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A BLOCK TOEPLITZ PRECONDITIONER FOR ALL-AT-ONCE SYSTEMS
FROM LINEAR WAVE EQUATIONS∗

SEAN HON† AND STEFANO SERRA-CAPIZZANO‡

Abstract. In this work, we propose a novel parallel-in-time preconditioner for an all-at-once system, arising
from the numerical solution of linear wave equations. Namely, our main result concerns a block tridiagonal Toeplitz
preconditioner that can be diagonalized via fast sine transforms, whose effectiveness is theoretically shown for the
nonsymmetric block Toeplitz system resulting from discretizing the concerned wave equation. Our approach is to
first transform the original linear system into a symmetric one and subsequently develop the desired preconditioning
strategy based on the spectral symbol of the modified matrix. Various Krylov subspace methods are considered.
That is, we show that the minimal polynomial of the preconditioned matrix is of low degree, which leads to fast
convergence when the generalized minimal residual method is used. To fully utilize the symmetry of the modified
matrix, we additionally construct an absolute-value preconditioner which is symmetric positive definite. Then, we
show that the eigenvalues of the preconditioned matrix are clustered around ±1, which gives a convergence guarantee
when the minimal residual method is employed. Numerical examples are given to support the effectiveness of our
preconditioner. Our block Toeplitz preconditioner provides an alternative to the existing block circulant preconditioner
proposed by McDonald, Pestana, and Wathen in [SIAM J. Sci. Comput., 40 (2018), pp. A1012–A1033], advancing
the symmetrization preconditioning theory that originated from the same work.

Key words. fast sine transforms, wave equations, Krylov subspace methods, all-at-once discretization, parallel-
in-time, block circulant preconditioners
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1. Introduction. Since [33] there has been an increasing number of works on developing
effective preconditioners for solving the all-at-once linear systems stemming from solving
evolutionary partial differential equations (PDEs) over the past few years, including [18,
19, 25] for heat equations, [6, 28, 39] for wave equations, and various other differential
equations [26, 32, 42]. Instead of solving PDEs in a sequential fashion, these parallel-in-time
(PinT) methods solve all unknowns simultaneously by constructing a monolithic linear system
which is composed of smaller systems at each time level. These preconditioning solvers
belong to the diagonalization-based all-at-once methods [13, 30]; see [14] for an overview
of the methods. Other related PinT methods include space-time multigrid [15, 21], multigrid
reduction in time [8, 10], and parareal methods [16, 27]. For a survey on the development of
PinT solvers, we refer the reader to [12] and the references therein.

In this work, we are interested in developing a preconditioning PinT method for solving
the linear wave equation

(1.1)


utt(x, t) = ∆u(x, t) + f(x, t), (x, t) ∈ Ω× (0, T ],

u = 0, (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = ψ0, ut(x, 0) = ψ1, x ∈ Ω.

There are a number of closely related all-at-once preconditioning methods proposed for (1.1),
including [6, 18, 28, 39], in which the generalized minimal residual method (GMRES) is used
and the proposed preconditioners are constructed based on circulant-type matrices. As will be
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shown, our proposed preconditioner in this work is based on discrete sine transforms (DSTs),
which is in contrast to these existing works.

As with [28], we adopt the central finite difference scheme proposed in [24] for solv-
ing (1.1) as a model problem. Given two positive integers m and n, we let h = 1

m+1 and
τ = T

n be the space and time mesh size, respectively. For k = 1, 2, . . . , n− 1, we have

u
(k+1)
m − 2u

(k)
m + u

(k−1)
m

τ2
= −Km

(
u
(k+1)
m + u

(k−1)
m

2

)
+ f (k)m ,

where Km ∈ Rm×m is the second-order discrete matrix approximating the Laplacian operator
−∆ in (1.1), u(k)

m = [u
(k)
1 , . . . , u

(k)
m ]T , and f

(k)
m = [f

(k)
1 , . . . , f

(k)
m ]T .

As in a typical all-at-once method, instead of solving the above equations for u
(k)
m

sequentially for k = 1, 2, . . . , n− 1, we have the following equivalent all-at-once mn-by-mn
(real) nonsymmetric block Toeplitz system

(1.2)
Lm
−2Im Lm
Lm −2Im Lm

. . .
. . .

. . .

Lm −2Im Lm


︸ ︷︷ ︸

=:T


u
(1)
m

u
(2)
m

u
(3)
m

...

u
(n)
m


︸ ︷︷ ︸

=:u

= τ2


f
(0)
m /2 + Ψ1/τ + Ψ0/τ

2

f
(1)
m − LmΨ0/τ

2

f
(2)
m

...

f
(n−1)
m


︸ ︷︷ ︸

=:f

,

where Lm = Im + τ2

2 Km ∈ Rm×m.
REMARK 1.1. As an alternative to the abovementioned discretization scheme, we can

adopt a simple central difference scheme for time

u
(k+1)
m − 2u

(k)
m + u

(k−1)
m

τ2
= −Kmu(k)

m + f (k)m .

In this case, we have the equivalent nonsymmetric block Toeplitz system
(1.3)
Im
L̂m Im
Im L̂m Im

. . .
. . .

. . .

Im L̂m Im




u
(1)
m

u
(2)
m

u
(3)
m

...

u
(n)
m

 = τ2


f
(0)
m /2 + Ψ1/τ + (Im/τ

2 −Km/2)Ψ0

f
(1)
m −Ψ0/τ

2

f
(2)
m

...

f
(n−1)
m

,

where L̂m = −2Im + τ2Km ∈ Rm×m. We also note that an alternative linear system of
quasi-block Toeplitz structure will result when a different discretization scheme is used;
see [6, Section 3.2].

Throughout this work, the discrete negative Laplacian matrix Km is assumed symmetric
positive definite (SPD) and sparse. Hence, Lm is SPD as well. Such assumptions are easily
satisfied when employing a finite difference method on a uniform grid. In a more general case
where the spatial domain is irregular, the identity matrix Im and Km are to be respectively
replaced by the mass matrix and stiffness matrix when a finite element method is deployed.
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A natural choice of preconditioners for (1.2) is the existing Strang-type block circulant
preconditioner proposed in [6, 18, 33] denoted by

(1.4) S =


Lm Lm −2Im
−2Im Lm Lm
Lm −2Im Lm

. . .
. . .

. . .

Lm −2Im Lm

 .

Due to its circulant character, the computation of S−1 using fast Fourier transforms can be
parallelized over n difference processors, which makes this approach advantageous in a high
performance computing (HPC) setting. However, even though such a block circulant precondi-
tioner was observed effective for well-conditioned block Toeplitz systems, its performance
for the ill-conditioned ones is often unsatisfactory as discussed in [20]; see also [7, 38] for
theoretical and computational approaches among various matrix-algebras and preconditioning
approaches. Thus, this work is motivated to develop a noncirculant preconditioner that is
based on the discrete sine transform.

An alternative to directly solving (1.2), we consider the equivalent transformed linear
system YT u = Yf , where

(1.5) YT =


Lm −2Im Lm

. .
.

. .
.

. .
.

Lm −2Im Lm
−2Im Lm
Lm

 ,

and Y = Yn ⊗ Im with Yn ∈ Rn×n being the anti-identity matrix (i.e., [Yn]j,k = 1 if and
only if j + k = n + 1 and [Yn]j,k = 0 otherwise). Clearly, the modified matrix YT is now
symmetric.

As will be explained in Section 2, the eigenvalues of YT can be precisely determined by
the matrix-valued function |g| up to a ± sign, where g = Lm − 2Ime

ix + Lme
2ix. To match

such a spectrum, we propose for YT in this work an SPD preconditioner whose eigenvalues
are also related to |g|.

Our main result is the following tridiagonal block Toeplitz preconditioner for YT :

2Im −Lm
−Lm 2Im −Lm

. . .
. . .

. . .

. . .
. . . −Lm
−Lm 2Im

 =: BlockToeplitz(−Lm, 2Im,−Lm) =: P,

which is diagonalized by the discrete sine transform associated to the standard discrete
Laplacian. A corresponding preconditioner for the symmetrized system in (1.3) would be
BlockToeplitz(−Im,−L̃m,−Im). Similar to the block-circulant preconditioner S, the com-
putation of P−1 using DSTs can also be parallelized over n processors, which is suitable in an
HPC system. We refer to [2] for an efficient implementation and [7] for a detailed analysis
accounting for the superior performance of sine transform-based preconditioners (also known
as τ -preconditioners) over the circulant ones for symmetric Toeplitz systems.

Combined with our proposed preconditioner P , we will consider various Krylov subspace
methods, including GMRES, the minimal residual method (MINRES), and the conjugate
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gradient method for the normal equations (CGNE). For GMRES, we will show that the
preconditioned matrix P−1YT has a low-degree minimal polynomial, which implies fast
convergence. When CGNE is applied to the normal equation system, we also show similar
results for an associated minimal polynomial, which ensures fast convergence.

To fully exploit the symmetry of YT , we in addition apply MINRES combined with P .
However, since such a PinT preconditioner P is not in itself readily SPD, one can construct
its so-called “absolute-value” counterpart |P| =

√
P2, which is not only symmetric but also

positive definite. We will then prove that a convergence guarantee can be obtained by showing
that the preconditioned matrix sequence

{
|P|−1YT

}
n

has clustered eigenvalues around ±1.
Recently, a τ -preconditioner P̂ was proposed in our earlier work [19] which was par-

ticularly used for heat equations. While also being a τ -preconditioner, our proposed P in
this work is different in several aspects: First, P is specifically designed for the all-at-once
system (1.2) arising from solving the concerned wave equation, while P̂ is more general, and
it can be used for other equations. Second, P can be used with GMRES while P̂ is designed
mainly for MINRES. Third, unlike P̂ , the construction of P does not involve the use of the
matrix square root. For more about this line of MINRES-approach for heat equations, we refer
to [19, 32, 33].

The current paper is organized as follows. In Section 2, we review some preliminary
results on block Toeplitz matrices. The main results on our proposed preconditioning methods
and their convergence properties are provided in Section 3. Numerical examples are given in
Section 4 to support the proposed preconditioners.

2. Preliminaries on block Toeplitz matrices. In this section, we provide some useful
background knowledge regarding block Toeplitz matrices.

We let L1([−π, π],Cm×m) be the Banach space of all matrix-valued functions that are
Lebesgue integrable over [−π, π]. The L1-norm induced by the trace norm over Cm×m is

‖f‖L1 =
1

2π

∫ π

−π
‖f(x)‖tr dx <∞,

where ‖An‖tr :=
∑n
j=1 σj(An) denotes the trace norm of An ∈ Cn×n. The block Toeplitz

matrix generated by f ∈ L1([−π, π],Cm×m) is denoted by T(n,m)[f ], namely

T(n,m) =


A(0) A(−1) · · · A(−n+1)

A(1)

. . .
. . .

...
...

. . .
. . . A(−1)

A(n−1) · · · A(1) A(0)

 ∈ Cmn×mn,

where the Fourier coefficients of f are

A(k) =
1

2π

∫ π

−π
f(x)e−ikx dx ∈ Cm×m, k = 0,±1,±2, . . .

The function f is called the generating function of T(n,m)[f ]. If f is Hermitian, T(n,m)[f ]
is Hermitian by [36, Lemma 2.1]; in that case f is also the spectral symbol of the sequence
{T(n,m)[f ]}n in the sense of Theorem 2.1, that is, {T(n,m)[f ]}n ∼λ f .

For thorough discussions on the related properties of block Toeplitz matrices, we refer
readers to [4, 5, 17, 22, 34] and the references therein. Before discussing the asymptotic
spectral distribution of YT(n,m)[f ] associated with f , it is crucial to our preconditioning theory
development that we introduce the following notation:
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Given D ⊂ Rk with Lebesgue measure 0 < µk(D) < ∞, we define D̃p as D
⋃
Dp,

where p ∈ Rk and Dp = p + D, with the constraint that D and Dp have non-intersecting
interior part, i.e., D◦

⋂
D◦p = ∅. In this way, we have µk(D̃p) = 2µk(D). Given any g

defined over D, we define ψg over D̃p in the following fashion:

(2.1) ψg(x) =

{
g(x), x ∈ D,
−g(x− p), x ∈ Dp, x /∈ D.

THEOREM 2.1 ([11, Theorem 3.4], [40]). Suppose that f ∈ L1([−π, π],Cm×m) with
Hermitian Fourier coefficients. Let T(n,m)[f ] ∈ Cmn×mn be the block Toeplitz matrix
generated by f , and let Y = Yn ⊗ Im ∈ Rmn×mn. Then,

{T(n,m)[f ]}n, {YT(n,m)[f ]}n ∼σ f,(2.2)

{YT(n,m)[f ]}n ∼λ ψ|f |, |f | = (ff∗)1/2,(2.3)

over the domain D̃ with D = [0, 2π] and p = −2π, where ψ|f | is defined in (2.1). More
precisely, we have σj(YT(n,m)[f ]) = σj(T(n,m)[f ]), j = 1, 2, . . . , 2mn, and

lim
n→∞

1

mn

mn∑
j=1

F (σj(YT(n,m)[f ])) =
1

2π

∫ π

−π

1

m

m∑
j=1

F (σj(f(x))) dx,(2.4)

lim
n→∞

1

mn

mn∑
j=1

F (λj(YT(n,m)[f ])) =
1

2π

∫ π

−π

1

m

m∑
j=1

F (λj(ψ|f |(x))) dx,(2.5)

where λj(ψ|f |(x)), j = 1, 2, . . . ,m, are the eigenvalue functions of ψ|f |, σj(f) are the
singular values of f , j = 1, 2, . . . ,m, and (2.4) is equivalent to (2.2), since σj(YT(n,m)[f ]) =
σj(T(n,m)[f ]), j = 1, 2, . . . , 2mn, while (2.5) is equivalent to (2.3).

For the symmetrized matrix YT given in (1.5), we can see by Theorem 2.1 and also a
similar result in [31] that its eigenvalues are distributed as ±|g|, where

(2.6) g(x) = Lm − 2Ime
ix + Lme

2ix,

according to the definition in (2.1). Hence, YT is symmetric indefinite when n is sufficiently
large, which justifies the use of MINRES.

3. Main results. In this section, we provide the main results on our proposed PinT
preconditioner P defined by (1.6). The design of such a preconditioner is based on the
following matrix-valued spectral symbol

h = 2(Im − Lm cosx) = 2Im − Lme−ix − Lmeix,

where |h| = |g| with g given in (2.6). Knowing P = T(n,m)[h], we can readily see that it is a
good preconditioner for YT since they share the same absolute-value spectral distribution.

In what follows, we will discuss three Krylov subspace solvers, including GMRES,
MINRES, and CGNE, combined with our proposed preconditioner. Related issues such as
implementations and convergence analysis for each method are critically discussed.

3.1. GMRES for P−1YT . In this section, we first consider a GMRES solver using
our proposed preconditioner P . We will discuss the implementations of P and show that the
preconditioned matrix P−1YT has a minimal polynomial of degree independent of the time
step n.
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3.1.1. Implementations. We begin by discussing the computation of YT v for any
given vector v. Since T is a sparse matrix (due to Km being sparse), computing the matrix-
vector product T v only requires a linear complexity of O(mn). As the action of Y is a
simple reordering of entries which poses virtually no work, computing YT v needs the same
complexity. Alternatively, due to the fact that T itself is a block Toeplitz matrix, it is well-
known that YT v can be computed in O(mn log n) operations using fast Fourier transforms,
and the required storage is of O(mn).

We provide here one way to efficiently invert P . From (1.6), we can rewrite P as follows:

P = Pn ⊗ (Lm) + 2In ⊗ Im
= (Sn ⊗ Im)

(
Λn ⊗ Lm + 2In ⊗ Im

)
(Sn ⊗ Im),

where

Pn =



0 −1
−1 0 −1

. . .
. . .

. . .

. . .
. . . −1
−1 0

 ∈ Rn×n

is a tridiagonal matrix which has the eigendecomposition Pn = SnΛnSn with

(Λn)j,j = −2 cos
(
jπ
n+1

)
and Sn =

√
2

n+1

[
sin ( ijπn+1 )

]n
i,j=1

∈ Rn×n being the discrete

sine matrix.
In each iteration of GMRES, it is required to compute P−1y for a given vector y. The

product can be implemented via the following three steps:

Step 1: Compute ỹ = (Sn ⊗ Im)y;
Step 2: Solve z̃(k) = (λ

(k)
n Lm + 2Im)−1ỹ(k) for z̃, k = 1, 2, . . . , n,

where Λn = diag
(
λ
(1)
n , λ

(2)
n , · · · , λ(n)n

)
and ỹ = [ỹ(1); ỹ(2); · · · ; ỹ(n)];

Step 3: Compute z = (Sn ⊗ Im)z̃, where z̃ = [z̃(1); z̃(2); · · · ; z̃(n)].

Both Steps 1 and 3 can be computed efficiently via DSTs in O(mn log n) operations. As for
Step 2, the shifted Laplacian systems can be efficiently solved for example using the multigrid
methods [9, 29]. For instance, when a usual finite difference scheme with uniform grids is
used, the matrix Lm is diagonalizable by a discrete sine matrix. Each system can be solved
efficiently by using DSTs in O(m logm) operations, which results in a total of O(nm logm)
operations and O(nm) storage.

3.1.2. Eigenvalue analysis. For P−1YT , we provide the following theorem:
THEOREM 3.1. Let YT ,P ∈ Rmn×mn be defined by (1.5) and (1.6), respectively. Then,

the minimal polynomial of the preconditioned matrix P−1YT is of at most degree m+ 2.
Proof. We first give a decomposition ofM = P−1YT . After direct computations, we

have

M =


−Im Om

. .
.

. .
.

−Im . .
.

Om



http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

A BLOCK TOEPLITZ PRECONDITIONER FOR WAVE EQUATIONS 183

+


[P−1]1,1 [P−1]T1,2 · · · [P−1]T1,n
[P−1]1,2 [P−1]2,2 · · · [P−1]T2,n

...
...

...
[P−1]1,n [P−1]2,n · · · [P−1]n,n


︸ ︷︷ ︸

=P−1


Om · · · Om Lm
... Om
...

...
Om · · · · · · Om



=


−Im [P−1]1,1Lm

. .
. ...

−Im [P−1]1,n−1Lm
[P−1]1,nLm


=

[
B G

[P−1]1,nLm

]
,

where

B = −Yn−1 ⊗ Im ∈ Rm(n−1)×m(n−1) and

G =
[
[P−1]1,1Lm, · · · , [P−1]1,n−1Lm

]T ∈ Rm(n−1)×m,

with Yn−1 being the anti-identity of size n−1. Given the block upper-triangular structure of the
preconditioned matrixM, its eigenvalues consist of those of B and of those of [P−1]1,nLm.
In addition, the eigenvalues of B = −Yn−1 ⊗ Im are given by λ = 1 with multiplicity of
mbn−12 c and λ = −1 with multiplicity of mdn−12 e, owing to the tensor structure of B and to
the explicit computation of the eigenvalues of Yn−1.

As an intermediate step, λ = 1 is an eigenvalue ofM with algebraic multiplicity at least
mbn−12 c, and λ = −1 is an eigenvalue ofM with algebraic multiplicity at least mdn−12 e. We
remark that “at least” refers to the fact that the remaining m eigenvalues ofM, that is, those
of [P−1]1,nLm, may contain again either 1 or −1.

However, the study of the degree of the minimal polynomial requires the analysis of the
geometric multiplicity of the resulting eigenvalues. We consider this matter in detail. Indeed,
the matrix B is symmetric and hence diagonalizable so that it has the eigenvalue λ = 1 with
geometric multiplicity mbn−12 c and the eigenvalue λ = −1 with geometric multiplicity of
mdn−12 e. Now, observe that

M
[
v
0

]
︸︷︷︸
=:w

=

[
Bv
0

]
︸ ︷︷ ︸
=:z

,

where w, z ∈ Rmn and v ∈ Rm(n−1). Clearly, if v is an eigenvector of B, i.e., Bv = λv
with λ = ±1, we have z = λw andMw = λw. Thus, we have shown that λ = 1 is an
eigenvalue ofM with geometric multiplicity at least mbn−12 c and λ = −1 is an eigenvalue
ofM with geometric multiplicity at least mdn−12 e. Again the wording “at least” refers to the
fact that the remaining m eigenvalues ofM may contain again either 1 or −1.

Let Q ∈ Rm(n−1)×m(n−1) be an orthogonal matrix such that B = QDQT , where

D =

[
Iq
−Ik

]
∈ Rm(n−1)×m(n−1),
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with q = mbn−12 c and k = mdn−12 e. By an orthogonal transformation, we know thatM is
similar to the matrixM(1) which is defined as

M(1) =

[
QT

Im

]
M
[
Q

Im

]
=

[
D QTG

[P−1]1,nLm

]
=

Iq Xm

−Ik
...

[P−1]1,nLm

 ,
(3.1)

where Xm is some m×m matrix. Hence, bothM(1) andM share the same eigenvalues with
the same geometric multiplicity, with the remaining m eigenvalues ofM determined by the
block [P−1]1,nLm.

As a consequence, the minimal polynomial qM(t) ofM consists of at least two distinct
linear factors, namely qM(t) = (t− 1)(t+ 1)p(t), where p(t) has degree at most equal to m.
In other words, qM(t) has at most degree m+ 2, and this concludes the proof.

Theorem 3.1 immediately leads to the following corollary:
COROLLARY 3.2. The GMRES method for YT with P as the preconditioner converges

in at most m+ 2 iterations in exact arithmetic.
REMARK 3.3. In general, as mentioned in [41, Chapter 6], the convergence study of pre-

conditioning strategies for nonsymmetric problems is heuristic since descriptive convergence
bounds for GMRES or any of the other applicable nonsymmetric Krylov subspace iterative
methods do not presently exist. The result with P in Corollary 3.2 is a non-trivial example
whose convergence property associated with GMRES is precisely known.

Before considering the convergence analysis in a MINRES-setting in Section 3.2, we
give additional results for the eigenvector-eigenvalue structure of the preconditioned matrix
considered in Theorem 3.1 in the subsequent Section 3.1.3.

3.1.3. Eigenstructure. More can be inferred from our proof of Theorem 3.1 on the
diagonalizability ofM, which depends on the block [P−1]1,nLm =: Zm. Notice that Zm can
be shown to be symmetric according to the discussion in [23, Section 2].

There are the following two scenarios:
(a) if Zm does not have ±1 as its eigenvalues, thenM is diagonalizable;
(b) if Zm has ±1 as its eigenvalues, thenM may be non-diagonalizable in general.

We first consider the case (a): let α be an eigenvalue of Zm with algebraic multiplicity mα.
Since Zm is symmetric, we have rank(Zm − αIm) = m −mα. Therefore, from (3.1), we
have

rank(M(1) − αImn) = k + q + rank(Zm − αIm) = k + q +m︸ ︷︷ ︸
=nm

−mα,

since α 6= ±1. Hence, the geometric multiplicity dim(M(1)) − rank(M(1) − αImn) is
actually the algebraic multiplicity. SoM(1) (and henceM) is diagonalizable. The proof for
this case is finished.

We now show the case (b): let α = 1 be an eigenvalue of Zm with algebraic multiplicity
mα with respect to Zm and algebraic multiplicity q + mα with respect to M(1). Now, if
G̃ = QTG in (3.1) has full rank and there is a square minor of rank = dim(Zm) with rows
all having index less or equal to q, then

rank(M(1) − Imn) = k + dim(Zm).

Whence the geometric multiplicity with respect toM(1) is
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dim(M(1))− rank(M(1) − Imn) = k + q + dim(Zm)− (k + dim(Zm)) = q < q +mα,

and consequentlyM(1) (and henceM) is not diagonalizable.
More generally, if there is a square minor G̃ = QTG of rank = v < dim(Zm) with

mα > dim(Zm)− v and having rows with index or equal to q, then

rank(M(1) − Imn) = k + v.

Under the previous assumptions the geometric multiplicity with respect toM(1) is

dim(M(1))− rank(M(1) − Imn) = k + q + dim(Zm)− (k + v)

= q + dim(Zm)− v < q +mα.

Thus, M(1) (and hence M) is not diagonalizable. Finally, the same can be shown when
α = −1 using similar arguments, and the analysis of this case is also concluded.

However, we haveM = P−1YT with P symmetric positive definite and YT symmetric
and indefinite, so thatM is similar to P−1/2YT P−1/2 which is symmetric indefinite with the
same inertia as YT . Hence by the spectral theorem, P−1/2YT P−1/2 is diagonalizable, and
consequentlyM is diagonalizable too, showing that the two strict inequalities in the analysis
of the case (b) never hold.

3.2. MINRES for |P|−1YT . In this section, we provide a MINRES-approach for
YT u = Yf . Although P is symmetric, it is indefinite in general. Therefore, we propose here
the use of the absolute-value matrix |P| =

√
P2 as a SPD preconditioner to be used with

MINRES.
The matrix-vector product |P|−1u for any vector u can be computed efficiently by simply

replacing the eigenvalues in Step 2 of the three-step procedures given in Section 3.1.1 by their
absolute value. Before giving the main result for |P|, we first provide the following theorem
on matrix functions which will be useful for showing our preconditioning theory.

Let F be analytic on a simply-connected open region of the complex plane containing
the interval [−1, 1]. Then, there exist an ellipse with foci in −1 and 1 such that F is analytic
in their interiors. Let rα > 1 and rβ > 0 be the half axes of such an ellipse, denoted by EX ,
with

√
rα2 − rβ2 = 1. The ellipse EX is completely specified by the number X := rα + rβ .

THEOREM 3.4 (Bernstein’s theorem [1, Theorem 2.1]). Let the function F be analytic in
the interior of the ellipse EX with X > 1 and continuous on EX . In addition, suppose F (x)
is real for real x. Then, the best approximation error

Ek(F ) := inf{‖E − p‖∞ : deg(p) ≤ k} ≤ 2M(X )

X k(X − 1)
,

where deg(p) denotes the degree of the polynomial p(x) and

‖F − p‖∞ = max
−1≤x≤1

|F (x)− p(x)|, M(X ) = max
x∈EX

{|F (x)|}.

Let An be an n × n symmetric matrix, and let [λmin, λmax] be the smallest interval
containing σ(An). If we introduce the linear affine function

ψ(λ) =
2λ− (λmin + λmax)

λmax − λmin
,

then ψ([λmin, λmax]) = [−1, 1], and hence the spectrum of the symmetric matrix

ψ(An) =
2

λmax − λmin
An −

λmin + λmax

λmax − λmin
In
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is contained in [−1, 1]. Provided that a function f analytic on a simply connected region
containing [λmin, λmax] and that f(λ) is real when λ is real, the function F = f ◦ψ−1 satisfies
the assumptions of Bernstein’s theorem.

In the special case when An is SPD and f(x) = x−1/2 that we consider in this work, we
apply Bernstein’s theorem to the function

(3.2) F (x) =
1√

(b−a)
2 x+ a+b

2

,

where a = λmin(An), b = λmax(An), and 1 < X <
√
κ+1√
κ−1 with the spectral condition

number of An being κ = b/a.

The following proposition indicates that an ideal preconditioner for YT is the SPD
preconditioner

√
T TT :

PROPOSITION 3.5. Let T ∈ Rmn×mn be defined by (1.2). Then (
√
T TT )−1YT has

only ±1 as eigenvalues.

Proof. Considering the eigendecomposition of the symmetric matrix YT , which is
YT = QT0 Λ0Q0, we have

(
√
T TT )−1YT = (

√
(YT )TYT )−1YT = (

√
(YT )2)−1YT

= QT0 (Λ2
0)−1/2Q0QT0 Λ0Q0 = QT0 Λ̃0Q0,

where Λ̃0 is a diagonal matrix whose entires are either 1 or −1. Thus, (
√
T TT )−1YT is both

symmetric and orthogonal, and hence it has only ±1 as eigenvalues.

In other words, Proposition 3.5 governs the design of an effective preconditioner for YT .
In what follows, we will show that |P | approximates the ideal preconditioner

√
T TT in the

sense that their difference can be decomposed into a sum of a low-rank matrix and a small
norm matrix.

Now, we turn our focus on the following lemma and proposition, which will be used to
show our main result.

LEMMA 3.6. Let T ,P ∈ Rmn×mn be defined in (1.2) and (1.6), respectively. Then,

rank
(

(T TT )K − (P2)K
)
≤ 4Km,

for any positive integer K provided that n > 4Km.

Proof. Direct computations give

T TT − P2 =


L2
m

−L2
m 2Lm

2Lm −4Im

 .
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Exploiting such a simple structure of T TT − P2, we can further show the following result by
using a computational lemma given in [35, Lemma 3.11]

(T TT )nα(T TT − P2)(P2)nβ =



∗ · · · ∗
...

...
∗ · · · ∗

∗ · · · ∗
...

...
∗ · · · ∗


for integer values nα and nβ , where ∗ represents a nonzero entry. Namely, the matrix
(T TT )nα(T TT − P2)(P2)nβ is a block matrix with two blocks in its Northwest and South-
east corners, respectively, and each block is of size (nα + 1)2m× (nβ + 1)2m. Thus,

(T TT )K − (P2)K =

K−1∑
i=0

(T TT )K−i−1
(
T TT − P2

)
(P2)i

is also a block matrix with four blocks in its four corners, and each of them is of size
2Km× 2Km, provided that n > 4Km. Hence, we have rank

(
(T TT )K− (P2)K

)
≤ 4Km.

PROPOSITION 3.7. Let T ,P ∈ Rmn×mn be defined in (1.2) and (1.6), respectively. Then,
for any ε > 0 there exists an integer K such that for all n > 4Km

(
√
T TT )−1 − |P|−1 = E0 +R0,

where ‖E0‖2 ≤ ε and rank(R0) ≤ 4Km. Furthermore, when n ≤ 4Km, the statement is
true with E0 ≡ 0.

Proof. Let f(x) = x−1/2 and F (x) be defined in (3.2). By Theorem 3.4, there exists a
polynomial pK with degree less than or equal to K such that∥∥∥(

√
T TT )−1 − pK(T TT )

∥∥∥
2

=
∥∥∥(T TT )−1/2 − pK(T TT )

∥∥∥
2

= max
x∈σ(T T T )

|F (x)− pK(x)|

≤ ‖F − pK(x)‖∞ ≤
2M(XT T T )

XT T T − 1
· 1

XKT T T
,

and ∥∥|P|−1 − pK(P2)
∥∥
2

=
∥∥∥(P2)−1/2 − pK(P2)

∥∥∥
2

= max
x∈σ(P2)

|F (x)− pK(x)|

≤ ‖F − pK(x)‖∞ ≤
2M(XP2)

XP2 − 1
· 1

XKP2

,

where

1 < XT T T <
√
κT T T + 1
√
κT T T − 1

, 1 < XP2 <

√
κP2 + 1
√
κP2 − 1

,

and κT T T and κP2 are the condition numbers of T TT and P2, respectively. Thus, for any
ε > 0 there exists an integer K such that

‖(
√
T TT )−1 − pK(T TT )‖2 ≤ ε and ‖|P|−1 − pK(P2)‖2 ≤ ε.
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Also, we have

pK(T TT )− pK(P2) =

K∑
i=0

ai
(
(T TT )i − (P2)i

)
︸ ︷︷ ︸

=:R0

.

By Lemma 3.6, we know thatR0 has the same sparsity structure as that of (T TT )K − (P2)K .
Consequently, we deduce that rank(R0) ≤ 4Km.

We then obtain

(
√
T TT )−1 − |P|−1

= (
√
T TT )−1 − pK(T TT ) + pK(P2)− |P|−1︸ ︷︷ ︸

=:E0

+ pK(T TT )− pK(P2)︸ ︷︷ ︸
=R0

,

where ‖E0‖2 ≤ 2ε and rank(R0) ≤ 4Km. Therefore, the proof is concluded.
At last, we are ready to provide the following theorem which guarantees the effectiveness

of |P|.
THEOREM 3.8. Let YT ,P ∈ Rmn×mn be defined by (1.5) and (1.6), respectively. Then,

for any ε > 0 there exists an integer K such that for all n > 4Km

|P|−1YT = Q+ E +R,

where Q is both symmetric and orthogonal, ‖E‖2 ≤ ε, and rank(R) ≤ 4Km.
Proof. By Proposition 3.7, we have

|P|−1YT =
(

(
√
T TT )−1 − E0 −R0

)
YT

= (
√
T TT )−1YT︸ ︷︷ ︸

=:Q

+ (−E0YT )︸ ︷︷ ︸
=:E

+ (−R0YT )︸ ︷︷ ︸
=:R

,

where Q is both symmetric and orthogonal by Proposition 3.5,

rank(R) ≤ rank(R0YT ) ≤ 4Km and ‖E‖2 = ‖ − E0YT ‖2 ≤ ‖YT ‖2ε.

Lastly, we have that

‖YT ‖2 = ‖T ‖2 ≤ ‖g‖∞

by using the general inequality in [37, Corollary 4.2] where the Schatten norm with p =∞ is
equivalent to the spectral norm ‖ · ‖2. Hence, ‖YT ‖2 is uniformly bounded with respect to n,
and the proof is concluded.

As a consequence of Theorem 3.8 and [3, Corollary 3], we know that for large enough n,
the preconditioned matrix sequence {|P|−1YT }n has clustered eigenvalues around ±1, with
a number of outliers independent of n. Hence, the convergence is independent of the time step,
and we can expect that MINRES for YT will converge rapidly in exact arithmetic with |P| as
the preconditioner.

3.3. CGNE for P−1T . For a complete analysis, we consider in this section a CGNE
method, even though we do not mainly use normal equations in the numerical examples
provided in Section 4.
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It is worth noticing that

(P−1YT )TP−1YT = T TYP−2YT = T TP−2T = (P−1T )TP−1T .

Hence, the above considered normal equation systems are equivalent, and it suffices to only
consider the eigenvalues of (P−1T )TP−1T .

The following result guarantees a convergence rate which is independent of the time-steps.
THEOREM 3.9. Let T ,P ∈ Rmn×mn be defined by (1.2) and (1.6), respectively. Then,

the minimal polynomial of the preconditioned matrix (P−1T )TP−1T is of at most degree
2m+ 1.

Proof.
We first letM = (P−1T )TP−1T and compute

M =


Im −[P−1]1,n−1Lm

. . .
...

Im [−P−1]1,1Lm
−([P−1]1,n−1Lm)T · · · −([P−1]1,1Lm)T ([P−1]1,nLm)T ([P−1]1,nLm)

 .
Similar to proving Theorem 3.9, it can be shown that λ = 1 has geometric multiplicity of

m(n− 2). Thus, the minimal polynomial qM(t) ofM consists of one distinct linear factor of
order 1, namely qM(t) = (t− 1)p(t), where p(t) has degree of at most 2m. In other words,
qM(t) has at most degree 2m+ 1.

COROLLARY 3.10. The CGNE method for T with P as the preconditioner converges in
at most 2m+ 1 iterations in exact arithmetic.

4. Numerical examples. In this section, we demonstrate the effectiveness of our pro-
posed solvers. All numerical experiments are carried out using MATLAB on a HP EliteDesk
800 G5 Small Form Factor PC with Intel Core i7-9700 CPU @ 3.00GHz with 16GB RAM.
The CPU time in seconds is measured using the built-in function tic/toc. All Krylov
subspace solvers are implemented using the build-in functions in MATLAB. Furthermore,
we choose a zero initial guess and a stopping tolerance of 10−6 based on the reduction in the
relative residual norms unless indicated otherwise.

Throughout all examples, we consider finite difference methods with uniform spatial
grids, which results in Km being diagonalized by the discrete sine transform. Notice that
in the tables below “DoF” denotes the degree of freedom, and the existing block circulant
preconditioner S (or its SPD counterpart |S| :=

√
STS) denoted by (1.4) is compared. Also,

left-preconditioned GMRES is used for all tests. When S is used with GMRES, we indicate
that the concerned preconditioned matrix is S−1T , i.e., Y is not applied to the original matrix
T . That is in contrast with the use of P ; the preconditioned matrix is P−1YT when P is used
with GMRES. As for the absolute-value preconditioner, the concerned matrix is |P|−1YT
(or |S|−1YT ) when |P| (or |S|) is used with MINRES. The discretization scheme provided
in (1.2) and the simple central difference scheme in (1.3) are denoted by Schemes I and II,
respectively.

EXAMPLE 4.1. The first example is [6, Section 3.1.2]. We illustrate our proposed solvers
by considering (1.1) in the unilevel case, which corresponds to the following linear ordinary
differential equation: 

utt = au+ f, t ∈ (0, T ],

u(0) = ψ0,

ut(0) = ψ1.
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where f , ψ0, and ψ1 are given functions. Since the block size is m = 1 for this example, the
matrix in (1.5) reduces to the symmetric Toeplitz matrix

YT =


1− a τ

2

2 −2 1− a τ
2

2

. .
.

. .
.

. .
.

1− a τ
2

2 −2 1− a τ
2

2

−2 1− a τ
2

2

1− a τ
2

2

 ,

and our proposed preconditioner is

P =



2 −(1− a τ
2

2 )

−(1− a τ
2

2 ) 2 −(1− a τ
2

2 )
. . .

. . .
. . .

. . .
. . . −(1− a τ

2

2 )

−(1− a τ
2

2 ) 2


.

Table 4.1 displays the iteration numbers for solving YT with T = 103, a = −1, f = 0,
ψ0 = 1, and ψ1 = −1. When GMRES is applied, we observe that our proposed precondi-
tioner P is comparable with the existing preconditioner S. When CGNE is used, our main
preconditioner P requires fewer iterations compared with S . Also, the iteration numbers agree
excellently with our theorems.

Notice that the CPU times are not reported for this example since they are too small to
display any significant difference for comparison.

TABLE 4.1
Iteration numbers with GMRES and CGNE for Example 4.1.

GMRES CGNE
n S P S P

212 3 3 6 3
213 3 3 6 3
214 3 3 6 3
215 3 3 6 3

EXAMPLE 4.2. The second example is tested in [18]. This is a one-dimensional problem
with Ω = (0, 1) and ψ0(x) = χ[3/8,5/8](x) cos2 (4π(x− 1/2)), ψ1(x) = 0, and f = 0,
where χX is the indicator function on the set X.

One can observe from Table 4.2 the negative result that the GMRES iteration numbers
grow with n andmwhen Scheme I is used. We however emphasize that our new preconditioner
P does improve convergence, outmatching S by consistently requiring fewer iterations and
shorter CPU times. We report similar convergence results in Table 4.3 when Scheme II is used,
except when n = m. In those cases, we observe mesh-independent convergence with P , while
S fails to be working due to being nearly singular.
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TABLE 4.2
Convergence results with GMRES for Example 4.2 (Scheme I).

GMRES S P
n m+ 1 DoF Iter CPU Iter CPU

28

25 7936 31 5.2 · 10−2 9 2.4 · 10−2

26 16128 47 1.6 · 10−1 22 7.5 · 10−2

27 32512 68 7.3 · 10−1 37 2.1 · 10−1

28 65280 94 2.2 · 100 53 5.7 · 10−1

29

26 32256 50 2.8 · 10−1 26 1.3 · 10−1

27 65024 67 1.2 · 100 36 3.3 · 10−1

28 130560 95 4.4 · 100 50 1.1 · 100

29 261632 128 1.4 · 101 93 5.5 · 100

210

27 130048 66 2.5 · 100 28 5.2 · 10−1

28 261120 86 8.1 · 100 46 2.0 · 100

29 523264 142 4.6 · 101 68 6.8 · 100

210 1047552 180 1.7 · 102 104 3.3 · 101

211

28 522240 91 2.2 · 101 37 3.4 · 100

29 1046528 137 1.1 · 102 45 1.2 · 101

210 2095104 190 4.0 · 102 88 5.8 · 101

211 4192256 - - 166 4.1 · 102

TABLE 4.3
Convergence results with GMRES for Example 4.2 (Scheme II).

GMRES S P
n m+ 1 DoF Iter CPU Iter CPU

28

25 7936 33 5.1 · 10−2 14 2.5 · 10−2

26 16128 43 1.2 · 10−1 22 7.2 · 10−2

27 32512 64 6.4 · 10−1 34 1.9 · 10−1

28 65280 - - 3 3.9 · 10−2

29

26 32256 45 2.4 · 10−1 23 1.0 · 10−1

27 65024 72 1.4 · 100 32 2.7 · 10−1

28 130560 99 4.6 · 100 52 1.2 · 100

29 261632 - - 3 1.4 · 10−1

210

27 130048 61 2.3 · 100 32 6.2 · 10−1

28 261120 96 9.5 · 100 39 1.8 · 100

29 523264 134 4.1 · 101 64 6.3 · 100

210 1047552 - - 4 7.9 · 10−1

211

28 522240 91 3.0 · 101 29 3.0 · 100

29 1046528 130 1.2 · 102 53 1.6 · 101

210 2095104 187 3.7 · 102 90 5.8 · 101

211 4192256 - - 4 3.9 · 100

EXAMPLE 4.3. In the third example, we consider a two-dimensional wave equation
defined in Ω = (0, 1)2 with

T = 1, u0(x, y) = sin (πx) sin (πy), u1(x, y) = 3 sin (πx) sin (πy)
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and

f(x, y, t) = 6 sin (πx) sin (πy)(t+ 1) + 2π2 sin (πx) sin (πy)(t+ 1)3.

The exact solution is u(x, y, t) = sin (πx) sin (πy)(t+ 1)3.
Table 4.4 displays the convergence results when Scheme I is used. While we observe

similar convergence behaviors with S and P (or |S| and |P|), our preconditioner leads to
faster convergence in most cases. For this example, we report that the GMRES solver appears
to be best compared with MINRES. The latter approach might have room for improvements
due to the growing iterations numbers induced. Therefore, we recommend the use of GMRES
for this example and stress that advancing the MINRES solver for wave equations is worth
further investigation, which is left for future work.

TABLE 4.4
Convergence results with GMRES and MINRES for Example 4.3 (Scheme I).

GMRES S P
n m+ 1 DoF Iter CPU Iter CPU

26

23 3136 3 2.2 · 10−2 3 1.8 · 10−2

24 14400 3 2.9 · 10−2 3 2.5 · 10−2

25 61504 3 1.0 · 10−1 3 5.9 · 10−2

26 254016 3 2.2 · 10−1 4 2.2 · 10−1

27

24 28800 3 4.7 · 10−2 3 4.0 · 10−2

25 123008 3 2.0 · 10−1 3 9.8 · 10−2

26 508032 3 7.0 · 10−1 4 4.6 · 10−1

27 2064512 3 2.6 · 100 6 2.3 · 100

28

25 522240 3 4.2 · 10−1 3 2.4 · 10−1

26 1016064 3 1.5 · 100 3 8.5 · 10−1

27 4129024 9 1.3 · 101 6 5.3 · 100

28 16646400 10 5.8 · 101 15 5.5 · 101

MINRES |S| |P|
n m+ 1 DoF Iter CPU Iter CPU

26

23 3136 6 3.3 · 10−2 6 3.0 · 10−2

24 14400 6 5.9 · 10−2 5 3.5 · 10−2

25 61504 12 2.1 · 10−1 6 5.9 · 10−2

26 254016 14 6.8 · 10−1 14 6.2 · 10−1

27

24 28800 6 9.4 · 10−2 5 5.8 · 10−2

25 123008 12 4.0 · 10−1 6 1.7 · 10−1

26 508032 18 1.8 · 100 10 9.8 · 10−1

27 2064512 30 1.1 · 101 27 8.2 · 100

28

25 522240 8 5.8 · 10−1 6 4.0 · 10−1

26 1016064 18 3.7 · 100 10 2.1 · 100

27 4129024 56 4.2 · 101 24 1.6 · 101

28 16646400 84 3.2 · 102 90 2.7 · 102

5. Conclusions. We have proposed a novel block Toeplitz preconditioner P (or |P|)
for the modified all-at-once system of wave equations YT u = Yf , and we have shown its
efficiency in the construction and the preconditioning effect both via a detailed theoretical
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study and numerical evidence. Our preconditioner is designed according to the previous work
for the spectral distribution of symmetrized Toeplitz matrix sequences [11, 31]. As shown in
the numerical examples, our preconditioner in most cases can outperform the existing block
circulant preconditioner S in both iteration numbers and CPU times, while having the same
parallel-in-time character. Our method provides an alternative preconditioning approach based
on DSTs, which advances the symmetrization preconditioning theory pioneered in [33] whose
development is still at its infancy.

Concerning a potential future work, we will integrate our proposed methodology with
the α-block circulant preconditioning technique [25, 28, 39] in order to further generalize the
adopted symmetrization solver with MINRES for wave equations. Another direction for future
research is to develop effective preconditioners based on our approach for wave equations
with time-varying coefficients and nonlinear wave equations. In both directions, the use of the
spectral tools from the GLT technology [17] will be beneficial.

Finally, we remark that the use of the eigenvalue/eigenvector results provided in the
theoretical analysis and especially in Section 3.1.3 could be the key for understanding the
reason why the number of actual observed iterations is sometimes much lower than that
predicted in our derivations in Section 3.
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