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A NOTE ON THE PROBABILISTIC STABILITY
OF RANDOMIZED TAYLOR SCHEMES∗

TOMASZ BOCHACIK†

Abstract. We study the stability of randomized Taylor schemes for ODEs. We consider three notions of
probabilistic stability: asymptotic stability, mean-square stability, and stability in probability. We prove fundamen-
tal properties of the probabilistic stability regions and benchmark them against the absolute stability regions for
deterministic Taylor schemes.
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1. Introduction. The study of randomized algorithms approximating the solutions of
initial value problems for ODEs dates back to the early 1990s; cf. [16, 17]. So far, the
main focus has been on convergence of randomized algorithm; see, for example, [6, 10, 14].
Randomized algorithms tend to converge faster than their deterministic counterparts, especially
for problems of low regularity. Error bounds are usually established using certain martingale
inequalities and classical tools such as Gronwall’s inequality. In many papers, error analysis
was combined with a discussion of the algorithms’ optimality (in the information-based
complexity sense), cf. [3, 4, 7, 8, 11, 12, 13], and also in the setting of inexact information;
cf. [1, 2]. Randomized Taylor schemes, which will be of particular interest in this paper, were
shown in [8] to achieve the optimal rate of convergence under mild regularity conditions.
Other aspects of randomized algorithms, such as stability, have been largely omitted. The aim
of this paper is to make a step towards filling this gap.

The stability of deterministic algorithms for ODEs has been comprehensively studied
in the literature; see, for example, [5]. In the stability analysis, we consider a test problem
which is simple enough but retains features present in a wider class of problems. Then, we
investigate for which choices of the step-size the method reproduces the characteristics of the
test equation; cf. [9]. In the context of ODEs, we usually take a linear, scalar, and autonomous
test problem.

The same test problem is used for a stability analysis of randomized algorithms for ODEs.
However, the approximate solution generated by a randomized method is random. Hence,
the analysis of its behaviour at infinity depends on the type of convergence. This naturally
leads to notions of mean-square stability and asymptotic (almost-sure) stability, which have
been previously considered in [9, 15] in the context of stochastic differential equations. This
framework, enriched with the notion of stability in probability, was used in [1, 2] to characterize
stability regions of randomized Euler schemes and the randomized two-stage Runge-Kutta
scheme.

This paper, according to our best knowledge, is the first attempt to apply the concept of
probabilistic stability to higher-order randomized methods for ODEs, namely to the family of
randomized Taylor schemes defined in [8]. Since these methods do not involve implicitness,
they will not be A-stable. However, we can characterize probabilistic stability regions of
these methods in a quite detailed way. We establish their basic properties such as openness,
boundedness, symmetry. Moreover, we study inclusions between them and compare them to
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the reference sets corresponding to deterministic methods. Finally, we provide counterexam-
ples for some hypothetical properties which do not hold for probabilistic stability regions of
randomized Taylor schemes in general (that is, for the method of any order).

In Section 2 we give basic definitions and introduce the notation. In particular, we recall
the definitions of the family of randomized Taylor schemes and of the probabilistic stability
regions. In Section 3, which is the main part of this paper, we characterize probabilistic
stability regions for randomized Taylor schemes. Conclusions are discussed in Section 4.
Finally, in Appendix A we prove some technical lemmas.

2. Preliminaries.

2.1. The family of randomized Taylor schemes. We deal with initial value problems of
the following form:

(2.1)

{
z′(t) = f(t, z(t)), t ∈ [a, b],

z(a) = η,

where −∞ < a < b <∞, η ∈ Rd, f : [a, b]× Rd → Rd, d ∈ Z+.
We use the definition of the family of randomized Taylor schemes given in [8]. We fix

n ∈ N, n ≥ 2, and let

h =
b− a
n

, tj = a+ jh for j ∈ {0, 1, . . . , n},

θj = tj−1 + τjh, τj ∼ U(0, 1) for j ∈ {1, . . . , n}.

We assume that the family of random variables {τ1, . . . , τn} is independent.
Let r ∈ N (we assume that 0 ∈ N). We set vr0 = η. If k ∈ {1, . . . , n} and vrk−1 is already

defined, then we consider the following local problem:

(2.2)

{
(urk)′(t) = f(t, urk(t)), t ∈ [tk−1, tk],

urk(tk−1) = vrk−1.

We define

(2.3) prk(t) =

r+1∑
j=0

(urk)(j)(tk−1)

j!
(t− tk−1)j1[tk−1,tk](t)

and

(2.4) vrk = prk(tk) + h ·
(
f(θk, p

r
k(θk))− (prk)′(θk)

)
.

Note that for t ∈ (tk−1, tk), where k ∈ {1, . . . , n}, we have

(2.5) (prk)′(t) =

r+1∑
j=0

(urk)(j)(tk−1)

(j − 1)!
(t− tk−1)j−1.

The algorithm returns the sequence
(
vrk
)n
k=0

, which approximates the values of the exact
solution z of (2.1) at the points t0, . . . , tn. If we neglect the second term on the right-hand side
of (2.4), then we get the classical deterministic Taylor scheme. Note that for r = 0 we obtain
the definition of a randomized two-stage Runge-Kutta scheme given in [1, 14]. A stability
analysis for this algorithm was performed in [1].
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2.2. Probabilistic stability of randomized Taylor schemes. Let us consider the classical
test problem

(2.6)

{
z′(t) = λz(t), t ≥ 0,

z(0) = η,

with λ ∈ C and η 6= 0. The exact solution of (2.6) is z(t) = η exp(λt). We note that

lim
t→∞

z(t) = 0 iff <(λ) < 0.

For a fixed step-size h > 0, we apply the scheme (2.4) with the mesh tk = kh, k ∈ N, to the
test problem (2.6). The local problem (2.2) takes the following form:

(2.7)

{
(urk)′(t) = λurk(t), t ∈ [tk−1, tk],

urk(tk−1) = vrk−1.

As a result, we obtain a sequence (vrk)∞k=0, which approximates the values of z at tk (k ∈ N)
and whose values are given by

(2.8) vrk = η ·
k∏
l=1

fr,λh(τl),

where τ1, τ2, . . . are independent random variables with uniform distribution on [0, 1] and

(2.9) fr,z : R 3 t 7→
r+1∑
j=0

zj

j!
+

tr+1

(r + 1)!
zr+2 ∈ C.

In fact, using (2.7) and proceeding by induction with respect to j, we get

(urk)(j)(tk−1) = λjvrk−1.

Thus, by taking t = tk and t = θk in (2.3) and (2.5), we get

prk(tk) =

r+1∑
j=0

(λh)j

j!
vrk−1,

prk(θk) =

r+1∑
j=0

(λhτk)j

j!
vrk−1,

(prk)′(θk) =

r+1∑
j=1

λj(hτk)j−1

(j − 1)!
vrk−1 = λ

r∑
j=0

(λhτk)j

j!
vrk−1.

By (2.4) and the above three lines, we obtain the following recurrence:

vrk = prk(tk) + λhprk(θk)− h(prk)′(θk) =
(r+1∑
j=0

(λh)j

j!
+ λh · (λhτk)r+1

(r + 1)!

)
· vrk−1,

which leads to (2.8).
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Similarly as in [1], we consider three sets

RrMS = {λh ∈ C : vrk → 0 in L2(Ω) as k →∞},(2.10)

RrAS = {λh ∈ C : vrk → 0 almost surely as k →∞},(2.11)

RrSP = {λh ∈ C : vrk → 0 in probability as k →∞} ,(2.12)

where we callRrMS the region of mean-square stability,RrAS the region of asymptotic stability,
andRrSP the region of stability in probability.

REMARK 2.1. If hλ ∈ RrAS , then the approximate solution of the test problem converges
to 0 for virtually every fixed value of τ1, τ2, . . . from the interval [0, 1]. That is, for almost
every ω ∈ Ω and for every ε > 0, there exists k0 = k0(ω, ε) such that |vrk(ω)| < ε for every
k ≥ k0.

The mean-square stability implies that for each pre-specfied threshold ε > 0 and each
pre-specified probability level δ ∈ (0, 1), the pointwise approximations vrk (for sufficiently
large k) are bounded by ε with probability at least 1−δ. In fact, let us assume that hλ ∈ RrMS ,
and let us set ε > 0 and δ ∈ (0, 1). Then there exists k′0 = k′0(ε, δ) ∈ Z+ such that for each
k ≥ k′0, ‖vrk‖L2(Ω) <

√
δε. By Markov’s inequality,

P
(
|vrk| ≥ ε

)
≤
‖vrk‖2L2(Ω)

ε2
< δ.

Hence, the asymptotic stability guarantees that for each specific run of the algorithm, the
approximate solution will converge to the exact solution at infinity (provided that hλ ∈ RrAS).
However, the pace of convergence may significantly vary for different values of τ1, τ2, . . .
On the other hand, the mean-square stability provides an insight on whether we can expect
consistent asymptotic behaviour in many independent runs of the algorithm.

3. Main results. For fixed r ∈ N, let

Fr : C 3 z 7→ E|fr,z(τ)|2 =

1∫
0

|fr,z(t)|2 dt(3.1)

=

1∫
0

∣∣∣r+1∑
j=0

zj

j!
+

tr+1

(r + 1)!
zr+2

∣∣∣dt ∈ [0,∞),

Gr : C 3 z 7→ E
(
ln |fr,z(τ)|

)
=

1∫
0

ln |fr,z(t)|dt ∈ R,(3.2)

where τ ∼ U([0, 1]) and fr,z is given by (2.9). From (2.8), (2.10), and (3.1) we obtain

(3.3) RrMS =
{
z ∈ C : Fr(z) < 1

}
=

z ∈ C :

1∫
0

∣∣∣r+1∑
j=0

zj

j!
+

tr+1

(r + 1)!
zr+2

∣∣∣dt < 1

 .

For a further analysis of the probabilistic regions of randomized Taylor schemes, we need
Lemmas A.1–A.4. They are formulated and proven in Appendix A.

By Lemma A.1 and Corollary 1 in [1], the regionsRrAS andRrSP are equal and can be
expressed as

(3.4) RrAS = RrSP =
{
z ∈ C : Gr(z) < 0

}
.
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Apart fromRrMS ,RrAS , andRrSP , we consider the following reference set:

(3.5) Rrref =
{
z ∈ C : η

k∏
l=1

Efr,z(τl)→ 0 as k →∞
}

=
{
z ∈ C :

∣∣∣r+2∑
j=0

zj

j!

∣∣∣ < 1
}
.

Note that the reference set Rrref is the absolute stability region for the deterministic Taylor
scheme of order r + 2. Hence, our analysis is consistent with [1], where probabilistic stability
regions of the randomized two-stage Runge-Kutta scheme (i.e., the randomized Taylor scheme
with r = 0) were benchmarked against the absolute stability region of the mid-point method
(i.e., the deterministic Taylor scheme with r = 1).

Now we are ready to establish the main results of this paper—Theorem 3.1 and Theo-
rem 3.2. They extend Theorem 3 and Theorem 4 from [1], which cover only the case of r = 0,
to the case of any r ∈ N. However, as of now we have not managed to generalize the results
from [1] related to stability intervals.

THEOREM 3.1. For each r ∈ N, the setsRrMS ,RrAS , andRrref are open and symmetric
with respect to the real axis.

Proof. The sets RrMS = F−1
r ((−∞, 1)) and RrAS = G−1

r ((−∞, 0)) are open due to
Lemma A.2 and Lemma A.4, respectively. Since the function

F̂r : C 3 z 7→
∣∣∣r+2∑
j=0

zj

j!

∣∣∣ ∈ [0,∞)

is continuous, the setRrref = F̂−1
r ((−∞, 1)) is open as well.

Note that |fr,z(t)| = |fr,z̄(t)| for all z ∈ C and t ∈ [0, 1], which implies the identities
Fr(z) = Fr(z̄) and Gr(z) = Gr(z̄) for all z ∈ C; cf. (2.9), (3.1), and (3.2). This combined
with (3.3) and (3.4) immediately gives the symmetry of RrMS and RrAS with respect to the
real axis. The same property forRrref follows from the fact that

∣∣∣r+2∑
j=0

zj

j!

∣∣∣ =
∣∣∣r+2∑
j=0

z̄j

j!

∣∣∣
for all z ∈ C.

The following Theorem 3.2 shows that mean-square stability is a stronger property than
asymptotic stability. Furthermore, probabilistic stability regions of the randomized Taylor
scheme for any r ∈ N are bounded. This implies that none of the randomized Taylor schemes
is A-stable in any of the considered probabilistic senses (i.e., the left complex half-plane is not
contained in any of the considered stability regions). However, the left half-plane is contained
in the sum over r of the stability regions.

THEOREM 3.2. For each r ∈ N, there exists γr ∈ (0,∞) such that

(3.6) RrMS ⊂ Rrref ∩RrAS ⊂ Rrref ∪RrAS ⊂ {z ∈ C : |z| < γr}.

Moreover,

(3.7) C− ⊂
∞⋃
r=0

RrMS .

Proof. The inclusionRrMS ⊂ Rrref for all r ∈ N follows from the following inequality:

Fr(z) = E
∣∣fr,z(τ)

∣∣2 ≥ ∣∣Efr,z(τ)
∣∣2 =

∣∣∣r+1∑
j=0

zj

j!
+

Eτ r+1

(r + 1)!
zr+2

∣∣∣2 =
∣∣∣r+2∑
j=0

zj

j!

∣∣∣2.
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We used the fact that E|Z|2 ≥ |EZ|2 for any complex random variable Z. Since convergence
in L2(Ω) implies convergence in probability, we have RrMS ⊂ RrSP = RrAS for all r ∈ N;
cf. (2.10), (2.12), and (3.4). As a result, we obtain the first inclusion in (3.6).

The regionRrref is bounded for each r ∈ N because∣∣∣r+2∑
j=0

zj

j!

∣∣∣ ≥ |z|r+2

(r + 2)!
−
r+1∑
j=0

|z|j

j!

and the right-hand side of the above inequality tends to infinity when |z| → ∞. Thus, there
exists γ1

r > 0 such that
∣∣∣∑r+2

j=0
zj

j!

∣∣∣ ≥ 1 for all z ∈ C with |z| ≥ γ1
r .

To show thatRrAS is bounded, let us express Gr(z) for z ∈ C \ {0} in the same fashion
as in the proof of Lemma A.4:

(3.8) Gr(z) = ln
( |z|r+2

(r + 1)!

)
+Hr(hr(z)) ≥ (r + 2) ln |z| − ln((r + 1)!) + inf

z∈C
Hr(z);

cf. (A.7), (A.8), and (A.9). Note that inf
z∈C

Hr(z) is finite because

Hr(z) ≥
1∫

0

ln
∣∣|z| − tr+1

∣∣dt ≥ 1∫
0

ln(2− tr+1) dt ≥ 0

for |z| > 2 and inf
|z|≤2

Hr(z) is finite by Lemma A.4 and the Weierstrass extreme value theorem.

The right-hand side of (3.8) tends to infinity when |z| → ∞. Hence, there exists γ2
r > 0 such

that Gr(z) ≥ 0 for all z ∈ C with |z| ≥ γ2
r . Taking γr = max{γ1

r , γ
2
r} leads to the third

inclusion in (3.6).
To see (3.7), let us consider z ∈ C such that z /∈

⋃∞
r=0RrMS . Then Fr(z) ≥ 1 for all

r ∈ N, and as a result,

(3.9) 1 ≤ lim sup
r→∞

1∫
0

∣∣fr,z(t)∣∣2 dt ≤
1∫

0

lim sup
r→∞

∣∣fr,z(t)∣∣2 dt =

1∫
0

|ez|2 dt = e2<(z).

Hence, <(z) ≥ 0 and (3.7) follows. The second inequality in (3.9) is based on Fatou’s lemma.
Note that fr,z is continuous in R, which guarantees that the function [0, 1] 3 t 7→

∣∣fr,z(t)∣∣2 ∈
[0,∞) is continuous as well and thus Borel measurable. In the third passage in (3.9) we use
the fact that lim

r→∞
fr,z(t) exists and is equal to ez for each t ∈ [0, 1].

In Figure 3.1, we plotRrref ,RrMS , andRrAS for r ∈ {0, 1, 2, 3, 4}. Based on these plots
and some calculations, we have rejected several hypotheses about potential properties of these
regions. Counterexamples are provided in Remarks 3.3–3.7.

REMARK 3.3. None of the following inclusions holds in general (for every r ∈ N):
a) Rrref ⊂ R

r+1
ref ;

b) RrMS ⊂ R
r+1
MS ;

c) RrAS ⊂ R
r+1
AS .

Let us consider za = −0.6 + 2.8 i, zb = −0.03 + 1.9 i, and zc = −0.25 + 2.75 i. The
first two of these points are represented as the intersection of the dashed lines in Figure 3.2.
We have ∣∣∣ 4∑

j=0

zja
j!

∣∣∣2 =
253 409

360 000
< 1 and

∣∣∣ 5∑
j=0

zja
j!

∣∣∣2 =
5 828 357

5 625 000
> 1.
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-4 -2 0 2

-4

-2

0

2

4

(a) Contours of Rr
ref .

-4 -2 0 2

-4

-2

0

2

4

(b) Contours of Rr
MS .

-4 -2 0 2

-2

0

2

4

(c) Contours of Rr
AS .

FIG. 3.1. Contours of reference sets, regions of mean-sqare stability, and regions of asymptotic stability of the
randomized Taylor schemes for r = 0 (red line), r = 1 (purple line), r = 2 (orange line), r = 3 (blue line), and
r = 4 (gray line).

Thus, by (3.5), za ∈ R2
ref \ R3

ref . Furthermore,

F2(zb) =
2 460 549 996 776 228 711

2 520 000 000 000 000 000
< 1,

F3(zb) =
531 703 423 127 449 318 399 669

518 400 000 000 000 000 000 000
> 1,

which means that zb ∈ R2
MS \R3

MS ; cf. (3.3). Finally, using the function scipy.integrate.quad
in Python, we obtain the following estimates:

G3(zc) ≈ −0.41731 < 0 and G4(zc) ≈ 0.06505 > 0.

Thus, by (3.4), zc ∈ R3
AS \ R4

AS .
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2.2

2.4

2.6

2.8

3.0

3.2

3.4

(a) Contours of R2
ref and R3

ref .

-0.6 -0.4 -0.2 0.0 0.2

1.4

1.6

1.8

2.0

2.2

(b) Contours of R2
MS and R3

MS .

FIG. 3.2. Fragments of contours of reference sets and regions of mean-sqare stability of the randomized Taylor
schemes for r = 2 (orange line) and r = 3 (blue line).

REMARK 3.4. In general, there is no inclusion relation betweenRrAS andRrref .
To see this, let us consider r = 0, and take z1 = −2.1, z2 = −1 + 1.6 i. Then,∣∣∣1 + z1 +

z2
1

2

∣∣∣ = 1.105 > 1 and
∣∣∣1 + z2 +

z2
2

2

∣∣∣ = 0.78 < 1.

On the other hand, we have estimated G0(z1) ≈ −0.07784 and G0(z2) ≈ 0.13565. By (3.2),
(3.4), and (3.5), we obtain z1 ∈ R0

AS \ R0
ref and z2 ∈ R0

ref \ R0
AS .

REMARK 3.5. In general, the regionsRrref ,RrMS , andRrAS are not included in C−.
This inclusion is true for r = 0 (cf. Theorem 3(ii) and Theorem 4(iii) in [1]), but it does

not hold for r = 1 as shown in the following example:

F1(0.01 + i) =
19 772 000 147 001

20 000 000 000 000
< 1,

which combined with (3.3) and (3.6) implies that 0.01 + i ∈ R1
MS ∩R1

ref ∩R1
AS ∩ C+.

REMARK 3.6. In general, the setsRrref ,RrMS , andRrAS are not convex.
Let z1 = 0.01 + i and z2 = 0.01 − i. We know that z1, z2 ∈ R1

MS ∩ R1
ref ∩ R1

AS ;
cf. Remark 3.5 and Theorem 3.1. On the other hand, (R1

MS ∪R1
ref ∪R1

AS) ∩ R ⊂ (−∞, 0)
because fr,z(t) ≥ 1 for all r ∈ N, z ∈ [0,∞), t ∈ [0, 1], and we have (3.2), (3.4), (3.5), (3.6).
Thus, z1+z2

2 = 0.01 /∈ R1
MS ∪R1

ref ∪R1
AS .

REMARK 3.7. In general, the setsRrref andRrAS are not connected.
Let us take z1 = 0.75 + 3.5 i and z2 = −0.25 + 2.5 i. We have

∣∣∣ 6∑
j=0

zj1
j!

∣∣∣2 =
27 473 196 877 335 817 540 321

121 029 087 867 608 368 152 576
< 1,

∣∣∣ 6∑
j=0

zj2
j!

∣∣∣2 =
48 715 333 577 673 689 545 536 241

75 643 179 917 255 230 095 360 000
< 1
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but

∣∣∣ 6∑
j=0

(
z1+z2

2

)j
j!

∣∣∣2 =
9 427 129 581 150 440 422 815 049

3 025 727 196 690 209 203 814 400
> 1.

Thus, z3, z4 ∈ R4
ref but z3+z4

2 /∈ R4
ref (cf. (3.5)), which means that the set R4

ref is discon-
nected.

For z3 = −0.5 + 2 i and z4 = 0.25 + 3.25 i, we get

G4(z3) ≈ −0.50028 < 0, G4(z4) ≈ −0.47024 < 0, and

G4

(z3 + z4

2

)
≈ 0.03656 > 0,

which implies that z3, z4 ∈ R4
AS but z3+z4

2 /∈ R4
AS ; see (3.4). Hence, the set R4

AS is
disconnected.

In general, disconnectivity of the stability region would indicate that the method’s be-
haviour for stiff problems is in a sense unpredictable—taking smaller h would not necessarily
improve the method’s performance. However, disconnected parts of the reference and asymp-
totic stability regions are observed in the right complex half-plane, which is out of interest in
the context of A-stability. We conjecture that the intersection of each of the aforementioned
stability regions with the left half-plane is connected.

4. Conclusions. We have established fundamental properties of probabilistic stability
regions for randomized Taylor schemes. In particular, we have shown that notions of asymp-
totic stability and stability in probability are equivalent for this family of schemes; cf. (3.4).
Furthermore, we have proven openness and symmetry of all considered stability regions (see
Theorem 3.1), as well as their boundedness; cf. (3.6) in Theorem 3.2.

Although randomized Taylor schemes are not A-stable for any r ∈ N and in any proba-
bilistic sense, the union of (asymptotic or mean-square) stability regions over all r ∈ N covers
the entire left complex half-plane; see (3.7) in Theorem 3.2. Hence, if the right-hand side
function f is sufficiently regular (in the most optimistic scenario, analytical), then one may
increase r in order to prevent rapid variation in the approximate solution of a stiff problem.
Otherwise, applicability of the methods studied in this paper is in practice limited to non-stiff
problems.

Finally, we have ruled out a number of hypotheses concerning the potential properties of
stability regions for randomized Taylor schemes, including their monotonicity (with respect
to r), and some other potential inclusions, convexity, and connectivity; cf. Remarks 3.3–3.7.
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Appendix A. Auxiliary lemmas.
In this section, we prove technical lemmas which are necessary to establish equality (3.4),

Theorem 3.1, and Theorem 3.2.
LEMMA A.1. For each z ∈ C and each r ∈ N, the random variable ln |fr,z(τ)| is

square-integrable.
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Proof. We will show more, i.e.,

(A.1)

1∫
0

ln2
∣∣z1t

k + z2

∣∣2 dt <∞

for all k ∈ Z+ and z1, z2 ∈ C such that (z1, z2) 6= (0, 0). Since the case z1 = 0 is trivial, in
the following we consider any z1, z2 ∈ C such that z1 6= 0. If− z2z1 /∈ [0, 1], then z1t

k+z2 6= 0
for all t ∈ [0, 1], and (A.1) follows because the integrand is a continuous function of t on the
interval [0, 1]. From this point we assume that α = − z2z1 ∈ [0, 1]. Then,

1∫
0

ln2
∣∣z1t

k + z2

∣∣dt =

1∫
0

(
ln |z1|+ ln

∣∣tk − α∣∣)2

dt.

If α = 0, then both integrals

1∫
0

ln
∣∣tk − α∣∣dt = k

1∫
0

ln tdt and

1∫
0

(
ln
∣∣tk − α∣∣)2 dt = k2

1∫
0

(ln t)2 dt

are finite. In case of α ∈ (0, 1], there exists β ∈ (0, 1] such that α = βk, and we can write

1∫
0

ln
∣∣tk − α∣∣dt =

1∫
0

ln |t− β|dt+

1∫
0

ln
(
βk−1 +

k−2∑
j=0

tk−1−jβj
)

dt.

The first integral above has one singularity, but it is a well-known fact that it is finite. For the
second one, we note that the integrand is a continuous function for t ∈ [0, 1]. Furthermore,
since (a+ b)2 ≤ 2a2 + 2b2 for any real numbers a, b, we obtain

1∫
0

(
ln
∣∣tk − α∣∣)2 dt ≤ 2

1∫
0

(
ln |t− β|

)2
dt+ 2

1∫
0

[
ln
(
βk−1 +

k−2∑
j=0

tk−1−jβj
)]2

dt,

and we may use similar arguments as before to justify that the above integrals are finite.
LEMMA A.2. For each r ∈ N, the function Fr is continuous in C.
Proof. Let us fix r ∈ N and consider any z, h ∈ C. Then

∣∣Fr(z + h)− Fr(z)
∣∣ ≤ E

∣∣∣|fr,z+h(τ)|2 − |fr,z(τ)|2
∣∣∣

≤ E
(
|fr,z+h(τ)− fr,z(τ)|·

(
|fr,z+h(τ)|+ |fr,z(τ)|

))
.(A.2)

We note that

|fr,z+h(τ)| ≤
r+1∑
j=0

|z + h|j

j!
+
|z + h|r+2

(r + 1)!
≤

r+1∑
j=0

(|z|+ |h|)j

j!
+

(|z|+ |h|)r+2

(r + 1)!
=: αz(h)
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with probability 1. Inserting this bound into (A.2) yields

∣∣Fr(z + h)− Fr(z)
∣∣

≤
(
αz(h) + αz(0)

)
· E|fr,z+h(τ)− fr,z(τ)|

= |h| ·
(
αz(h) + αz(0)

)
· E
∣∣∣r+1∑
j=1

j−1∑
k=0

(z + h)j−1−kzk

j!
+ τ r+1

r+1∑
k=0

(z + h)r+1−kzk

(r + 1)!

∣∣∣
≤ |h| ·

(
αz(h) + αz(0)

)
·
(r+1∑
j=1

(|z|+ |h|)j−1

(j − 1)!
+ (r + 2) · (|z|+ |h|)r+1

(r + 1)!

)
.

The last expression tends to 0 when h→ 0, which completes the proof.

LEMMA A.3. Let k ∈ Z+ and α ∈ [0, 1]. Then for each ε > 0 there exists δ > 0 such
that for any z ∈ C with |z − α| < δ, we have

∫
Aδ

∣∣ln |tk − z|∣∣ dt < ε,

where Aδ = {t ∈ [0, 1] : |tk − α| ≤ δ}.
Proof. Let k ∈ Z+, α ∈ [0, 1], and ε > 0 be fixed. Let us take into consideration only

δ ∈ (0, 1
2 ). Then |tk − z| ≤ |tk − α|+ |z − α| < 2δ < 1 for all z ∈ C such that |z − α| < δ

and all t ∈ Aδ . As a result,

(A.3)
∫
Aδ

∣∣ln |tk − z|∣∣ dt = −
∫
Aδ

ln |tk − z|dt.

Moreover,

(A.4) 0 ≥
∫
Aδ

ln |tk − z|dt ≥
∫
Aδ

ln |tk −<(z)|dt ≥ inf
x∈R
|x−α|<δ

∫
Aδ

ln |tk − x|dt

because |tk − z| =
√
<2(tk − z) + =2(tk − z) ≥ |<(tk − z)| = |tk −<(z)|, and similarly

|α−<(z)| ≤ |α− z| < δ. For x ≤ 0 we obtain

(A.5)
∫
Aδ

ln |tk − x|dt ≥ k
∫
Aδ

ln tdt > −ε

if δ is sufficiently close to 0. Now let us consider x ∈ (0, α+ δ) and define y = k
√
x,

d(δ) =

{
0, when α− δ ≤ 0,
k
√
α− δ, when α− δ > 0.
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Then,

∫
Aδ

ln |tk − x|dt =

k√α+δ∫
d(δ)

ln |t− y|dt+

k√α+δ∫
d(δ)

ln
(k−1∑
j=0

tk−1−jyj
)

dt

≥

k√α+δ−y∫
d(δ)−y

ln |t|dt+ (k − 1)

k√α+δ∫
d(δ)

ln tdt

≥ k

1
2 ( k
√
α+δ−d(δ))∫

− 1
2 ( k
√
α+δ−d(δ))

ln |t|dt > −ε(A.6)

for δ sufficiently close to 0. In the last two lines of (A.6) we used the fact that

b∫
a

ln |t|dt ≥

b−a
2∫

− b−a2

ln |t|dt

for all a, b ∈ R such that a < b; moreover, the last integral tends to 0 when b−a
2 → 0.

By (A.3), (A.4), (A.5), and (A.6) we get the desired claim.
The following Lemma A.4 is a generalization of Proposition 1 from [1].
LEMMA A.4. For each r ∈ N, the function Gr is continuous in C.
Proof. To see that Gr is continuous in 0, let us observe that

0 < 1−
r+1∑
j=1

|z|j

j!
− |z|

r+2

(r + 1)!
≤
∣∣fr,z(t)∣∣ ≤ 1 +

r+1∑
j=1

|z|j

j!
+
|z|r+2

(r + 1)!

for |z| sufficiently close to 0 and for all t ∈ [0, 1]. Hence,

ln
(

1−
r+1∑
j=1

|z|j

j!
− |z|

r+2

(r + 1)!

)
≤ Gr(z) ≤ ln

(
1 +

r+1∑
j=1

|z|j

j!
+
|z|r+2

(r + 1)!

)
,

which implies that lim
z→0

Gr(z) = 0 = Gr(0).

Let us consider z ∈ C \ {0}. Then Gr(z) can be expressed as

(A.7) Gr(z) = ln
( |z|r+2

(r + 1)!

)
+Hr(hr(z)),

where

hr : C \ {0} 3 z 7→ −
r+1∑
j=0

(r + 1)!

j! · zr+2−j ∈ C,(A.8)

Hr : C 3 z 7→
1∫

0

ln |tr+1 − z|dt ∈ R.(A.9)

To complete the proof, it suffices to show that Hr is continuous in C.
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Firstly, let us consider a fixed z ∈ C \ [0, 1]. Let us define

δ = min
t∈[0,1]

|z − tr+1|

and take any (zn)∞n=1 ⊂ C such that zn → z, zn 6= z, and |zn − z| < δ
2 for n ∈ Z+. Then for

all t ∈ [0, 1] we have |zn − tr+1| ≥ |z − tr+1| − |zn − z| > δ
2 . By Lagrange’s mean value

theorem and the triangle inequality, we obtain∣∣∣∣ ln |tr+1 − z| − ln |tr+1 − zn|
z − zn

∣∣∣∣ ≤ ∣∣∣∣ ln |tr+1 − z| − ln |tr+1 − zn|
|tr+1 − z| − |tr+1 − zn|

∣∣∣∣ =
1

ξ(t, n)

for some ξ(t, n) in between |tr+1− z| and |tr+1− zn|, provided that |tr+1− z| 6= |tr+1− zn|.
Since both these numbers are greater than δ

2 , we have ξ(t, n) > δ
2 , and thus

(A.10)
∣∣ln |tr+1 − z| − ln |tr+1 − zn|

∣∣ < 2

δ
· |z − zn|

for all t ∈ [0, 1]. Note that the above inequality holds also when |tr+1 − z| = |tr+1 − zn|.
From (A.10) it follows that t 7→ ln |tr+1 − zn| converges uniformly to t 7→ ln |tr+1 − z| for
t ∈ [0, 1]. Hence,

lim
n→∞

1∫
0

ln |tr+1 − zn|dt =

1∫
0

ln |tr+1 − z|dt

and continuity of Gr in each point z ∈ C \ [0, 1] is proven.
Now let us consider a fixed z ∈ [0, 1], and set ε > 0. By Lemma A.3, there exists δ > 0

such that for any ζ ∈ C with |ζ − z| < δ we have

(A.11)
∫
Aδ

∣∣ln |tr+1 − ζ|
∣∣dt < ε

3
,

whereAδ = {t ∈ [0, 1] : |tr+1−z| ≤ δ}. Let us consider any (zn)∞n=1 ⊂ C such that zn → z,
zn 6= z, and |zn− z| < δ

2 for all n ∈ Z+. For each t ∈ [0, 1] \Aδ we have |tr+1− z| > δ and
|tr+1− zn| > δ

2 , n ∈ Z+. Thus, we can prove the uniform convergence of t 7→ ln |tr+1− zn|
to t 7→ ln |tr+1 − z| for t ∈ [0, 1] \ Aδ in a similar fashion as in the case of z ∈ C \ [0, 1];
see (A.10). Hence, for sufficiently large n, we obtain

(A.12) I =
∣∣∣ ∫
[0,1]\Aδ

ln |tr+1 − zn|dt−
∫

[0,1]\Aδ

ln |tr+1 − z|dt
∣∣∣ < ε

3
.

By (A.11) and (A.12),

∣∣∣ 1∫
0

ln |tr+1−zn|dt−
1∫

0

ln |tr+1−z|dt
∣∣∣ ≤ I+

∣∣∣∫
A

ln |tr+1−zn|dt
∣∣∣+∣∣∣∫

A

ln |tr+1−z|dt
∣∣∣ < ε

for sufficiently large n. This concludes the proof.
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