positions on the scalp.
The reconstruction of the neuronal currents is, in both cases, a severely ill-posed inverse

problem; see [38]. Besides singular values decreasing exponentially fast towards zero, both
problems deal with an infinite-dimensional operator null space. It was proven in [38] that only
the harmonic and solenoid part of the neuronal current affects the measurement.

THEOREM 5.1 (Operator null space [38, Thms. 6.1 and 6.2]). Let J ∈ L2(B̺0 ,R
3) be

the neuronal current and let the MEG forward operator AM : L2(B̺0 ,R
3) → L2(Bext

̺L
) be

given by equation (5.2). On the one hand, the null space of AM is characterized by

(kerAM)
⊥
= span{g̃(3)0,n,j(̺0; ·) | n ∈ N, j = 1, . . . , 2n+ 1}.

Hence, only the harmonic part of the toroidal direction of the neuronal current is not in the

operator null space. On the other hand, the null space of AE : L
2(B̺0 ,R

3) → L2(S[̺L−1,̺L]),
which is defined in equation (5.3), is characterized by

(kerAE)
⊥
= span{g̃(2)0,n,j(̺0; ·) | n ∈ N, j = 1, . . . , 2n+ 1}.

Thus, only the harmonic part of directions related to inner harmonics of the neuronal current

is not in the operator null space.

In addition, the part of the neuronal current that can be measured via the MEG device is
silent to the EEG measurement and vice versa. Taking this into account, we are able to gain
more information about the neuronal current by measuring the electric potential and magnetic
flux induced by the brain activity simultaneously. To be more precise, the spaces (kerAM)⊥

and (kerAE)
⊥ are orthogonal with respect to L2(B̺0

,R3). Note that joint inversions, where
usually a part of the solution is jointly influenced by different types of data, are connected
to typical problems (such as weighting heterogeneous data; see, e.g., [32]). However, in our
particular case, we need not deal with such problems due to the complementarity of these
spaces. For this reason, we will perform separate inversions of the MEG and the EEG data,
which, as an additional benefit, also reduces the dimension of the inverse problem(s) to be
solved. In the next section, we show that this can also theoretically be supported with respect
to the used algorithm.

6. Simultaneous but complementary inversion. The RFMP can be used for a joint
inversion of several data types in order to yield more information about the source. This
may be reasonable if a source induces several physical quantities that can be measured
simultaneously, as in the case of the reconstruction of neuronal currents or the joint gravitation
and normal-mode inversion; see [15] for the latter. However, due to the structure of the MEG
and EEG null spaces, we are able to prove that a joint inversion cannot yield more details of
the neuronal current than independent single inversions.

For this purpose, we assume that the Hilbert space of the operator domain X can be divided
into two orthogonal subspaces XM and XE such that X = XM ⊕ XE. Now, we introduce the
abbreviation • ∈ {M,E} that will be used if a quantity can be used for either the MEG or the
EEG case.
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DEFINITION 6.1 (Joint inversion). In all three cases, we want to find the minimizer of

equation (4.1) by means of the RFMP over the respective Hilbert spaces. In addition, we

choose the regularization parameter λ := (λM, λE)
⊺ for the joint inversion with regularization

parameters λM, λE > 0 for the MEG and EEG inversion.

Separate: Let X•, Y• := R
ℓ• with an ℓ• ∈ N, and the data vector g• ∈ R

ℓ• be given. Then,

the forward operator A• : X• → R
ℓ• is considered. In addition, let the span of the

dictionary D• be dense in (kerA•)
⊥.

Joint: Let X be defined by the internal direct sum, that is, X := XM ⊕ XE, let Y := R
ℓΣ

with ℓΣ := ℓM + ℓE, let the data be given by g⊺ := (g⊺M, g⊺E) ∈ R
ℓΣ , and let the

operator A : X → R
ℓΣ for the RFMP be given by

(6.1) AJ := ((AM (PXMJ))
⊺
, (AE (PXEJ))

⊺
)
⊺
,

where PX•
are the orthogonal projections onto the respective spaces. For the

dictionary, we choose D = DM ∪DE. Moreover, we replace the Tikhonov functional

(4.1) by

(6.2) ‖g −A(f + αd)‖2
RℓΣ + λM ‖PXM(f + αd)‖2

XM
+ λE ‖PXE(f + αd)‖2

XE
.

In this setting, we can prove that no more information can be obtained by a simultaneous
joint inversion based on the RFMP than by summing the two solutions of independent inversion
of both data sets. This does not contradict former results achieved by the methodology of
multiparameter regularization (see, e.g., [7] and references therein), since this result is directly
related to the orthogonality structure of the considered spaces.

THEOREM 6.2. Let the setting of Definition 6.1 be given, and let fixed regularization

parameters λM > 0 and λE > 0 be chosen. Then, the RFMP solution of the joint case f∞
coincides with the sum of the solutions independently obtained by the RFMP in the separate

cases, that is, f∞ = fM,∞ + fE,∞.

Proof. Note that Definition 6.1 implies all the conditions of Theorem 4.2. Thus, we
immediately obtain that the two solutions of the independent cases fulfil

(6.3) (A∗
•A• + λ•IX•

)f•,∞ = A∗
•g•, in X•.

In addition, ranA∗
M = (kerAM)

⊥ ⊂ XM ⊥ XE ⊃ (kerAE)
⊥
= ranA∗

E. This complemen-
tarity of the orthogonal complements of the operator null spaces is essential for this proof. In
order to prove the statement, we first calculate the adjoint operator A∗ of the joint operator A
in X. It has to fulfil 〈A∗h, f〉X = 〈h,Af〉RℓΣ for all f ∈ X and h ∈ R

ℓΣ . The vector h can

be decomposed into h⊺ = (h⊺

M, h⊺

E) with hM :=
∑ℓM

ℓ=1(h)ℓε
ℓ and hE :=

∑ℓE
ℓ=1(h)ℓM+ℓε

ℓ.
Thus, via equation (6.1) we get

〈h,Af〉
RℓΣ = 〈hM,AMPXM

f〉
RℓM + 〈hE,AEPXE

f〉
RℓE

= 〈A∗
MhM,PXM

f〉
XM

+ 〈A∗
EhE,PXE

f〉
XE

= 〈A∗
MhM,PXM

f〉
X
+ 〈A∗

EhE,PXE
f〉

X

= 〈A∗
MhM, f〉

X
+ 〈A∗

EhE, f〉X
= 〈A∗

MhM +A∗
EhE, f〉X.

The last-but-one step is valid due to the orthogonality and structure of the occurring spaces.
Eventually, we obtain A∗h = A∗

MhM+A∗
EhE for all h ∈ R

ℓΣ , in particular for h = g. Setting
h = Af , we immediately arrive at

(6.4) A∗Af = A∗
MAMPXM

f +A∗
EAEPXE

f.
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We now utilize the fact that the theory for the RFMP was derived in general Hilbert spaces
(see Theorem 4.2 and, e.g., [45, Sec. 5.4.1]). For this purpose, we define a new inner product
on X as follows:

〈f, f̂〉
X̃
:= 〈λ−1/2

E PXMf + λ
−1/2
M PXEf, λ

−1/2
E PXM f̂ + λ

−1/2
M PXE f̂〉X.

Due to the orthogonality of XM and XE, this inner product is well defined. Moreover, XM and
XE remain orthogonal if 〈·, ·〉

X̃
is used. The construction of the inner product yields

λEλM‖f‖2
X̃
= 〈λ1/2

M PXM
f + λ

1/2
E PXE

f, λ
1/2
M PXM

f + λ
1/2
E PXE

f〉X
= λM ‖PXMf‖2

XM
+ λE ‖PXE

f‖2
XE

.

Hence, the Tikhonov functional for the previously known RFMP approach in the case
of (X, 〈·, ·〉

X̃
) as the domain of A and the regularization parameter λEλM coincides with the

modified Tikhonov functional (6.2) for the joint inversion. As we mentioned before, we can
now apply the existing RFMP theory, which tells us that the RFMP for the joint inversion
converges to f∞ with

(6.5) (A∗

X̃
A+ λEλMI

X̃
)f∞ = A∗

X̃
g,

where A∗

X̃
is the adjoint operator of A with respect to 〈·, ·〉

X̃
and I

X̃
= IX. To determine A∗

X̃
,

we have a look at (with h ∈ R
ℓΣ )

〈h,Af〉RℓΣ = 〈A∗h, f〉
X

= 〈PXM
A∗h+ PXE

A∗h,PXM
f + PXE

f〉
X

= 〈PXM
A∗h,PXM

f〉
X
+ 〈PXE

A∗h,PXE
f〉

X

= 〈λ1/2
E PXM

A∗h, λ
1/2
E PXM

f〉
X̃
+ 〈λ1/2

M PXE
A∗h, λ

1/2
M PXE

f〉
X̃

= 〈λEPXM
A∗h+ λMPXE

A∗h,PXM
f + PXE

f〉
X̃

= 〈A∗

X̃
h, f〉

X̃
,

where we used again the orthogonality of XM and XE, and A∗ is the adjoint operator of A
with respect to 〈·, ·〉X. Hence, A∗

X̃
h = λEPXM

A∗h+ λMPXE
A∗h. Inserting this result into

(6.5) and using (6.4), we obtain

λEPXM
(A∗

MAMPXM
f∞ +A∗

EAEPXE
f∞)

+ λMPXE (A∗
MAMPXMf∞ +A∗

EAEPXEf∞)

+ λEλM (PXM
f∞ + PXE

f∞)

= λEPXM
A∗g + λMPXE

A∗g.

Note that PXM
A∗

EAEPXE
f∞ = 0 and PXE

A∗
MAMPXM

f∞ = 0. By using once again
the orthogonality of the occurring spaces and remembering that λEλM > 0, we now arrive at
the following system of two equations:

A∗
MgM = (A∗

MAM + λMIXM
)PXM

f∞, in XM,

A∗
EgE = (A∗

EAE + λEIXE
)PXE

f∞, in XE.

With equation (6.3), we get

(A∗
MAM + λMIXM

)fM,∞ = (A∗
MAM + λMIXM

)PXM
f∞,
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(A∗
EAE + λEIXE

)fE,∞ = (A∗
EAE + λEIXE

)PXE
f∞.

The two occurring operators are one-to-one since λ• > 0. Thus, fM,∞ = PXM
f∞ and

fE,∞ = PXE
f∞.

Since the solution obtained by the simultaneous inversion of both data sets equals the sum
of the solutions obtained by the independent inversion of each single data set, no additional
information is gained.

Furthermore, the separated inversion is more efficient than the simultaneous one for the
following reasons. For the RFMP, the inner products between all dictionary elements are
required; see equation (4.2). Thus, finding the maximum in equation (4.2) can be accelerated
by splitting the inversion, since the memory capacity requirement for storing these inner
products grows quadratically with the number of dictionary elements. Another problem in the
simultaneous inversion of two different data sets emerges if the magnitudes of the data differ;
see [15]. Therein, the data sets have to be weighted in order to obtain a good reconstruction.
This is unnecessary in the case of a split inversion. Additionally, a split inversion allows a
separate choice of the regularization parameters, i.e., it provides us with the possibility to fit
each parameter to the particular problem, while a joint inversion requires the parallel choice of
λE and λM within one single Tikhonov functional.

7. Implementation. For the implementation of the RFMP algorithm, several quantities
are necessary, such as the forward operators, appropriate Hilbert spaces, a penalty term, a dic-
tionary, and an initial approximation. The forward operators considered for the implementation
are compoundly based on the Fredholm integral equations (5.1):

AMJ =

ℓM
∑

ℓ=1

(Aℓ
MJ)εℓ, AEJ =

ℓE
∑

ℓ=ℓM+1

(Aℓ
EJ)ε

ℓ−ℓM .

In our particular case, we have ℓM = 102 and ℓE = 70. For the implementation, we need to
consider a fixed number of shells for the multiple-shell model, that is, L = 3. This is also
known as the three-shell model. The used radii and conductivities are given by

̺0 = 0.071m, ̺1 = 0.072m, ̺2 = 0.079m, ̺3 = 0.085m,

σ0 = 0.330 Sm−1, σ1 = 1.000 Sm−1, σ2 = 0.042 Sm−1, σ3 = 0.330 Sm−1.

Note that this model coincides with the one in [9, 19, 37] and is partially based on results
stated in [27, Ch. 9.3]. For the sensor positions of the MEG device and the EEG cap, we have

‖yℓ‖R3 ∈ [1.4978̺L, 2.0522̺L], for all ℓ = 1, . . . , ℓM,

‖yℓ‖R3 ∈ [̺L−1, ̺L], for all ℓ = ℓM + 1, . . . , ℓM + ℓE.

The precise positions of the sensors in our synthetic test case as well as in the real data situation
are visualized in Figure 7.1 and also used within the former numerical considerations; see [37].
Both sets of positions are irregularly distributed, with major gaps, for example in the region of
the face or the lower half of the ball modelling the scalp.

Based on Algorithm 4.1, an initial approximation has to be chosen before starting the
algorithm. Since we do not have a-priori knowledge of the neuronal current at hand, we choose
the zero function to be the initial approximation.

7.1. The penalty term. For the domain, we choose L2(B̺0 ,R
3) as our largest space

and restrict it to the directions of ker(A•)
⊥, based on Theorem 4.2. Based on the results of

Theorem 4.4, we can use a variety of norms induced by pseudo-differential operators for the
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FIG. 7.1. Positions of the MEG (left) and EEG (right) sensors around B̺0 modelling the cerebrum.

penalty term in order to control the smoothness of the results. For our numerical considera-
tions, we choose several Sobolev norms for the penalty term based on the construction from
Definition 4.3. The orthonormal basis functions in the domain required for the construction of
the Sobolev spaces are chosen according to Theorem 3.1. More precisely, we use the following
particular sequence depending on a parameter s ∈ R

+
0 , that is,

a(i)m,n := a(i)n δm,0 =

{

(n+ 1
2 )

s(n+ 1
2 )

sδm,0, if i = 2,

(n+ 1
2 )

s(n+ 3
2 )

sδm,0, if i = 3.
(7.1)

The corresponding Sobolev space will be denoted by H(i)
s . For the parameter s, we choose

s ∈ {0, 1, 2} within our numerical tests, where the case s = 0 corresponds to a classical L2-
regularization. Increasing the parameter s involves a faster decrease of the Fourier coefficients
of the penalized function, which is somehow related to smoother functions.

7.2. The dictionaries. The elements of the dictionary have to be chosen in such a way
that they are not in the null space of the forward operator A•. For N• = 5, L• ∈ N, and
I• := {zl ∈ B̺0

| l = 1, . . . , L•} , and a discrete set H• ⊂ [0, 1), we choose the dictionary

D•(N•, H•, I•) =
{

g̃
(i)
0,n,j(̺0; ·)

}

n=1,...,N•, j=1,...,2n+1
∪
{

k
(i)
h (·, zl)

}

h∈H•, l=1,...,L•

,

where i = 2, 3 depending on the particular problem. Here, the 35 used global orthonormal
basis functions are given as in Theorem 3.1. Besides these functions, we use localized kernels
of the form

k
(i)
h (x, z) :=

∑

(m,n)∈N0×N0i

k(i)
m,n 6=0

2n+1
∑

j=1

(k(i)m,n)
−2g̃

(i)
m,n,j(̺0;x)G

(i)
m,n,j(̺0; z)(7.2)

=
1

4π̺30

{

∑∞
n=1(2n+ 1)2hn(rv/̺20)

n−1p̃
(2)
n (ξ, ζ), if i = 2,

∑∞
n=1(2n+ 3)(2n+ 1)hn(rv/̺20)

np̃
(3)
n (ξ, ζ), if i = 3,

with x, z ∈ B̺0 and the scalar-valued orthonormal basis from equation (3.3). In the series, we

inserted the sequence {k(i)m,n}(m,n)∈N0×N0i
, which is given by

k(i)m,n := h−n/2δm,0, h ∈ H• := {0.8, 0.9, 0.95, 0.99}.
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TABLE 7.1
A maximal upper bound for the truncation error of the reproducing kernels and their forward solutions depending

on the parameter h ∈ (0, 1) after N = 230 summands.

MEG EEG

h error k
(3)
h

error AMk
(3)
h

error k
(2)
h

error AEk
(2)
h

0.80 1.9104 · 10−25 1.3107 · 10−36 8.6759 · 10−26 1.0741 · 10−28

0.90 1.8955 · 10−13 1.1575 · 10−24 8.6079 · 10−14 1.1719 · 10−16

0.95 6.7759 · 10−8 3.7216 · 10−19 3.0769 · 10−8 4.3234 · 10−11

0.99 1.2855 · 10−3 6.1445 · 10−15 5.8372 · 10−4 8.2779 · 10−7

The addition theorem helps us to derive the kernel representation as a vector Legendre
polynomial representation. Due to the particular construction of the orthonormal basis func-
tions and the kernels, we immediately obtain that the dictionary is contained in (kerA•)

⊥.
The centres zl of the 50 620 kernels are chosen according to a modified Reuter grid on the ball
presented in [29, 30] with a parameter P = 8; see Figure 7.2 (left).
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−0.500.5

−0.5

0

0.5

FIG. 7.2. Modified Reuter grid on the ball for P = 8 with 289 grid points (left) and Driscoll–Healy grid with

3600 points (right).

Note that the sequence of the kernel {k(i)m,n}(m,n)∈N0×N0i
does not need to coincide

with the sequence of the Sobolev space corresponding to our penalty term. Thus, within our
dictionary, we can use reproducing kernels based on several different sequences. This is an
advantage in comparison to a spline approach, where, for an interpolation or approximation,
only one fixed sequence can be used.

For the implementation of the kernels, we need to truncate the occurring series. For the
sake of computation time, we truncate all implemented series after 250 summands. Some
estimates for the corresponding absolute maximal truncation errors depending on the parameter
h ∈ (0, 1) are listed in Table 7.1. The truncation errors are estimated based on dominating
geometric series for the kernel series representations and calculated via Mathematica [59].
The absolute truncation error seems large, but, due to an absolute value of the corresponding

series around 3.5× 103 (in the case of k(3)h for h = 0.99), the relative error is of the order of
1× 10−6, which is still acceptable.

In some first numerical tests of the RFMP, a third type of dictionary elements was used.
These functions were vector-valued radially invariant functions similar to the scalar-valued
radially invariant functions used in [19] in order to solve a scalar inverse MEG problem. For
0 < a ≤ r ≤ b < ̺0, the functions were of the form

χ[a,b](r)ỹ
(i)
n,j(ξ), n ∈ N0i , j = 1, . . . , 2n+ 1.
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However, no dictionary element of this type was chosen in any numerical test. In [38],
we showed that the harmonicity constraint in combination with the solenoidal condition is
sufficient for a unique solution of the inverse problem. This unique solution coincides with
the minimizer of the Tikhonov functional. In addition, the sequence obtained by the RFMP
converges under certain conditions to the best approximate solution of the inverse problem;
see Theorem 4.2. Based on the definition of the radially invariant functions, the harmonicity

constraint ∆f
(i)
n,j = 0 inside the entire ball B̺0 is never fulfilled. This can be a possible reason

for the RFMP not to choose these radially invariant functions.
The choice of the dictionary has an influence on the reconstruction, since we can only

use a finite number of dictionary elements in the actual computation. Thus, the choice of the
dictionary can also be understood as a regularization. For example, numerical tests showed
that more orthonormal basis functions with a maximal degree higher than N = 5 yield poorer
results, since the RFMP tries to reconstruct details and delicate structures with these high-
degree orthonormal basis functions instead of using the localized reproducing kernels. This
contradicts former numerical experiments in the geosciences. A reason for this behaviour
may be the few data given in our particular problems, whereas, for example, 8500 data points
were used in a synthetic downward continuation; see [57]. Thus, the few data points in our
particular problem can also be interpolated with these basis functions. On the other hand,
for the sake of computation time, we removed dictionary elements that were almost never
chosen, such as reproducing kernels with a parameter h smaller than 0.8. However, these
refinements are done by trial and error. In an ongoing project (e.g., [48, 54, 55]), a learning
add-on (LIPMP) for the RFMP is being developed to avoid this brute-force method. Here,
we use an infinite dictionary by modelling the minimization of the Tikhonov functional as a
constrained non-linear optimization problem. The best basis of the LIPMPs can be used as a
finite dictionary for the RFMP. The LIPMPs, until now, have only been applied to particular
geomathematical inverse problems, where they yield promising results.

7.3. The preprocessing. In the case of the RFMP, the preprocessing is an excellent
way to accelerate the algorithm, especially if a single dictionary is used for several RFMP
runs. Quantities that are frequently used within the algorithm, such as inner products of the
dictionary elements, and the application of the forward operator to the dictionary elements, are
calculated for all dictionary elements in advance. Then, for a fixed regularization parameter,
all quantities occurring in equation (4.2) are known. Thus, searching for the maximizer of
equation (4.2) among all dictionary items reduces to finding the maximal entry of a vector
whose length equals the number of dictionary elements, which can easily be parallelized. The
same holds true for the ROFMP, since the additional backfitting consists of linear combinations
of inner products of the dictionary elements.

For the preprocessing of the RFMP, we start with the calculation of the application of the
operators AM and AE, respectively, to the corresponding dictionary elements.

THEOREM 7.1. The RFMP forward operator maps the orthogonal basis functions to

(AMg̃
(3)
0,n,j(̺0; ·))(y) = −µ0

√

n

̺0(2n+ 1)(2n+ 3)

(

̺0
s

)n+2

ỹ
(1)
n,j(η),

(AEg̃
(2)
0,n,j(̺0; ·))(y) =

1√
n̺0

β(L)
n

(

(n+ 1)

(

s

̺L

)2n+1

+ n

)(

̺0
s

)n+1

Yn,j(η),

where n ∈ N and j = 1, . . . , 2n+ 1. Note that the sequence (β
(L)
n )n is uniquely determined

via the radii and the conductivity of the shells. A recursive representation can be found in [38].

For the reproducing kernels, we get, for all h ∈ (0, 1), z ∈ B̺0
, and with the abbreviation
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t := η · ζ, the identities

(AMk
(3)
h (·, z))(y) = −µ0

4π

∞
∑

n=1

√

n

n+ 1

(hv)n

sn+2
((n+ 1)ηPn(t)− (ζ − tη)P ′

n(t)) ,

(AEk
(2)
h (·, z))(y) = 1

4π

∞
∑

n=1

hn

√

(2n+ 1)3

n
β(L)
n

(

(n+ 1)

(

s

̺L

)2n+1

+ n

)

vn−1

sn+1
Pn(t).

Proof. The proof can be found in Appendix A.1.
We can calculate the inner products of the dictionary elements with each other in the

preprocessing and store them efficiently in a vector containing a linearization of the lower
triangular matrix.

THEOREM 7.2. Let i ∈ {2, 3} be fixed. Then we get, for all n, n̄ ∈ N, j = 1, . . . , 2n+1,

j̄ = 1, . . . , 2n̄+ 1, h, h′ ∈ (0, 1), and zl, zk ∈ B̺0
with l, k = 1, . . . , L•, the following inner

products between two dictionary functions:

〈

g̃
(i)
0,n,j(̺0; ·), g̃

(i)

0,n̄,j̄
(̺0; ·)

〉

Hs
•

= (a(i)n )2δn,n̄δj,j̄ ,

〈

k
(i)
h (·, zl), g̃(i)0,n,j(̺0; ·)

〉

Hs
•

=

√

2t
(i)
n + 3

̺30
(a(i)n )2hn

(

vl
̺0

)t(i)n

Yn,j(ζl),

〈

k
(i)
h (·, zl), k(i)h′ (·, zk)

〉

Hs
•

=
1

4π̺30

∑

n∈N

a(i)
n 6=0

(a(i)n )2(hh′)n(2n+ 1)(2t(i)n + 3)

(

vlvk
̺20

)t(i)n

Pn(t),

where t := ζl · ζk ∈ [−1, 1]. Recall that the Sobolev space Hs
• is defined with respect to the

sequence {a(i)m,n}m∈N0, n∈N0i
in equation (7.1).

Proof. The proof can be found in Appendix A.2.

7.4. The visualization. For a visualization of the numerical results, the approximations
are plotted on a spherical point grid within the cerebrum B̺0

. The radius of this sphere is
typically chosen as 0.95̺0 and the angle of the plot is chosen such that the upper hemisphere
is seen. More precisely, we use the equiangular Driscoll–Healy grid introduced in [11]. The
resulting grid with 3600 points is plotted in Figure 7.2 (right).

7.5. Synthetic test current. In order to validate the results obtained by the reconstruction
methods, we construct a synthetic test case as realistically as possible similar to the ones in
[19, 37] separately for both applications. In each case, the corresponding synthetic test current
is assumed to be in the orthogonal complement of the operator null space in order to handle the
non-uniqueness of the ill-posed problems. This implies that the synthetic current is harmonic
and solenoidal.

The current is based on the classical Abel–Poisson kernel, which is also used in [19] for
building an appropriate test case:

1

4π

1− h2

(1 + h2 − 2ht)3/2
=

∞
∑

n=0

2n+ 1

4π
hnPn(t), h ∈ (−1, 1), t ∈ [−1, 1].(7.3)

The Abel–Poisson kernel is combined with spherical differential operators in order to achieve
a test current that is entirely located in the orthogonal complement of the operator null space.
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DEFINITION 7.3. Let h ∈ [0, 1) be fixed and z ∈ B̺0
be given. Then the synthetic MEG

current IM and the synthetic EEG current IE are, for all x ∈ B̺0
, defined by

IM(x;h, z) := L∗
ξ

( ∞
∑

n=1

2n+ 1

4π

(

hrv

̺20

)n

Pn(ξ · ζ)
)

,

IE(x;h, z) := ∇x

( ∞
∑

n=1

2n+ 1

4π

((

hrv

̺20

)n

Pn(ξ · ζ)
))

.

In a first step, we need to verify that the synthetic currents do not have parts in the null
spaces of the respective forward operators.

THEOREM 7.4. Let the synthetic currents be defined as in Definition 7.3. Then, for all

h ∈ [0, 1) and all z ∈ B̺0
, we have I•(·;h, z) ∈ (kerA•)

⊥
.

Proof. The proof can be found in Appendix B.1.
For the implementation of the synthetic current, the series representation is not appropriate

since the required truncation of the series will always result in approximation errors. Hence,
we calculate the closed representations of the synthetic currents.

LEMMA 7.5. Let the synthetic current I• be defined as in Definition 7.3 and abbreviations

be given by p := ξ · ζ and q := q(r) := hrv/̺20 for all h ∈ [0, 1) and z ∈ B̺0
. Then,

IM(x;h, z) =
3

4π

(1− q2)q

(1 + q2 − 2q(ξ · ζ))5/2 (ξ ∧ ζ), x ∈ B̺0 ,

IE(x;h, z) =
1

4π

q2(−5 + q2 + 4qp)ξ + 3(1− q2)qζ

r(1 + q2 − 2qp)5/2
, x ∈ B̺0

.

Proof. The proof can be found in Appendix B.2.
Examples of a linear combination of two synthetic currents for the inverse MEG as well

as for the inverse EEG problem are shown in Figures 8.2 (left) and 8.4 (left). In both cases,
the occurring parameters are chosen according to Table 7.2, where κl denotes the coefficients.

TABLE 7.2
Parameters for the synthetic test current for the inverse MEG and EEG problem.

l κl hl |zl| ζl

1 1 0.9 0.85̺0 (0,−2, 1)⊺/
√
5

2 1.5 0.8 0.9̺0 (−1, 1, 1)⊺/
√
3

7.6. Synthetic data. To calculate the corresponding synthetic data, we need to apply the
MEG and EEG operators AM and AE introduced in Definition 6.1 to the synthetic currents
from Definition 7.3.

THEOREM 7.6. Let y ∈ Bext
̺L

in the MEG case and let y ∈ S[̺L−1,̺L] in the EEG case.

Then we get

(AMJM) (y) = −µ0

4π
̺30

2
∑

l=1

κl

∞
∑

n=1

√

n2(n+ 1)(2n+ 1)

(2n+ 3)2
(hlvl)

n

sn+2
p̃(1)n (η; ζl),

(AEJE) (y) =
̺0
4π

2
∑

l=1

κl

∞
∑

n=1

β(L)
n

(hlvl)
n

sn+1
(2n+ 1)

(

(n+ 1)

(

s

̺L

)2n+1

+ n

)

Pn(ζl · η)

with κl ∈ R, hl ∈ [0, 1), and zl ∈ B̺0
for l = 1, 2.
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Proof. The proof can be found in Appendix B.3.
Unfortunately, we are not able to find a closed representation of either AM(IM(·;h, z)) or

AE(IE(·;h, z)). Therefore, we need to truncate the series for the computation of the synthetic
data. Thus, we are interested in a bound for the truncation error.

LEMMA 7.7. For all h ∈ [0, 1), z ∈ B̺0
, y ∈ Bext

̺L
, and N ∈ N, the following estimate

holds true:

̺30

∣

∣

∣

∣

∣

∞
∑

n=N+1

√

n2(n+ 1)(2n+ 1)

(2n+ 3)2
(hv)n

sn+2
p̃(1)n (η; ζ)

∣

∣

∣

∣

∣

≤ ̺30
̺2L

(h̺0/̺L)
N+1(N + 2)2

(1− h̺0/̺L)3
.

In addition, for all h ∈ [0, 1), z ∈ B̺0
, y ∈ S[̺L−1,̺L], and N ∈ N, we get

̺0

∣

∣

∣

∣

∣

∞
∑

n=N+1

β(L)
n

hnvn

sn+1
(2n+ 1)

(

(n+ 1)

(

s

̺L

)2n+1

+ n

)

Pn(ζ · η)
∣

∣

∣

∣

∣

.
9̺0

2σL̺L−1C(L)

(h̺0/̺L−1)
N+1(N + 1)

(1− h̺0/̺L−1)2
,

where C(L) is part of an upper bound for the sequence {nβ(L)
n }n∈N ; see [38, Lem. 4.2]

for more information about its asymptotic behaviour. Note that the consequently required

condition on {nβ(L)
n }n∈N is fulfilled in our particular numerical setting.

Proof. The proof can be found in Appendix B.4.
If a maximal truncation error, for example the machine precision, is desired, then the

results stated in Table 7.3 yield the required number of summands depending on the parameter
h. According to the results from Table 7.3, which were also obtained via Mathematica [59],
we choose N• = 250, to guarantee a small error over all series truncations.

In addition, numerical summation always implies a numerical error due to the finite
precision of the floating-point numbers. In order to reduce the truncation and round-off error
incurred by the summation, we use the Kahan summation algorithm (see [28]) for the MEG
forward operator. From the results stated in Table 7.3, we can deduce that NM × eps ≤ 1,
where eps is the machine precision. Thus, the error of compensated summation is effectively
O(eps), which is independent of N ; see [28]. For the calculation of the electric potential, we
use the Clenshaw algorithm for the summation of Legendre polynomials; see [8] or [43, p. 48].

TABLE 7.3
Number of required summands N• for a uniform maximal truncation error of the synthetic test data depending

on h; the largest truncation parameter is written in bold.

h = 0.8 h = 0.9
error NM NE NM NE

1× 10−4 48 62 74 103
1× 10−5 54 69 83 114
1× 10−16 121 149 177 237

Besides non-noisy data, we want to generate noisy data for the synthetic tests by adding
white Gaussian noise. In this case, let {gi}1≤i≤N be the data. Then the additive noise for
each component gi of the data vector is normally distributed with zero mean and standard
deviation δ|gi|, where δ ∈ [0, 0.1] is the (relative) noise level.
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8. Numerical results. Within our synthetic test case, we used the RFMP as well as the
ROFMP for the inversion. The RFMP is stopped after a fixed number of 600 iterations. The
maximal number of iterations for the ROFMP is 250, where the algorithm is restarted after
K = 25 steps. However, due to the fast decrease of the relative residual obtained by the
ROFMP, we additionally stop the algorithm if the relative residual after a restart is less than or
equal to 2%.

To judge the quality of the reconstruction obtained by the R(O)FMP, we consider the
approximation error measured via the normalized root-mean-square difference (NRMSE) from
the reconstruction to the test current on the 3600-points Driscoll–Healy grid in Figure 7.2
(right). In addition, we analyse the data misfit by the residual normalized with respect to the
data gδ• . Its typical evolution during the synthetic data inversion via the R(O)FMP is shown
in Figure 8.1 in the case of δ• = 0.05. In the EEG case, the relative residual drops below 5%
after six (RFMP), respectively four (ROFMP), iterations, which is desired for the noise level
of 5% according to the discrepancy principle; see [1, 2, 14]. Although the curve of the relative
residual in the MEG case is qualitatively similar to the curve in the EEG case, the decay is
significantly slower. One possible reason for this behaviour is the severe ill-posedness of the
problems and the faster decay of the MEG singular values.
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FIG. 8.1. Evolution of the relative residual during the R(O)FMP iterations for δ• = 0.05.

According to the implemented parameter choice methods, the R(O)FMP is started with
up to 300 different regularization parameters λ. First, we try to find the optimal regularization
parameter λ∗ that minimizes the NRMSE. Corresponding to this regularization parameter,
the values of the approximation norm, the NRMSE, and the relative residual obtained via the
R(O)FMP are listed for all EEG test cases in Table 8.1. Since the inverse MEG and EEG
problems are severely ill-posed problems, it is not surprising that the approximation error is
larger than the relative residual and the noise level throughout almost all numerical tests.

Based on Table 8.1 for the EEG case, the ROFMP yields more accurate results than the
RFMP, except for the largest noise levels. For the MEG case, a comparable table is given in
Table 8.2. The obtained NRMSE reduces by an order of magnitude compared to the RFMP
in the non-noisy case. This effect is also observed for the other noise levels but is much less
pronounced, as the difference shrinks with increasing noise level. In addition, the RFMP
produces some artefacts in the case of higher noise levels, whereas the reconstruction via the
ROFMP is more accurate; see Figure 8.2. The ROFMP has the additional advantage that it
needs a smaller number of dictionary elements for the reconstruction (sparsity of the solution);
see Table 8.3.
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TABLE 8.1
Comparison of NRMSE and relative residual of RFMP and ROFMP reconstruction for the EEG inversion.

RFMP ROFMP

δE s

∥

∥

∥
J
δE
λ∗

∥

∥

∥

2

H
(2)
s

NRMSE rel. residual
∥

∥

∥
J
δE
λ∗

∥

∥

∥

2

H
(2)
s

NRMSE rel. residual

0.00 0 2.011 · 100 2.490 · 10−2 3.015 · 10−3 7.967 · 10−3 6.357 · 10−3 5.655 · 10−3

0.00 1 4.477 · 101 1.597 · 10−2 4.980 · 10−3 5.915 · 101 3.647 · 10−3 1.472 · 10−3

0.00 2 4.179 · 102 1.210 · 10−2 2.394 · 10−3 5.769 · 103 2.400 · 10−3 3.891 · 10−3

0.01 0 2.025 · 100 2.638 · 10−2 3.037 · 10−3 1.095 · 10−2 1.252 · 10−2 7.306 · 10−3

0.01 1 6.954 · 101 1.681 · 10−2 5.944 · 10−3 1.963 · 101 6.456 · 10−3 9.892 · 10−3

0.01 2 9.064 · 103 1.229 · 10−2 6.729 · 10−3 4.355 · 102 6.517 · 10−3 4.865 · 10−3

0.05 0 1.399 · 100 3.413 · 10−2 9.911 · 10−3 1.233 · 10−1 2.599 · 10−2 1.719 · 10−2

0.05 1 8.751 · 101 2.298 · 10−2 1.136 · 10−2 1.454 · 101 1.376 · 10−2 1.982 · 10−2

0.05 2 7.092 · 103 1.974 · 10−2 1.494 · 10−2 5.963 · 103 1.611 · 10−2 1.755 · 10−2

0.10 0 4.286 · 10−1 5.752 · 10−2 4.437 · 10−2 1.383 · 10−1 7.741 · 10−2 1.841 · 10−2

0.10 1 4.286 · 101 3.927 · 10−2 6.155 · 10−2 2.079 · 101 4.700 · 10−2 3.866 · 10−2

0.10 2 9.183 · 103 4.578 · 10−2 4.986 · 10−2 2.055 · 102 4.522 · 10−2 5.949 · 10−2

TABLE 8.2
Comparison of NRMSE and relative residual of RFMP and ROFMP reconstruction for the MEG inversion.

RFMP ROFMP

δM s

∥

∥

∥
J
δM
λ∗

∥

∥

∥

2

H
(3)
s

NRMSE rel. residual
∥

∥

∥
J
δM
λ∗

∥

∥

∥

2

H
(3)
s

NRMSE rel. residual

0.00 0 8.627 · 10−1 6.692 · 10−2 1.779 · 10−2 9.077 · 10−1 1.456 · 10−2 2.304 · 10−3

0.00 1 5.200 · 101 6.489 · 10−2 1.652 · 10−2 6.335 · 101 8.414 · 10−3 3.575 · 10−3

0.00 2 5.155 · 104 8.539 · 10−2 1.805 · 10−2 1.868 · 104 6.477 · 10−3 3.460 · 10−3

0.01 0 8.854 · 10−1 7.442 · 10−2 1.952 · 10−2 9.181 · 10−1 2.639 · 10−2 8.617 · 10−3

0.01 1 5.066 · 101 6.232 · 10−2 1.781 · 10−2 5.993 · 101 1.308 · 10−2 1.553 · 10−2

0.01 2 2.157 · 104 7.010 · 10−2 1.489 · 10−2 1.421 · 104 1.080 · 10−2 1.283 · 10−2

0.05 0 8.823 · 10−1 8.545 · 10−2 4.018 · 10−2 8.084 · 10−1 9.104 · 10−2 4.027 · 10−2

0.05 1 4.780 · 101 6.862 · 10−2 4.289 · 10−2 3.572 · 101 6.554 · 10−2 4.098 · 10−2

0.05 2 2.209 · 104 7.537 · 10−2 4.114 · 10−2 6.666 · 103 4.696 · 10−2 3.749 · 10−2

0.10 0 8.176 · 10−1 1.030 · 10−1 7.667 · 10−2 8.096 · 10−1 1.072 · 10−1 6.962 · 10−2

0.10 1 3.724 · 101 7.981 · 10−2 7.545 · 10−2 4.923 · 101 7.699 · 10−2 6.013 · 10−2

0.10 2 4.596 · 103 6.578 · 10−2 7.488 · 10−2 5.044 · 103 6.043 · 10−2 7.638 · 10−2

In addition, we can conclude that, in the MEG and EEG synthetic tests, the L2-regulariza-
tion (s = 0) yields the highest approximation errors for all noise levels. The ROFMP
with s = 2 produces the best results among the tested cases for the reconstruction of the
synthetic test current JM (MEG). In the EEG case, the data listed in Table 8.1 is not so
expressive. Both regularization terms (corresponding to s = 1 and s = 2) yield good
results; see Figure 8.3. Using the RFMP, the smallest NRMSE throughout the noise levels
δE ∈ {0, 0.01, 0.05} is obtained for s = 2. However, with 10% noise on the data, the
regularization term corresponding to s = 1 yields a slightly smaller error. If the ROFMP is
used, s = 2 yields better results on non-noisy data and for δE = 0.1, whereas s = 1 yields
smaller NRMSEs for the other noise levels. Figure 8.4 shows that the reconstruction of the
synthetic current is still good even for 10% noise for such a severely ill-posed problem. The
active regions are easily identifiable and the reconstruction is not too blurry. In conclusion, the
regularization terms with s ∈ {1, 2} should be preferred over s = 0 in the EEG case, since
we cannot find a clear winner.

Combining all these numerical results, we eventually conclude that the ROFMP with
regularization term for s = 2 generates good reconstructions for the synthetic MEG test case
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TABLE 8.3
Number of ROFMP iterations depending on noise levels and regularization terms.

δ• = 0 δ• = 0.01 δ• = 0.05 δ• = 0.1

Iterations H
(i)
0 H

(i)
1 H

(i)
2 H

(i)
0 H

(i)
1 H

(i)
2 H

(i)
0 H

(i)
1 H

(i)
2 H

(i)
0 H

(i)
1 H

(i)
2

EEG 25 25 25 25 25 25 25 75 50 75 250 250
MEG 25 25 25 25 25 25 250 250 250 250 250 250

FIG. 8.2. Comparison of RFMP (middle) and ROFMP (right) reconstruction with 1 % noise (MEG) to the exact

solution (left). The images in the middle and on the right show the absolute approximation errors.

with and without noisy data. Therefore, we choose this regularization term for the inversion of
real magnetic flux data. For the inversion of the real electric potential data, we will additionally
take the regularization term corresponding to s = 1 into account.

8.1. Performance benchmark. Although the ROFMP requires essentially fewer iter-
ations than the RFMP, it is, with few exceptions, the slower algorithm due to the required
backfitting steps. The CPU time is visualized in Figure 8.5 in the form of a boxplot. For each
test case and parameter combination, the R(O)FMP is started with 100 different regularization
parameters and the required CPU time is recorded. The box contains timings that are between
25% and 75% of all 100 observed values. The horizontal lines inside the boxes mark the me-
dian of the CPU times. Finally, the very first and last horizontal lines, represent the minimum
and maximum of the measured timings. In addition, the time required for the regularization pa-
rameter with minimal NRMSE is marked with a cross. The boxes corresponding to the RFMP
are significantly smaller than those belonging to the ROFMP. The reason for this behaviour
is that the ROFMP stops depending on the discrepancy principle, which causes inconsistent
timings. However, due to the ROFMP approximations being significantly sparser than the
RFMP ones, the postprocessing accelerates. For example, the time required for plotting the
approximation depends almost linearly on the number of chosen dictionary elements.

8.2. Parameter choice methods. In a real data situation, we cannot determine the
optimal regularization parameter via the NRMSE, as an exact reference solution is not available.
Since the choice of the regularization parameter is essential for the quality of the result obtained
by the R(O)FMP, we compare several parameter choice methods using the synthetic data in
order to select suitable methods for the problem at hand. We implemented the L-curve method
(LCM) and an automatic version (LCA) of it. In addition, we used the discrepancy principle
(DP), generalized cross-validation (GCV), the strong robust generalized cross-validation
(SRGCV), a modified generalized cross-validation (MGCV), the residual method (RM), and
the quasi-optimality criterion (QOC). All these methods have been used before in the context
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FIG. 8.3. Deviation of the reconstruction Jλ∗
by the ROFMP to the exact solution (non-noisy case) depending

on the penalty term H
(2)
s for s = 0 (left), s = 1 (middle), and s = 2 (right) for the EEG case.

FIG. 8.4. Exact solution (left) and approximation J
δE
λ∗

of the neuronal current (EEG) via the ROFMP in H
(2)
1

from 1 % noise (middle) and 10 % noise (right).

of regularization of ill-posed problems, especially in geomathematics and in combination with
the RFMP; see [1, 2, 25].

Table 8.4 reveals that the MGCV and the LCA (see Figure 8.5 (right)) yield the best
results for noise levels below 5%. However, these methods fail for the inversion of 5%-noisy
data. The remaining parameter choice methods yield better but not good results for this noise
level, since the corresponding NRMSEs are 2–3 times as high as with the optimal parameter.
The GCV and the (strong) robust GCV yield the smallest NRMSEs among all parameter
choice methods for δM = 0.1, but the error is twice as high as with the optimal parameter.
The evaluation of the parameter choice methods for the EEG problem via the ROFMP with
s = 1 reveals that the LCM is the parameter choice method with the best approximation error
except for non-noisy data, where the MGCV yields a slightly smaller NRMSE; see Table 8.5.
This can also be observed in the case s = 2. Based on the observations and the results in
Table 8.4, we conclude that how to find the best or even a good regularization parameter for
the R(O)FMP combined with the inverse MEG and EEG problem depends on the noise level
and is still an open question. In [25], first experiments regarding the choice of λ for the RFMP
were performed, where the L-curve method turned out to be a good option.
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TABLE 8.4
NRMSE and relative residual achieved by J

δM
λ∗

(MEG) via the ROFMP with s = 2, where λ∗ is chosen

according to different parameter choice methods.

Parameter choice method δM = 0 δM = 0.01 δM = 0.05 δM = 0.1

NRMSE
NRMSE 0.006 47 0.010 79 0.046 95 0.060 43
Rel. residual 0.003 45 0.012 83 0.037 49 0.076 37

GCV
NRMSE 0.111 72 0.113 77 0.110 40 0.120 78
Rel. residual 0.043 08 0.041 08 0.070 69 0.103 40

MGCV
NRMSE 0.010 89 0.036 35 0.403 17 0.427 26
Rel. residual 0.001 36 0.005 35 0.017 78 0.026 78

RGCV
NRMSE 0.111 72 0.113 77 0.110 40 0.120 78
Rel. residual 0.043 08 0.041 08 0.070 69 0.103 40

SRGCV
NRMSE 0.111 72 0.113 77 0.110 40 0.120 78
Rel. residual 0.043 08 0.041 08 0.070 69 0.103 40

RM
NRMSE 0.111 72 0.113 77 0.110 40 0.120 78
Rel. residual 0.043 08 0.041 08 0.070 69 0.103 40

LCA
NRMSE 0.010 89 0.036 35 0.433 89 0.495 96
Rel. residual 0.001 36 0.005 35 0.018 07 0.027 82

LCM
NRMSE 0.024 06 0.063 90 0.078 57 0.209 37
Rel. residual 0.006 10 0.020 12 0.031 34 0.040 74

TABLE 8.5
NRMSE and relative residual achieved by J

δE
λ∗

(EEG) via the ROFMP with s = 1, where λ∗ is chosen according

to different parameter choice methods.

Parameter choice method δE = 0 δE = 0.01 δE = 0.05 δE = 0.1

NRMSE
NRMSE 0.003 64 0.006 45 0.013 75 0.050 41
Rel. residual 0.001 47 0.009 89 0.019 81 0.041 51

GCV
NRMSE 0.042 58 0.057 26 0.052 32 0.072 23
Rel. residual 0.016 91 0.018 64 0.019 46 0.048 45

MGCV
NRMSE 0.005 96 0.012 84 0.046 64 0.111 27
Rel. residual 0.001 35 0.002 60 0.007 47 0.011 34

RGCV
NRMSE 0.042 58 0.057 26 0.052 32 0.072 23
Rel. residual 0.016 91 0.018 64 0.019 46 0.048 45

SRGCV
NRMSE 0.042 58 0.057 26 0.052 32 0.072 23
Rel. residual 0.016 91 0.018 64 0.019 46 0.048 45

RM
NRMSE 0.042 58 0.057 26 0.052 32 0.072 23
Rel. residual 0.016 91 0.018 64 0.019 46 0.048 45

LCA
NRMSE 0.011 56 0.024 12 0.030 97 0.070 07
Rel. residual 0.017 94 0.013 73 0.019 67 0.015 42

LCM
NRMSE 0.006 18 0.008 69 0.022 33 0.058 67
Rel. residual 0.004 51 0.004 26 0.011 69 0.033 11
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FIG. 8.5. Boxplots of the required CPU time for the MEG with the RFMP (left) and the ROFMP (middle)

problem in seconds and the L-curve in the 5% noise case (right).

8.3. Comparison with other regularization methods. We compare the results achieved
with the ROFMP with two other discretize-then-optimize reconstruction methods. The first
method is a simple regularized Ritz method (see [24]), whereas the regularized Tikhonov
functional is minimized over an m-dimensional subspace Vm of X. For instance, in our case,
Vm is spanned by m orthonormal basis functions. In the MEG case, we additionally use
the scalar spline method known from MEG data inversion in [19]. For a fair comparison,
we modified this method based on reproducing kernels such that the used orthonormal basis
functions satisfy the minimum-norm uniqueness constraint. Afterwards, the scalar solution
needs to be transferred to the vectorial current; see [35, 37] for this procedure. In the EEG case,
the assumptions required for the scalar spline method (see [19]) contradict the minimum-norm
solution; see [35]. Hence, we use the vector spline method (see [37]) for the comparison.

TABLE 8.6
NRMSE and relative residual for noise levels achieved by the ROFMP (s = 2), the regularized scalar spline

method, and the regularized Ritz method (s = 0) for the synthetic MEG test case.

ROFMP Vector spline Ritz
δM NRMSE rel. residual NRMSE rel. residual NRMSE rel. residual

0.00 6.477 · 10−3 3.596 · 10−3 1.272 · 10−1 7.482 · 10−7 9.260 · 10−2 7.899 · 10−2

0.01 1.080 · 10−2 1.283 · 10−2 8.696 · 10−2 3.461 · 10−3 9.398 · 10−2 7.812 · 10−2

0.05 4.696 · 10−2 3.749 · 10−2 1.008 · 10−1 4.198 · 10−2 8.999 · 10−2 8.085 · 10−2

0.10 6.043 · 10−2 7.638 · 10−2 1.092 · 10−1 8.172 · 10−2 9.993 · 10−2 1.220 · 10−1

The NRMSEs and the relative residuals achieved via the ROFMP, the Ritz method, and
the used spline method are given in Table 8.6 (MEG) and Table 8.7 (EEG). The comparison of
the reconstruction methods reveals that the NRMSE achieved by the ROFMP is at least one
order of magnitude lower than the NRMSE obtained by the other two methods if the noise
level is small, that is, δE ≤ 0.01. While this discrepancy reduces for higher noise levels, the
NRMSE achieved by the ROFMP is still smaller than for the other methods. The Ritz method
yields comparable results to the scalar spline method and the vector spline method for small
noise levels. In contrast, for higher noise levels, the vector spline method is better than the
Ritz method with respect to the NRMSE. However, the approximation quality of the ROFMP
cannot be reached by either of these two methods.

A visualization of the achieved approximations can also be found in Figure 8.6. Comparing
the reconstruction of the Ritz method to the ROFMP reconstruction, the active regions produced
by the Ritz method are not properly localized any more, which is outperformed by the results
obtained with the ROFMP. In addition, the maximal deviation of the ROFMP solution from
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FIG. 8.6. Approximation of the neuronal current with 5% noise obtained by the ROFMP (second column),

scalar spline method (third column, top), vector spline method (third column, bottom), and the Ritz method (right

column) for MEG (top row) and EEG (bottom row) compared to the exact solution (left column).

the exact solution is only 16.8% as high as the deviation of the spline reconstruction. In
conclusion, we clearly see that the structure, localization, and order of magnitude of the
approximation obtained by the ROFMP are closest to the synthetic test current from Figure 8.2
(left) and Figure 8.4 (left) among all tested methods.

In comparison to the results obtained by the ROFMP from Figure 8.4, we observe that the
amplitudes of the reconstruction via the spline method are significantly smaller than those of
the ROFMP. Particularly, in the case of the vector spline method, we see that the amplitudes
of the spline reconstruction are smaller than those of the ROFMP and the active regions are
more spread out, especially for the lower kernel reconstruction. In addition, the maximal
deviation of the scalar spline method in the MEG case is significantly damped on both active
regions. The maximal deviation achieved via the splines methods is up to 6–7 times higher
than achieved with the ROFMP. In addition, the regularization parameter of the spline methods
and the Ritz method are chosen by the L-curve method, which yielded good results before; see
[37]. However, especially in the case of the scalar spline method, the reconstruction seems
over-regularized. Within this method, the regularization parameter is chosen via the L-curve
method using (based on the scalar method) the norm of the scalar approximation. It is possible
that the detour via a scalar function in the reconstruction causes a larger error here in the
reconstruction. In contrast to the spline solution, which is still localized to some extent, the
Ritz method yields an even less localized reconstruction. The active regions are much larger
than the exact solution, and their amplitudes do not match either. In conclusion, the ROFMP
again provides the best reconstruction in terms of the structure, localization, and order of
magnitude among all the tested methods.

This accuracy in the reconstruction is at the expense of computation time. In the case of the
vector spline method, the CPU time required for the inversion is 90.0000± 3.8299× 10−4 s
tested among 10 000 inversions. In comparison to a CPU time of 10.5175± 0.2399 s for the
inversion of the EEG data based on the regularized Ritz method throughout our numerical
experiments, the vector spline method is slower but still fast when compared to the ROFMP.
Note that the CPU time required for the inversion of the MEG data is at least as long as for
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the EEG, since more data is available. The computational time required for the R(O)FMP is
plotted in Figure 8.5 and is at least five times as long as the previously mentioned timings, but
usually more than tenfold. That does not include the time required for the preprocessing of the
dictionary, which is around 6000 s (wall clock time) for both problems using a parallelized and
vectorized code on 12 CPU cores. However, in the case of different data sets (e.g., different
patients on the same device), this preprocessing need not be repeated.

TABLE 8.7
NRMSE and relative residual for different noise levels δE ∈ {0, 0.01, 0.05, 0.1} achieved by the ROFMP

(s = 1), the vectorial spline method, and the Ritz method (s = 0) for the synthetic EEG test case.

ROFMP Spline Ritz
δE NRMSE rel. residual NRMSE rel. residual NRMSE rel. residual

0.00 3.487 · 10−3 1.513 · 10−3 4.160 · 10−2 3.457 · 10−14 5.766 · 10−2 3.780 · 10−13

0.01 6.461 · 10−3 9.033 · 10−3 4.213 · 10−2 3.707 · 10−14 7.911 · 10−2 2.338 · 10−3

0.05 1.596 · 10−2 1.788 · 10−2 4.689 · 10−2 3.599 · 10−14 1.160 · 10−1 2.966 · 10−2

0.10 4.700 · 10−2 3.866 · 10−2 8.623 · 10−2 8.328 · 10−14 1.170 · 10−1 5.527 · 10−2

Naturally, the question arises whether some methods yield better reconstructions than
others. For the regularized Ritz method, the Tikhonov-regularized normal equation is solved
over a finite-dimensional subspace spanned by orthonormal polynomials. Thus, local effects,
such as certain outliers in the data or locally higher noise levels, have a global impact on
the reconstruction. This leads to a general blurriness in the reconstructions for higher noise
levels even in the regions where no activity is presumed. In addition, such “global” methods
often experience difficulties with irregularly distributed data grids, which are also found in our
application; see [43, Sec. 5.3].

The spline-based methods are interpolation methods that satisfy a best approximation
property. In the regularized case, which is used for the MEG scalar spline method, the solution
of this approach is the unique solution of the Tikhonov-regularized normal equation in a
certain Sobolev space. However, via the transformation to the vector-valued case, the structure
and quality of the approximation get lost. Thus, the lack of quality of the vector-valued
reconstruction presumably originates from the Helmholtz decomposition approach. For this
purpose, a direct reconstruction of the vector-valued current should be preferred. This can
also be seen in the vector spline method used for the EEG. In Figure 8.6, we see that this
method works well if the activity is near the data points, which is the case for the activity
in the upper left region of the plot. In contrast, the second active region lies in the middle
of a sensor gap, which results in a too flat approximation even in the case of non-noisy data.
This is a known disadvantage of interpolation-based approximation methods. Besides, the
reconstructions obtained via splines are robust with respect to the noise level. In addition,
coarse structures can be reconstructed quickly with the regularized Ritz method, since only a
few basis functions are required for this purpose.

The RFMP, as well as its enhancement, the ROFMP, combine the advantages of these
methods. Due to the reproducing kernels in the dictionary, which are related to splines, the
R(O)FMP is robust with respect to the noise level and can also handle irregularly distributed
point grids. Coarse structures can be reconstructed with only a few dictionary elements using
the additional orthonormal basis functions. This also results in a sparse solution, especially for
lower noise levels, which can be seen in Table 8.3. Using the penalty term of the R(O)FMP, the
smoothness of the reconstruction can be controlled, similar to the spline methods. In contrast
to the spline methods, the R(O)FMP is not an interpolation method, which results in a better
handling of the lack of data. Finally, the R(O)FMP is directly used for the reconstruction
of the entire vector-valued neuronal current, which is more stable than a reconstruction of
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scalar-valued parts that are transferred to the vector-valued current afterwards.

8.4. Inversion of real data. After having tested the R(O)FMP extensively within our
synthetic test case, we complete this article by reconstructing neuronal currents from real data.
A set of real data was gratefully provided to the authors by Dr. O. Hauk (MRC Cognition and
Brain Sciences Unit (CBU), Cambridge, UK) and is published in [36]. To generate the data, a
human participant wearing an EEG sensor cap was placed into an Elekta Neuromag R© [13]
MEG device at the MRC CBU. During the measurements, a visual stimulus in the form of
a chequered pattern is presented to the participant in the right visual hemi-field (VR, visual
right). After a delay, the brain activity increases as well as the magnetic flux density and the
electric potential. For the inversion, we choose the measurement corresponding to the point of
time with the highest values of the measured quantity. Since the optical nerve fibres associated
to the nasal side of the retinas cross each other in the optic chiasm, the brain activity should be
maximal at the contralateral visual cortex; see [31]. This means that a visual right stimulus
mainly induces brain activity in the left visual cortex. In the case of our three-shell model, the
medial longitudinal fissure separating the two brain hemispheres is located in the yz-plane.
On the other hand, the position of the face is reflected in the round-shaped gap in the sensor
distribution on the front side of the head in the direction of (0, 1, 0)⊺.

For the inversion of real data, we use the same setting as within the synthetic test case

with H
(3)
2 -penalty term (MEG). To this end, the ROFMP is started with 500 to 750 different

regularization parameter values. After applying all parameter choice methods to the results, we
deduce that the L-curve method yields good results by comparing the reconstruction with the
measurements. The corresponding L-curve for the real MEG data set is plotted in Figure 8.7

(right). In the EEG case, we test the H
(2)
1 -norm as well as the H

(2)
2 -norm. Comparing the

reconstructions corresponding to the regularization parameter of the various parameter choice

methods, the MGCV yields promising results combined with the H(2)
2 -penalty term. However,

in the case of the H(2)
1 -regularization, all parameter choice methods failed, and we were forced

to choose a good regularization parameter manually.

Now, we further investigate the ROFMP runs belonging to the presented parameters for
the VR data set. From some applications in the geosciences, it is known that the R(O)FMP
tends to first approximate coarse structures with global functions, such as the orthonormal
basis functions, and afterwards it reconstructs details with the more localized trial functions;
see [15, 17, 49, 57]. In the first 75 iterations, mainly orthonormal basis (ONB) functions and
reproducing kernels with a larger width, that is, h = 0.8 and sometimes h = 0.9, are chosen;
see Figure 8.7 (left). Afterwards, smaller reproducing kernels belonging to h ∈ {0.9, 0.95}
are chosen primarily. In the end, very fine reproducing kernels belonging to h = 0.99 are
chosen increasingly. This trend is more pronounced in the real data case than in the synthetic
test case, which could be attributed to the richer structure of the real neuronal current. We
observe (see Figure 8.7 (middle)) that mainly reproducing kernels located in an outer shell of
the cerebrum are chosen, which corresponds to the location of the visual cortex.

In order to get an impression of the quality of the reconstruction, we plotted the absolute
value of the measured data separately. In contrast to previous plots, we decided not to show
the direction of the neuronal current in order not to overload the plots.

In the case of the MEG recordings, numerical results are depicted in Figure 8.8. On the
back of the head, we see that activity in the contralateral left visual cortex is reconstructed,
which fits to the recorded data, the experiment, and the theory. However, in the opinion of the
authors, some artefacts are reconstructed in the front of the brain. These artefacts are more
or less pronounced depending on the chosen regularization parameter. In the case where the

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

RFMP FOR THE MEG AND EEG PROBLEM 181

0 100 200

ONB

0.8

0.9

0.95

0.99

Iterations
−0.5

0
0.5

−0.5

0

0.5

0

0.5

0 0.2 0.4 0.6

2 4 6 8

0

1

2

3

4

·10
−2Rel. residual

‖
J
‖
H

(
3
)

2

FIG. 8.7. Chosen dictionary elements (left) depending on reproducing kernel parameter h, kernel centres

(middle) by means of the ROFMP (the colour denotes the distance to the origin), and L-curve (right).
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FIG. 8.8. Real magnetic flux density data (VR) back view (first) and front view (last) and the neuronal current

reconstruction via the ROFMP with L-curve from back view (second) and front view (third).

regularization parameter is chosen according to the LCM, we see that this artefact is located in
the data gap in the area of the face.

Inversions of the real electric potential data are visualized in Figure 8.9. The activity of
the visual cortex on the left-hand side is clearly recognizable and only small activity at the
front is reconstructed. For this inversion, we conclude that the ROFMP is able to reconstruct
a reasonable neuronal current, which can be verified, in particular, in Figure 8.9. However,
depending on the data set and the chosen penalty term, it is hard to find an appropriate
regularization parameter. In contrast, in some tests, activity is reconstructed in areas where no
activity is recorded, such as in the case of Figure 8.8. It stands to reason that this activity is an
artefact fostered by the lack of data.

We chose the same point in time for the reconstruction of both measurements, which
enables us to combine the MEG and EEG reconstructions to a simultaneous inversion. Finally,
the sum of the two separate inversions from Figures 8.8 and 8.9 is given in Figure 8.10. The
main activity of the brain is located in the visual left cortex, as it should be. In the visualization
of the neuronal current on a cutout of the ball, one can additionally observe that most of the
activity is located in the outer region of the ball, which corresponds to the structure of the
visual cortex. In conclusion, the ROFMP solution for this joint data set yields a plausible
reconstruction of the neuronal current. The presumed active regions are clearly reconstructed,
and the visualization of the neuronal currents fits to the data. Artefacts, which especially occur
in the MEG reconstruction, can be smoothed by the joint inversion.
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FIG. 8.9. Real electric potential data (VR) (left column) from front view (top row) and back view (bottom

row) and the neuronal current reconstruction via ROFMP for H
(2)
2 -penalty term with MGCV (middle column) and

H
(2)
1 -penalty term with manual parameter (third column).
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FIG. 8.10. Neuronal current reconstruction from real magnetic flux density and electric potential data (VR)

plotted on a cutout of the cerebrum viewed from the back (left) and on a sphere from the front (right).
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9. Conclusion and outlook. In this article, we have presented the regularized functional
matching pursuit (RFMP) algorithm and its enhancement, the regularized orthogonal functional
matching pursuit algorithm (ROFMP). Both iterative algorithms minimize the Tikhonov
functional in each step by choosing the next best-fitting function from a so-called dictionary.
This type of algorithm can be used for solving severely ill-posed (functional) inverse problems.
For this purpose, the penalty term is used for regularization. Under certain conditions on the
dictionary, we obtain the convergence of the sequence produced by the RFMP to the best
approximate solution of the Tikhonov functional. In addition, we presented how changes in
the penalty term (e.g., caused by changing the Sobolev-norm generating pseudo-differential
operator) affect the reconstruction.

In order to demonstrate the strength of the R(O)FMP, we apply it to severely ill-posed
inverse problems from the context of medical imaging. We reconstruct the neuronal current
from non-invasive electric potential (EEG) and magnetic flux density (MEG) measurements.
These two inverse problems are ill-posed, since the related null spaces are infinite-dimensional
and their singular values decrease towards zero exponentially fast. For the numerics, we bypass
the non-uniqueness by considering the additional minimum-norm uniqueness constraint. The
instability is opposed by choosing an appropriate penalty term, which is a norm of a spherical
Sobolev space, and a regularization parameter by several parameter choice methods.

Due to the non-uniqueness of the EEG and MEG problem, the question arises whether a
joint inversion of both data sets yields a more accurate reconstruction than separate inversions.
In fact, we are able to prove that no additional information can be gained from the joint
inversion, due to the proven complementarity of their null spaces. In addition, due to the
possibility to adapt the regularization parameter in the case of the separate inversions in a
more data-driven way, the combination of the separate reconstructions should be preferred.

The functionality of the algorithms is demonstrated in synthetic test cases, where the
exact solution is known. We have tested non-noisy data and data with additive Gaussian white
noise up to 10 %, which is also the supposed noise level for the real data. Within our synthetic
test, the ROFMP yields better results than the RFMP with respect to the normalized RMSE
on the plotting grid. This difference can be observed, in particular, for non-noisy data and
shrinks with increasing noise level. However, both algorithms are able to reconstruct the
active regions from the few and irregularly distributed noisy measurements. Within our tests,
it reveals that an L2-penalty term yields poorer results than a Sobolev-norm penalty term,
which generated smoother reconstructions and avoided overfitting. The data misfit measured
by the relative residual drops below the noise level within a few ROFMP iterations. The
reconstructions are stable for increasing noise level. The inversion of the real data yields
satisfactory results, taking the physiological expectations and the data situation into account,
if a good regularization parameter is found.

We have compared the result achieved via the ROFMP with other optimize-then-discretize
regularization methods such as the Ritz method and spline methods. First, the Ritz method
solves the regularized Tikhonov-normal equation on a finite-dimensional subspace. Hence,
local effects have a global impact on the reconstruction. The produced blurriness is a typical
behaviour for such “global” methods on irregularly distributed data grids. Second, the spline
method is an interpolation method, which tends to overfit the data. On the other hand,
the ROFMP combines the advantages of both methods by using global orthonormal basis
functions and localized reproducing kernels in the dictionary. Consequently, coarse trends are
reconstructed in the first iterations by global functions, and afterwards details are reconstructed
via the aid of localized trial functions.

Within the synthetic test cases, as well as for the real data inversion, it is difficult to find
the best (or even a good) regularization parameter. We have tested numerous parameter choice
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methods, where the manual L-curve method and the modified generalized cross validation
(MGCV) yielded the best results in most cases. Especially in some of the real data situations,
no method was able to find an appropriate regularization parameter. Thus, finding a good
regularization parameter for the R(O)FMP is still an open question.

Based on the review of the executed real data inversions, the results of the ROFMP
can still be optimized. This enhancement can be performed on different levels. The used
dictionary consists of orthonormal basis functions and particular reproducing kernels in our
numerical tests. In addition, we could add further types of functions such as appropriate
wavelets. Wavelet-based reconstructions and a multi-resolution analysis yield good results in
spherical applications; see, e.g., [4, 6, 40, 42]. Besides an enlargement of the dictionary, we
could additionally test regularization terms that also take the time dependence of the data into
account. Instead of only penalizing the approximation in a certain norm, we could additionally
penalize its deviation from that of the previous time step. Second, from the algorithmic
side, we can use an enhancements of the R(O)FMP. For instance, in [33, 34], a massively
accelerated variant of the algorithm called the regularized weak functional matching pursuit
algorithm (RWFMP) is developed, which yielded good results in the considered numerical test
cases. Due to the acceleration of the algorithm, more iterations in a shorter period of time are
realizable, which is generally desirable. Moreover, in [48, 54, 55], a learned-dictionary-based
enhancement of the RFMP is presented, which improves the numerical results by allowing a
free choice of the parameter h of the kernels. Lastly, a reason for the discrepancy between
the quality of the results obtained in the synthetic test case and in the real data situation may
be grounded in insufficient modelling of the brain, since the real structure of the brain is
inherently non-spherical. For this purpose, the derived integral equations modelling the inverse
MEG and EEG problem need to be adapted, for which further research is required; see [26]
for a possible approach.
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to use the HORUS and the OMNI parallel computing cluster of the University of Siegen,
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Appendix A. Foundations for implementation.

A.1. Proof of Theorem 7.1. Within this theorem, the forward functionals used in the
R(O)FMP are stated. Here, we present the corresponding proof.

Proof of Theorem 7.1. The first two identities concerning the orthonormal basis functions

g̃
(i)
0,n,j(̺0; ·) for i = 2, 3 and for all n ∈ N, j = 1, . . . , 2n+ 1, are based on the results of the

SVD of AM and AE stated in [38, Thms. 6.1 and 6.3], that is,

(AEg̃
(2)
0,n,j(̺0; ·))(y) =

1√
n̺0

β(L)
n

(

(n+ 1)

(

s

̺L

)2n+1

+ n

)(

̺0
s

)n+1

Yn,j(η),(A.1)

(AMg̃
(3)
0,n,j(̺0; ·))(y) = −µ0

√

n

̺0(2n+ 1)(2n+ 3)

(

̺0
s

)n+2

ỹ
(1)
n,j(η).

With the representation of the kernel k(3)h (see equation (7.2)), the orthonormal basis functions

G
(i)
0,n,j , and outer harmonics, we obtain, for all h ∈ (0, 1), tn = n, and z ∈ B̺0 with the

sequence (hn)n for the symbols of the kernels, the identity

(AMk
(3)
h (·, z))(y)
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= −µ0

∞
∑

n=1

2n+1
∑

j=1

hn

√

n

̺0(2n+ 1)(2n+ 3)

(

̺0
s

)n+2

ỹ
(1)
n,j(η)G

(i)
0,n,j(̺0; z)

= −µ0

∞
∑

n=1

2n+1
∑

j=1

hn

√

n

2n+ 1

̺n0
sn+2

(

v

̺0

)n

P
(0,n+1/2)
0

(

2
v2

̺20
− 1

)

Yn,j(ζ)ỹ
(1)
n,j(η)

= −µ0

4π

∞
∑

n=1

hn
√

n(2n+ 1)
vn

sn+2
p̃(1)n (η, ζ).

We have used the addition theorem equation (see equation (3.2)) in the third step. For the
implementation, we need to calculate the vector-valued Legendre function further. We obtain,
for all n ∈ N and η, ζ ∈ S, and the definition of the vector-valued Legendre polynomials in
equation (3.1), the identity

√

n(2n+ 1)p̃(1)n (η, ζ) =
√

n(n+ 1)ηPn(η · ζ)−
√

n

n+ 1
(ζ − (η · ζ)η)P ′

n(η · ζ).

We use similar techniques and derive, for the kernel k(2)h , the identity

(AEk
(2)
h (·, z))(y)

=

∞
∑

n=1

2n+1
∑

j=1

hn 1√
n̺0

β(L)
n

(

(n+ 1)

(

s

̺L

)2n+1

+ n

)(

̺0
s

)n+1

Yn,j(η)G
(i)
0,n,j(̺0; z)

=
1

4π

∞
∑

n=1

hn

√

(2n+ 1)3

n
β(L)
n

(

(n+ 1)

(

s

̺L

)2n+1

+ n

)

vn−1

sn+1
Pn(η · ζ),

for all h ∈ (0, 1) and z ∈ B̺0 . Note that in this case the sequence {tn}n∈N occurring in the

functions G(i)
0,n,j(̺0; ·) is given by tn := n− 1 for all n ∈ N.

A.2. Proof of Theorem 7.2. Here, the inner products of the dictionary elements with
respect to the used Sobolev norms are stated. They can be calculated as follows.

Proof of Theorem 7.2. For the orthonormal basis functions, we get, for all n, n̄ ∈ N,
j = 1, . . . , 2n + 1, and j̄ = 1, . . . , 2n̄ + 1, via Parseval’s identity and equation (7.1), the
relation

〈

g̃
(i)
0,n,j(̺0; ·), g̃

(i)

0,n̄,j̄
(̺0; ·)

〉

Hs
•

=
∑

(m′,n′)∈N0×N

a
(i)

m′,n′ 6=0

2n′+1
∑

j′=1

(a
(i)
m′,n′)

2
〈

g̃
(i)
0,n,j(̺0; ·), g̃

(i)
m′,n′,j′(̺0; ·)

〉

L2(B̺0
)

×
〈

g̃
(i)

0,n̄,j̄
(̺0; ·), g̃(i)m′,n′,j′(̺0; ·)

〉

L2(B̺0
)

= (a(i)n )2
〈

g̃
(i)

0,n̄,j̄
(̺0; ·), g̃(i)0,n,j(̺0; ·)

〉

L2(B̺0 )
= (a(i)n )2δn,n̄δj,j̄ .

In order to calculate the Hs
•(a,B̺0

)-inner product of reproducing kernels localized in zl ∈ B̺0

for l = 1, . . . , L• with other dictionary elements, we compute an auxiliary inner product. For
all n ∈ N, j = 1, . . . , 2n+ 1, and h ∈ (0, 1), we have

〈

k
(i)
h (·, zl), g̃(i)0,n,j(̺0; ·)

〉

L2(B̺0 )
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=

〈

∞
∑

n′=1

2n′+1
∑

j′=1

hn′

G
(i)
0,n′,j′(̺0; zl)g̃

(i)
0,n′,j′(̺0; ·), g̃

(i)
0,n,j(̺0; ·)

〉

L2(B̺0
)

= hnG
(i)
0,n,j(̺0; zl).

Eventually, we obtain via Parseval’s identity and the definition of the orthonormal basis
functions, for all zl ∈ B̺0 , l = 1, . . . , L•, h ∈ (0, 1), n ∈ N, and j = 1, . . . , 2n + 1, the
relation
〈

k
(i)
h (·, zl), g̃(i)0,n,j(̺0; ·)

〉

Hs
•

=
∑

(m′,n′)∈N0×N

a
(i)

m′,n′ 6=0

2n′+1
∑

j′=1

(a
(i)
m′,n′)

2
〈

k
(i)
h (·, zl), g̃(i)m′,n′,j′(̺0; ·)

〉

L2(B̺0
)
δm′,0δn′,nδj′,j

= (a(i)n )2
〈

k
(i)
h (·, zl), g̃(i)0,n,j(̺0; ·)

〉

L2(B̺0 )
= (a(i)n )2hnG

(i)
0,n,j(̺0; zl)

=

√

2t
(i)
n + 3

̺30
(a(i)n )2hn

(

vl
̺0

)t(i)n

Yn,j(ζl).

Finally, for two kernel functions with centres zl, zk ∈ B̺0
where l, k ∈ {1, . . . , L•} and

parameters h, h′ ∈ (0, 1), we get, with the precise representation of the orthonormal basis, the
result

〈

k
(i)
h (·, zl), k(i)h′ (·, zk)

〉

Hs
•

=
∑

(m,n)∈N0×N

a(i)
m,n 6=0

2n+1
∑

j=1

(a(i)m,n)
2
〈

k
(i)
h (·, zl), g̃(i)m,n,j(̺0; ·)

〉

L2(B̺0
)

×
〈

k
(i)
h′ (·, zk), g̃(i)m,n,j(̺0; ·)

〉

L2(B̺0
)

=
∑

n∈N

a(i)
n 6=0

2n+1
∑

j=1

(a(i)n )2(hh′)nG
(i)
0,n,j(̺0; zl)G

(i)
0,n,j(̺0; zk)

=
1

4π̺30

∑

n∈N

a(i)
n 6=0

(a(i)n )2(hh′)n(2n+ 1)(2t(i)n + 3)

(

vlvk
̺20

)t(i)n

Pn(ζl · ζk).

Appendix B. Foundation for synthetic test cases.

B.1. Proof of Theorem 7.4.

Theorem 7.4. Here, we need to prove that the test current is entirely contained in the
orthogonal complement of the operator null space.

Proof of Theorem 7.4. Since the Legendre polynomials are bounded (see [51, Ch. II.7])
and hrv/̺20 < 1, the series occurring in the synthetic currents can be estimated by convergent
power series. Thus, the series and its derivatives converge uniformly, and we are able to
interchange the gradient and the L∗ operator with the respective series.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

RFMP FOR THE MEG AND EEG PROBLEM 187

Now, we start with the MEG case. We interchange the differential operator with the series,
use the definition of the Morse–Feshbach vector Legendre polynomials and equation (3.2).
Hence, for all x ∈ B̺0 , we get the identity

IM(x;h, z) =

∞
∑

n=1

2n+ 1

4π

(

hrv

̺20

)n

L∗
ξPn(ξ · ζ) =

∞
∑

n=1

2n+ 1

4π

√

µ̃
(3)
n

(

hrv

̺20

)n

p̃(3)n (ξ; ζ)

=

∞
∑

n=1

2n+1
∑

j=1

(

hrv

̺20

)n√

µ̃
(3)
n ỹ

(3)
n,j(ξ)Yn,j(ζ)

= ̺30

∞
∑

n=1

2n+1
∑

j=1

hn

√

n(n+ 1)

2n+ 3
g̃
(3)
0,n,j(̺0;x)G

(3)
0,n,j(̺0; z).

In the last step, we used the definition of the scalar-valued and vector-valued basis functions

with m = 0 and t
(3)
n = n.

In the EEG case, we analogously obtain with equation (3.1), but for m = 0, t(2)n = n− 1,

and t
(3)
n = n, for all x ∈ B̺0

, the representation

IE(x;h, z) =

∞
∑

n=1

2n+ 1

4π
∇x

((

hrv

̺20

)n

Pn(ξ · ζ)
)

=
∞
∑

n=1

2n+ 1

4π

√

µ̃
(2)
n

(

hv

̺20

)n

rn−1p̃(2)n (ξ; ζ)

= ̺20

∞
∑

n=1

2n+1
∑

j=1

hn

√

(2n+ 1)n

̺60

vn

̺n0

rn−1

̺n−1
0

ỹ
(2)
n,j(ξ)Yn,j(ζ)

= ̺20

∞
∑

n=1

2n+1
∑

j=1

hn

√

n

2n+ 3
g̃
(2)
0,n,j(̺0;x)G

(3)
0,n,j(̺0; z).

Eventually, Theorem 5.1 provides us with the desired result.

B.2. Proof of Lemma 7.5. In the following proof, we verify the closed representation
of the synthetic currents.

Proof of Lemma 7.5. We start with the definition of the synthetic current from Defini-
tion 7.3, use the closed representation of the Abel–Poisson kernel from equation (7.3), and
use the fact that L∗1 = 0. Thus, with q := hrv/̺20, we get, for all h ∈ [0, 1) and z ∈ B̺0 , the
identity

IM(x;h, z) =
1

4π
L∗
ξ

(

∞
∑

n=0

(2n+ 1)qnPn(ξ · ζ)− 1

)

=
1

4π
L∗
ξ

1− q2

(1 + q2 − 2q(ξ · ζ))3/2
.

The variable q is independent of the angular part of x. With L∗
ξF (ξ · η) = F ′(ξ · η)(ξ ∧ η)

(see [22, eq. (2.152)]) and the quotient rule, we obtain the desired representation.
Now, we use the same considerations as in the MEG case and immediately get for the

EEG test current

IE(x;h, z) =
1

4π
∇x

1− q(r)2

(1 + q(r)2 − 2q(r)(ξ · ζ))3/2
.
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The gradient can be split into a radial and an angular derivative. Then we obtain, with
∇∗

ξF (ξ · η) = F ′(ξ · η)(η − (ξ ∧ η)ξ) (see [22, eq. (2.151)]) and the quotient rule, the
representation

4πIE(x;h, z) =

(

ξ
∂

∂r
+

1

r
∇∗

ξ

)

1− q(r)2

(1 + q(r)2 − 2q(r)(ξ · ζ))3/2

= ξ
∂

∂r

1− q(r)2

(1 + q(r)2 − 2q(r)(ξ · ζ))3/2

+
3

r

(1− q(r)2)q(r)

(1 + q(r)2 − 2q(r)(ξ · ζ))5/2
(ζ − (ξ · ζ)ξ) .

In addition, again with the quotient rule, q′(r) = q(r)/r, and the abbreviation for p, we get

∂

∂r

1− q(r)2

(1 + q(r)2 − 2q(r)p)
3/2

=
q(r)

r

−2q(r)(1 + q(r)2 − 2q(r)p)− 3(1− q(r)2) (q(r)− p)

(1 + q(r)2 − 2q(r)p)
5/2

=
q(r)

r

−5q(r) + q(r)3 + q(r)2p+ 3p

(1 + q(r)2 − 2q(r)p)
5/2

.

Inserting this into the formula for the synthetic current, we get, with q := q(r), the stated
result, that is,

4πIE(x;h, z) =
q2(−5 + q2 + qp) + 3qp

r (1 + q2 − 2qp)
5/2

ξ +
3(1− q2)q

r (1 + q2 − 2qp)
5/2

(ζ − pξ)

=
q2(−5 + q2 + qp) + 3qp− 3qp+ 3q3p

r (1 + q2 − 2qp)
5/2

ξ +
3(1− q2)q

r (1 + q2 − 2qp)
5/2

ζ

=
q2(−5 + q2 + 4qp)ξ + 3(1− q2)qζ

r (1 + q2 − 2qp)
5/2

.

B.3. Proof of Theorem 7.6. Now, we verify the representation of the forward functionals
applied to the synthetic test current.

Proof of Theorem 7.6. Via equation (A.1), we get, with the Fourier expression of J•, the
series

(AMJM)(y) = −µ0

∞
∑

n=1

2n+1
∑

j=1

JM
∧(3, 0, n, j)

√

n

̺0(2n+ 1)(2n+ 3)

(

̺0
s

)n+2

ỹ
(1)
n,j(η),

(AEJE)(y) =
∞
∑

n=1

2n+1
∑

j=1

JE
∧(2, 0, n, j)

1√
n̺0

β(L)
n

(

(n+ 1)

(

s

̺L

)2n+1

+ n

)

×
(

̺0
s

)n+1

Yn,j(η).

Only the calculation of the Fourier coefficients remains to be done. Since JM and JE are
linear combinations of IM(·, h, z) or IE(·, h, z), respectively, with some parameters h ∈ [0, 1)
and z ∈ B̺0 , we calculate the Fourier coefficients for these functions and then use the linearity
of AM and AE in order to obtain the result for JM and JE, respectively. By means of the
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representation of the synthetic current from the proof of Theorem 7.4 for h ∈ [0, 1) and
z ∈ B̺0

, we obtain, for all n ∈ N and j = 1, . . . , 2n+ 1, the identities

(IM(·;h, z))∧(3, 0, n, j) = ̺30h
n

√

n(n+ 1)

2n+ 3
G

(3)
0,n,j(̺0; z), t(3)n = n,

(IE(·;h, z))∧(2, 0, n, j) = ̺20h
n

√

n

2n+ 3
G

(3)
0,n,j(̺0; z), t(2)n = n− 1.

In the MEG case, we then obtain, with h ∈ [0, 1) and z ∈ B̺0 , that

(AM(IM(·;h, z)))(y)

= −µ0

∞
∑

n=1

2n+1
∑

j=1

√

n2(n+ 1)̺0
(2n+ 1)(2n+ 3)3

(

̺0
s

)n+2

̺20h
nG

(3)
0,n,j(̺0; z)ỹ

(1)
n,j(η).

Using the representation of the orthonormal basis, equation (3.3), and the addition theorem in
equation (3.2), we obtain, for h ∈ [0, 1), z ∈ B̺0 , and all y ∈ Bext

̺L
, the relation

(AM(IM(·;h, z)))(y) = −µ0̺
3
0

∞
∑

n=1

2n+1
∑

j=1

√

n2(n+ 1)

(2n+ 1)(2n+ 3)2
(hv)n

sn+2
Yn,j(ζ)ỹ

(1)
n,j(η)

= −µ0

4π
̺30

∞
∑

n=1

√

n2(n+ 1)(2n+ 1)

(2n+ 3)2
(hv)n

sn+2
p̃(1)n (η; ζ).

In the EEG case, we obtain, with equation (3.2), for all y ∈ S[̺L−1,̺L], the result

(AEIE(·;h, z))(y) =
̺0
4π

∞
∑

n=1

β(L)
n

hnvn

sn+1
(2n+ 1)

(

(n+ 1)

(

s

̺L

)2n+1

+ n

)

Pn(ζ · η).

B.4. Proof of Lemma 7.7.

Proof of Lemma 7.7. From Theorem 7.6 and the estimate |p̃(i)n | ≤
√

µ
(i)
n , we get for the

truncation error

µ0

4π
̺30

∣

∣

∣

∣

∣

∞
∑

n=N+1

√

n2(n+ 1)(2n+ 1)

(2n+ 3)2
(hv)n

sn+2
p̃(1)n (η; ζ)

∣

∣

∣

∣

∣

≤ µ0

4π

̺30
̺2L

∞
∑

n=N+1

n(n+ 1)

(

h̺0
̺L

)n

.

We define q := h̺0/̺L ∈ [0, 1) and obtain, with the closed representation of the power series
and some lengthy calculations, the estimate

∞
∑

n=N+1

n(n+ 1)

(

h̺0
̺L

)n

=
qN+1(−q2N2 + 2qN2 −N2 − q2N + 4qN − 3N − 2)

(q − 1)3

=
qN+1 (−(q − 1)N((q − 1)N + q − 3)− 2)

(q − 1)3

=
qN+1 ((1− q)N((1− q)N − q + 3) + 2)

(1− q)3

≤ qN+1 ((1− q)N(N + 3) + 2)

(1− q)3
≤ qN+1(N + 2)(N + 1)

(1− q)3
,
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where N ∈ N. Vice versa, from Theorem 7.6 with

lim sup
k→∞

|kβ(L)
k | = 1

2σLC(L)

(see [38, Lem. 4.2]), the abbreviation q := h̺0/̺L−1 ∈ [0, 1), and the inequality (2n +
1)2 ≤ 9n2 for all n ∈ N, we similarly obtain, for all N ∈ N, the estimate

̺0
4π

∣

∣

∣

∣

∣

∞
∑

n=N+1

β(L)
n

hnvn

sn+1
(2n+ 1)

(

(n+ 1)

(

s

̺L

)2n+1

+ n

)

Pn(ζ · η)
∣

∣

∣

∣

∣

≤ ̺0
4π

∞
∑

n=N+1

|β(L)
n |h

n̺n0
̺n+1
L−1

(2n+ 1)2 .
9̺0

8πσL̺L−1C(L)

∞
∑

n=N+1

nqn

=
9̺0

8πσL̺L−1C(L)

qN+1 ((1− q)N + 1)

(1− q)2
≤ 9̺0

8πσL̺L−1C(L)

qN+1(N + 1)

(1− q)2
,

where we have written “.” here because of the estimate with the limes superior.
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