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Abstract. We develop a toolbox for the error analysis of linear recurrences with constant or polynomial
coefficients, based on generating series, Cauchy’s method of majorants, and simple results from analytic combinatorics.
We illustrate the power of the approach by several nontrivial application examples. Among these examples are a
new worst-case analysis of an algorithm for computing the Bernoulli numbers and a new algorithm for evaluating
differentially finite functions in interval arithmetic while avoiding interval blow-up.
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1. Introduction. This article aims to illustrate a technique for bounding round-off errors
in the floating-point evaluation of linear recurrence sequences that we found to work well on
a number of interesting examples. The main idea is to encode as generating series both the
sequence of “local” errors committed at each step and that of “global” errors resulting from
the accumulation of local errors. While the resulting bounds are unlikely to be surprising to
specialists, generating series techniques, curiously, do not seem to be classical in this context.

As is well known, in the evaluation of a linear recurrence sequence, rounding errors
typically cancel out to a large extent instead of purely adding up. It is crucial to take this
phenomenon into account in the analysis in order to obtain realistic (worst-case) bounds,
which makes it necessary to study the propagation of local errors in the following steps of
the algorithm somewhat finely. In the classical language of sequences, this tends to involve
complicated manipulations of nested sums and yield opaque expressions.

Generating series prove a convenient alternative for several reasons. Firstly, they lead
to more manageable formulae: convolutions become products, and the relation between the
local and the accumulated errors can often be expressed exactly as an algebraic or differential
equation involving their generating series. Secondly, such an equation opens the door to
powerful analytic techniques like singularity analysis or Cauchy’s method of majorants.
Thirdly, as illustrated in Section 10, a significant part of the laborious calculations involved
in obtaining explicit constants can be carried out with the help of computer algebra systems
when the calculation is expressed using series.

In this article, we substantiate our claim that generating series are an adequate language
for error analysis by applying it to a selection of examples from the literature. Our focus is
on true mathematical bounds (as opposed, in particular, to linearized bounds) for worst-case
errors (with no assumptions on the distribution of the individual rounding errors). As detailed
below, some of the examples yield results that appear to be new and may be of independent
interest.

The text is organized as follows. In order to get a concrete feeling of the basic idea, we
start in Section 2 with an elementary example, postponing to Section 3 the discussion of related
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work. We continue in Sections 4—7 with a review of classical facts about generating series,
asymptotics, the Cauchy majorant method, and floating-point error analysis that constitute
our basic toolbox. Building on this background, we then illustrate the approach outlined in
Section 2 in situations involving polynomial coefficients (Legendre polynomials, Section 8)
and floating-point arithmetic (with a revisit of the toy example in Section 9). A reader only
interested in understanding the method can stop there.

The second half of the article presents more substantial applications of the same idea.
It consists of three sections that can be read independently, referring to Sections 4—7 for
basic results as necessary. Section 10 answers a question of R. P. Brent and P. Zimmermann
on the floating-point computation of Bernoulli numbers. Section 11 discusses variations
on Boldo’s [3] error analysis of a finite difference scheme for the 1D wave equation, using
series with coefficients in a normed algebra to encode a bivariate recurrence. Finally, in
Section 12, we take a slightly different perspective and ask how to evaluate the sum of a
series whose coefficients satisfy a recurrence when the recurrence is part of the input. Under
mild assumptions, we give an algorithm that computes a rigorous enclosure of the sum while
avoiding the exponential blow-up that would come with a naive use of interval arithmetic.

2. A toy example. Our first example is borrowed from Boldo [3, Section 2.1] and
deals with the evaluation of a very simple, explicit linear recurrence sequence with constant
coefficients in a simple model of approximate arithmetic. It is not hard to carry out the error
analysis in classical sequence notation (cf. [3]), and the reader is encouraged to duplicate the
reasoning in his or her own favorite language.

Consider the sequence (cy,),»—1 defined by the recurrence

2.1 Cnit1 = 2¢n — Cp—1

with ¢_; = 0 and a certain initial value c¢g. The exact solution is ¢, = (n + 1)cg. Let us
assume that we are computing this sequence iteratively so that each iteration generates a small
local error corresponding to the evaluation of the right-hand side. We denote by (&, ) the
sequence of computed values. The local errors accumulate over the course of the computation,
and our goal is to bound the global error 6,, = &, — c;,.

We assume that each arithmetic operation produces an error bounded by a fixed quantity u.
(This model is similar to fixed-point arithmetic, but our example is simplified to the point of
being completely unrealistic: in an actual fixed-point implementation, since the coefficients on
the right-hand side of (2.1) are integers, this formula involves no rounding error at all.) Thus,
we have

(22) én+1 = 2671 - én—l +€ns |5n| < 2u
for all n > 0. We will also assume |dp| < u. Subtracting (2.1) from (2.2) yields
(23) 5nJrl = 2571 - 57171 + €n, n 2 0,

with 6,1 =0.
A naive forward error analysis would have us write |0,41| < 2|,| + [6n—1] + 2u and
conclude by induction that |3,,| < 3", or, with a bit more effort,

(2.4) 10,] < (Apall +A_a™ — 4)u, ar =142, A\ =4+3V2.

Neither of these bounds is satisfactory. To see why, it may help to consider the propagation of
the first few rounding errors. Writing ¢g = ¢g + g and é; = 2¢p + €9 = ¢1 + 26 + €9, We
have

Co = 2(260 + 260 + 60) - (CO + 60) 4+ &1 =co+ 36y + 260 + €1,
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and hence |d2| < 9u. The naive analysis effectively puts absolute values in this expression,
leading to |d2] < 5|dp| + 2|eg| + |e1| < 11w instead. Overestimations of this kind compound
as n increases. Somehow keeping track of the expression of §,, as a linear combination of
the ¢; (and d) clearly should yield better estimates.

To do so, let us note that (2.3) is a linear recurrence with the same homogeneous part
as (2.1) and the sequence of local errors on the right-hand side, and rephrase this relation in
terms of generating series. Define the formal power series'

d(z) = Z dn2", e(z) = Zenz”.

n=0 n=>0

The relation (2.3) implies

(271 =24 2)8(2) = Z Opy12" —2 Z Op2" + Z Sp_12" =80z~ + Z enz",

n>—1 n>=0 n>1 n=>0
that is,
8o + ze(2)
2.5 0(z) = ——=.
(23) ) ="a2p

Since |6g] < w and |e,| < 2u, we see that the absolute values of the coefficients of the
numerator are bounded by those of the corresponding coefficients in the series expansion of
2u/(1 — z). Denoting by “<” this termwise inequality relation, it follows that

2u 1 2u
e (S E A (=

Going back to the coefficient sequences, this bound translates into |d,,| < (n 4+ 1)(n + 2)u,
a much sharper result than (2.4). This result is essentially optimal in our model since the €,
might all be equal to 2u and (2.5) is an exact expression of the global error.

3. Related work. There is a large body of literature on numerical aspects of linear
recurrence sequences, especially solutions of three-term recurrences. The main focus is
on stability issues and backward recurrence algorithms—algorithms where the recurrence
relation is used for decreasing n and combined with asymptotic information on the sequence,
typically to compute minimal solutions. An important early example of this nature is Olver’s
error analysis [33] of Miller’s method for computing the minimal solution of a second-order
recurrence. We refer to Wimp’s book [42] for further references.

Here we only consider linear recurrences used in the forward direction. Comparatively
little has been written on that subject, in Wimp’s words, “not because a forward algorithm is
more difficult to analyze, but rather for the opposite reason—that its analysis was considered
straightforward” [41]. The first completely explicit error analysis of general linear recurrences
that we are aware of appears in the work of Oliver [32, Section 2] (see also [31]). However,
the importance of using linearity to study the propagation of local errors was recognized
well before. For example, it is apparent in Clenshaw’s discussion [12] of his algorithm for
computing partial sums of Chebyshev series, and the first of Henrici’s books on numerical
methods for differential equations [18, Section 1.4] uses the terms “local round-off error” and
“accumulated round-off error” with the same meaning as we do.

I'While the sequence (0 ) naturally starts at n = —1, the fact that 5_1 = 0 allows us to use the same summation
range for both series.
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In the same vein as Oliver’s work, Barrio, Melendo, and Serrano [2] analyze the floating-
point evaluation of general linear recurrences of finite order. Their result is a first-order bound,
meaning that terms of order O(u?) where w is the unit roundoff are omitted. Furthermore,
due to its generality, the bound is complicated and expressed in terms of quantities that may
be difficult to estimate. We believe that the approach presented here offers at least a partial
remedy to these limitations. In more specific situations, though, readily exploitable bounds are
available in the literature. This includes in particular algorithms based on linear recurrences
for evaluating finite generalized Fourier series, like Clenshaw’s method; see, e.g., [1, 14].

Linear recurrences can also be viewed as special cases of triangular systems of linear
equations. For example, computing the first n terms of the sequence (c,,) of the previous
section is the same as solving the banded Toeplitz system

1 i) Co
0 1 -2 1) [z, 0

The study of systems of this type is literally as old as error analysis: the solution of triangular
systems appears as an almost trivial subproblem in von Neumann and Goldstine’s [38]”
and (more explicitly) Turing’s [36, Section 12, p. 306] landmark analyses of linear system
solving, both concluding in a polynomial growth with n of the forward error when some
quantities related to the inverse or the condition number of the matrix are fixed. We refer to the
encyclopedic book by Higham [19, Chapter 8] for a detailed discussion of the error analysis of
triangular systems and a further historical perspective.

Because of their dependency on condition numbers, these results do not, in themselves,
rule out an exponential buildup of errors in the case of recurrences. In the standard modern
proof, the forward error bound results from the combination of a backward error bound and a
perturbation analysis that could in principle be refined to deal specifically with recurrences. An
issue with this approach is that, to view the numeric solution as the exact solution corresponding
to a perturbed input, one is led to perturb the matrix in a fashion that destroys the structure
inherited from the recurrence. Experiments by Barrio, Melendo, and Serrano [2] confirm that
their bounds tend to be much sharper than bounds based on the condition number of systems
of type (3.1).

It may nevertheless be the case that one can derive meaningful bounds for recurrences
from a refined variant of Theorem 8.5 in [19] better taking into account the structure of the
matrix. Our claim is that the tools of the present paper are better suited to the task. The
use of linearity to study error propagation can also be viewed as an instance of backward
error analysis, where one chooses to perturb the right-hand side of the system instead of the
matrix. From this perspective, the present paper is about a convenient way of carrying out the
perturbation analysis that enables one to pass to a forward error bound.

Except for the earlier publication [24] of the example considered again in Section 8
below, we are not aware of any prior example of error analysis conducted using generating
series in numerical analysis, scientific computing, or computer arithmetic. A close analogue
appears however in the realm of digital signal processing with the use of the Z-transform to
study the propagation of rounding errors in realizations of digital filters starting with Liu and
Kaneko [27]. The focus in signal processing is rarely on worst-case error bounds, with the
notable exception of recent work by Hilaire and collaborators; see, e.g., [21].

2See also Grear’s commentary [17, Section 4.5].
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4. Generating series. Let R be aring, typically R = R or R = C. We denote by R][[z]]
the ring of formal power series

o0
u(z) = Z U 2",
n=0

where (u,)22  is an arbitrary sequence of elements of R. A series u(z) used primarily as a
convenient encoding of its coefficient sequence (u,,) is called the generating series of (uy,).

It is often convenient to extend the coefficient sequence to negative indices by setting
un = 0 for n < 0. We can then write u(z) = ), u,2" with the implicit summation range
extending from —oo to oo (keeping in mind that the product of series of this form does not
make sense in general if the coefficients are allowed to take nonzero values for arbitrary
negative n).

Given u € R|[[z]] and n € Z, we denote by u,, or [z"]u(z) the coefficient of 2™ in u(z).
Conversely, whenever (u,,) is a numeric sequence with integer indices, u(z) is its generating
series. We occasionally consider sequences ug(2), u1(2), .. . of series, with w; ,, = [2"]u;(2)
in this case. We often identify expressions representing analytic functions with their series
expansions at the origin. For instance, [2"](1 — az) ™! is the coefficient of 2™ in the Taylor
expansion of (1 — az)~! at 0, that is, a™.

We denote by S the forward shift operator mapping a sequence (uy )nez t0 (Un+1)nez
and by S~ its inverse. Thus, S - (u, ),ecz is the coefficient sequence of the series z~1u(z).
More generally, it is well known that linear recurrence sequences with constant coefficients
correspond to rational functions in the realm of generating series, as in the toy example from
Section 2.

It is also classical that the correspondence generalizes to recurrences with variable coeffi-
cients depending polynomially on n as follows. We consider recurrence relations

(41) po(n)un +p1(n)un71 + - +ps(n)un78 - bn7 n e Z?

where po, ..., ps € R[X] are polynomials with pg # 0. Given sequences expressed in terms
of an index called n, we also denote by n the operator

(un)nEZ — (nun)n€Z~
We then have Sn = (n + 1), where the product stands for the composition of operators.
EXAMPLE 4.1. With these conventions,
(nS +n — 1) (un)nez = (s + (1= Dn)nez = (S + 1)(n — 1)) - (wn)nez

is an equality of sequences that parallels the operator equality n.S +n —1 = (S +1)(n — 1).

Any linear recurrence operator of finite order with polynomial coefficients can thus
be written as a polynomial in n and S*'. Denoting with a dot the action of operators on
sequences, (4.1) thus rewrites as

L(n,S7") - (un) = (bn),  where L= pp(X)Y" € R[X][Y].
k=0

When dealing with sequences that vanish eventually (or that converge fast enough) as
n — —oo, we can also consider operators of infinite order

po(n) + pr(m)S™! 4 pa(n)S ™2 4 =D " pi(n)S T = L(n, 571,

=0

where L € RIX][[Y]].
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In the same way as with recurrences, we view the multiplication by z of elements of
R][[z]] as a linear operator that can be combined with the differentiation operator d/dz to form
linear differential operators with polynomial or series coefficients. For example, we have

(k) w2 ()

where the rational functions are to be interpreted as power series.

LEMMA 4.2. Let (un)nez, (Vn)nez be sequences of elements of R with u,, = v,, = 0,
forn < 0. Consider a recurrence operator of the form L(n, S~%) with L(X,Y) € R[X][[Y])].
The sequences (uy,), (v,) are related by the recurrence relation L(n, S™) - (uy,) = (vy) if
and only if their generating series satisfy the differential equation

L (zi,z) “u(z) = v(z).

Proof. This follows from the relations

i nfnz”:z% i fnz™, i fno12t =2 i fnz™,

n=—oo n=—oo n=—oo n=—oo

noting that the operators of infinite order with respect to S~! that may appear when the
coefficients of the differential equation are series, are applied to sequences that vanish for
negative n. a

Generating series of sequences satisfying recurrences of the form (4.1)—in other words,
by Lemma 4.2, formal series solutions of linear differential equations with polynomial
coefficients—are called differentially finite or holonomic. We refer the reader to [25, 34]
for an overview of the powerful techniques available to manipulate these series and their
generalizations to several variables.

5. Asymptotics. One of the main appeals of generating series is the access they give to
the asymptotics of the corresponding sequences. The basic fact here is simply the Cauchy-
Hadamard theorem stating that the inverse of the radius of convergence of u(z) is the limit
superior of |u,|'/™ as n — oco. Concretely, as soon as we have an expression of u(z) (or
an equation satisfied by it) that makes it clear that it has a positive radius of convergence
and where the complex singularities of the corresponding analytic function are located, the
exponential growth order of |u,, | follows immediately.

Much more precise results are available when more is known about the nature of singu-
larities. We quote here a simple result of this kind that will be enough for our purposes, and
we refer to the book by Flajolet and Sedgewick [15] for far-ranging generalizations (see in
particular [15, Corollary VI.1, p. 392] for a statement containing the following lemma as a
special case).

LEMMA 5.1. Assume that for some p > 0, the series u(z) = Y u,z" converges for
|z| < p and that its sum has a single singularity o € C with || = p. Let Q denote a disk of
radius p' > p, slit along the ray {ta : t € [p, p']}, and assume that u(z) extends analytically
to Q. If for some C € C and m € C\Zgy, one has

C
A~ Tt
as z — a from within €, then the corresponding coefficient sequence satisfies
C
—n
I'(m)

as n — oo, where I is the Euler Gamma function.

Uy~ m—1_—n
n
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6. Majorant series. While access to identities of sequences and to their asymptotic
behavior is important for error analysis, we are primarily interested in inequalities. A natural
way to express bounds for sequences encoded by generating series is by majorant series, a
classical idea of “19th century” analysis.

DEFINITION 6.1. Let f =" fn,2™ € C[[z]].

(a) A formal series with nonnegative coefficients f= >on fuz € R>o][2]] is said to be a

majorant series of f when we have | f| < f, for all n. € N. We then write f < f.
(b) We denote by * f the minimal majorant series of f, thatis, *f = 3" | fn|2™

We also write f > 0 to indicate simply that f has real, nonnegative coefficients. Series
denoted with a hat always have nonnegative coefficients, and f is typically some kind of bound
for f, though not necessarily a majorant series in the sense of the above definition. While, for
simplicity, we limit ourselves here to f € C[[z]], one can extend the definition to series f with
coefficients in a normed algebra (see Section 11).

The following properties are classical and easy to verify (see, e.g., Hille [22, Section 2.4]).

LEMMA 6.2. Let f,g € C[[2]], f,§ € Rsol[2]] be such that f < f and g < §.

1. The following assertions hold, where fn.(2) = 3, 5 n fn2"

(@ fH+g<f+i, ()  f<hlf. foryeC,
(c) fn.(2) < fni(2), forNeN, (d) f(2)<f(2),
© (s n<(l57) 0 f9<fa

2. The disk of convergence D of f is contained in that of f, and when go € D, ‘we have
f(g(2)) < f(g(2)). In particular, | f(C)| is bounded by f(|(]) for all ¢ € D.

While majorant series are a concise way to express some types of inequalities between
sequences, their true power comes from Cauchy’s method of majorants [10, 11]°. This method
is a way of computing majorant series of solutions of functional equations that reduce to
fixed-point equations. The idea is that when the terms of a series solutions can be determined
iteratively from the previous ones, it is often possible to “bound” the equation by a simpler
“model equation” whose solutions (with suitable initial values) then automatically majorize
those of the original equation.

A very simple result of this kind states that the solution y of a linear equation y = ay + b
is bounded by the solution g of § = ay + bwhena < @, b < b, and a ap = 0. Let us prove a
variant of this fact. The previous statement follows by applying the lemma to 1.

LEMMA 6.3. Let 4,b,y € Rsq[[z]] be power series with a4y = 0 such that (note
the < -sign)

y(2) < a(2)y(z) + b(2).
Then one has
YD) <) = s,

Proof. Extracting the coefficient of 2™ on both sides of the inequality on y(z) yields
(6.1) lynl <) dilyn—i| + bn,

3See Cooke [13] for an interesting account of the history of this method and its extensions, culminating in the
Cauchy-Kovalevskaya theorem on partial differential equations.


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

ERROR ANALYSIS OF RECURRENCES USING GENERATING SERIES 203

where the sum starts at 7 = 1 due to the assumption that ag = 0. Similarly, the g,, satisfy

(62) gn = Z &i:gn—i + Bn-

i=1

We see by comparing (6.1) and (6.2) that lyk| < g for all k < n implies |y,,| < gy, (including
the trivial case |yo| < by = #jo) so that, by induction, one has |y, | < 4, for all n. d

Another classical instance of the method applies to nonsingular linear differential equa-
tions with analytic coefficients. In combination with Lemma 4.2 above, it allows us to derive
bounds for linear recurrence sequences with polynomial coefficients. Note that, since the
correspondence described in Lemma 4.2 maps S to 2%, Proposition 6.4 covers the case of
recurrences of infinite order.

PROPOSITION 6.4. Let aq, . .., ar_1,b € C[[2]], do, ..., ar_1,b € Rso|[2]] be such that
ap < ay for 0 < k < rand b < b. Assume that § € R[[2]] is a solution of the equation

63 ) — a2 (=) - - a2 (2) — do(2)5(2) = b(z)-

Then, any solution y € C|[[z]] of
y7(2) = ara(2)y" () = — ai(2)Y (2) — ao(2)y(2) = b(2)

with [yo| < 9o, - - -, |yr—1| < r_1 satisfies y < g.

Proof. Write y*) (2) = 3" (n+ k) y,, 12", where nE =n(n—1)--- (n—k+1). The
equation on y/(z) translates into

Z(?’L+T yn+7“z Zzzakj 7’L+k‘ " Ynt+k— jz anzn7
n

n k=0 n j=0

whence

o0

T
Ny =3 Y api(n— k) g, e+ b,

j=0k'=1

and similarly for §(z). As with Lemma 4.2, these formulae hold for n € Z. The right-hand
side only involves coefficients y; with j < n, and the polynomial coefficients (n — &’ Y=k’
including n”, are nonnegative as soon as n > r. For n > r and assuming |yx| < gy, for all
k < n, we thus have

n£|yn Z Z |a’k]| n— T L4 |yn—k’—j‘ + |bn—r|

§=0k/=1
oo T
<Y (n— Ky + by = 0.
j=0k'=1
The result then follows by induction from the inequalities |yo| < Jo, .- - |Yr—1| < Jr—1- 0

Like in the case of linear algebraic equations, this result admits variants that deal with
differential inequalities. We limit ourselves to first-order equations here.
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LEMMA 6.5. Consider power series g, G1,b,y € Rxo[[2]] with nonnegative coefficients
such that a1 (0) = 0 and

(6.4) y'(2) < a1(2)y' () + ao(2)y(z) + b(2).
The equation
6.5) 7'(2) = a1(2)7 (2) + ao(2)i(2) + b(=)

admits a unique solution § with §(0) = y(0), and one has y < .
Proof. Since a0 = 0, the right-hand side of the inequality

n n

(n+ Dyn+1 < Z a1,j(n—J+Dyn—jt1 + Z G0,jYn—j + bn
=1 =0

corresponding to the extraction of the coefficient of 2™ in (6.4) only involves coefficients y;
with j < n. Equation (6.5) corresponds to a recurrence of a similar shape (and therefore has a
unique solution), and one concludes by comparing these relations. 0

Solving majorant equations of the type (6.3), (6.5) yields majorants involving antideriva-
tives. The following observation can be useful to simplify the resulting expressions.

LEMMA 6.6. For f,§ € Rso[[z]], one has foz(fg) < ffoz g. In particular, [ fis
bounded by = f(z).

Proof. Integration by parts shows that foz(fg) - ffo g € Rxo[[2]] d

It is possible to state much more general results along these lines, and cover, among
other things, general implicit functions, solutions of partial differential equations, and various
singular equations. We refer to [9, Chap. VII], [37], [39], and [16, Appendix A] for some
results that may turn out to be useful in more complicated error analyses.

7. Floating-point errors. The toy example from Section 2 illustrates error propagation
in fixed-point arithmetic, where each elementary operation introduces a bounded absolute error.
In a floating-point setting, the need to deal with the propagation of relative errors complicates
the analysis. Thorough treatments of the analysis of floating-point computations can be found
in the books of Wilkinson [40] and Higham [19]. We will use the following definitions and
properties.

For simplicity, we assume that we are working in binary floating-point arithmetic with
unbounded exponents. We make no attempt at covering underflows*. Following standard
practice, our error bounds are mainly based on the following inequalities that link the approx-
imate version % of each arithmetic operation x € {+, —, X, /} to the corresponding exact
mathematical operation:

zky = (z*y)(1 + 1), [01] < w  — “first standard model” [19, Eq. (2.4)],
x¥y = (r*y)(1+62)7L, |62 <u — “modified standard model” [19, Eq. (2.5)].

In addition, we occasionally use the fact that multiplications by powers of two are exact.
The quantity u that appears in the above bounds is called the unit roundoff and depends
only on the precision and the rounding mode. For example, in standard ¢-bit round-to-nearest
binary arithmetic, one can take u = 2.
The two “standard models” are somewhat redundant, and most error analyses in the
literature proceed exclusively from the first standard model. However, working under the

“It would be interesting to extend the methodology to this case. Doing so might require adapting the results of
this section and the previous one to deal with equations mixing features of absolute and relative error analysis.
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modified standard model sometimes helps to avoid assumptions that nu < 1 when studying
the effect of a chain of n operations, which is convenient when working with generating series.

Suppose that a quantity = # 0 is affected by successive relative errors 1, do, . . . resulting
from a chain of dependent operations, with |0;| < u for all 4. The cumulative relative error 7
after n steps is given by

n

1+n=JJ@+6).

i=1

This leads us to introduce the following notation. Definition 7.1(a) below is adapted from
Higham’s notation [19, Chapter 3], but it is more restrictive compared with the assumptions of
Lemmas 3.1 and 3.3 in [19].
DEFINITION 7.1. When the roundoff error u is fixed and clear from the context:
(a) We write n = 0, to indicate that 1 + 1 = [[;_, (14 6;) for some b1, ..., 6, with |§;| < u
(b) We define 0, = (I4+u)™ — 1 forn > 0. As usual, this sequence is extended to n. € Z by
setting 6, =0 forn < 0, and we also consider its generating series

- 1 1
0(z) = — .
(2) 1-(1+uwz 11—z
(c¢) More generally, we set
q) — - é n __ (1 + u)q 1
Z)igpnﬂz 71—(1+u)Pz71—z'

Thus, a series whose coefficient of index n is of the form 6,, satisfies
(7.1) D 0n2" < 0(2)

Similarly, the generating series corresponding to a regularly spaced subsequence of (6,) (e.g.,
cumulative errors after every second operation) is bounded by (-9 for appropriate p and q.
The inequality (7.1) is closely related to that between the quantities |6,,| and 7, = nu/(1—nu)
used extensively in Higham’s book, and one has 6, < Yn, for nu < 1. However, compared
to [19, Lemma 3.1], our definition of 6,, only allows for nonnegative powers of 1+ 4;, and (7.1)
would fail to hold without this restriction.

To rewrite the relation Z,, = x,,(1 + 6,,) in terms of generating series, we can use the
Hadamard product of series, defined by

(fog)(z angn

An immediate calculation starting from Definition 7.1 yields a closed-form expression of the
Hadamard product with (9.
LEMMA 7.2. For any power series f(z) with nonnegative coefficients, it holds that

(9(17 ) @f ngn+qfn = (1+u)qf((1+u)1’z) *]E(z)
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8. Variable coefficients: Legendre polynomials. With this background in place, we
now consider a “real” application involving a recurrence with polynomial coefficients (that,
additionally, depend on a parameter x). The example is adapted® from material previously
published in [24]. Let P,, denote the Legendre polynomial of index n, defined by

- 1
D 0 A ——
o V1-2zz+z

Fix « € [-1,1], and let p,, = P,,(x). The classical three-term recurrence

1
8.1 Dnt+1 = m(@” + D)ap, — npn-1), n =0,

allows us to compute p,, for any n starting from pg = 1 and an arbitrary p_; € R. Suppose
that we run this computation in fixed-point arithmetic, with an absolute error €,, at step n, in
the sense that the computed values p,, satisfy

1
(8.2) DPril = m(@n + Dapy, — npn_1) + n, n = 0.

An analysis not taking into account the dependencies between the errors at each step yields
|13n - pn| g (1 + \@)ng—/4’

where £ = max,, €,,.
PROPOSITION 8.1. Let (P )n>—1 be a sequence of real numbers satisfying (8.2) with
po = 1. Assume that |e,,| < € for all n. Then, for all n > 0, the global absolute error satisfies

(n+1)(n+2)
4

Proof. Let §,, = p,, — pn, and 1, = (n + 1)e,,. Subtracting (8.1) from (8.2) gives

|ﬁn - pn| < E.
(8.3) (n+1)0p11 = (2n+ 1)zd, — nép—1 + 1,

with §p = 0. Note that (8.3) holds for all n € Z if the sequences (d,,) and (n,,) are extended
by 0 for n < 0. By Lemma 4.2, it translates into

d
(1—-2zz+4 zz)zd—(S(z) = z(x — 2)0(2) + 2n(2).
z
The solution of this differential equation with §(0) = 0 reads

1
V1—2xz+ 22

It is well known that |P,| is bounded by 1 on [—1, 1], so that p(z) < (1 — z)~ !, and the
definition of 7,, implies (z) < £(1 — 2)~2. It follows by Lemma 6.2 that

5(z) = p(2) / W) v, 9l =D =

1 8 € €
R =

and therefore |0,,| < (n + 1)(n + 2)&/4. O
SProposition 8.1 and its proof are identical, up to presentation details, to [24, Proposition 5] and included here

for expository reasons only. The work eventually leading to the present paper actually started first and found an
unexpected application in [24], which motivated us to develop it further.
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Reasoning in the same way but using the inequality p(z) < v2(1 — 2)~1/4(1 — z)~1/2

(see, e.g., the proof of Proposition 3 in [24]) instead of p(z) < (1 — 2z)~!, we can also prove

that one has [p,, — pn| < 3(1 — 22)~1/2n& when |z| < 1. For comparison, Hrycak and

Schmutzhard [23] show that when (8.1) is evaluated in floating-point arithmetic with unit
roundoff v, the absolute error |p,, — p,,| is bounded by 21n%u and by 129(1 — 22)~/2nu for
|z| < 1, in both cases assuming that 5nu'/? < 1.

9. Relative errors: the toy example revisited. Let us return to the recurrence
9.1 Cnt1 = 2¢y, — Cn1

considered in Section 2 but now look at what happens when the computation is carried out in
floating-point arithmetic, using the observations made in Section 7.

We assume binary floating-point arithmetic with unit roundoff « and consider the iterative
computation of the sequence defined by (9.1) with ¢_; = 0 and (for simplicity) an exactly
representable initial value cg. We have ¢,, = (n + 1)co, that is,

c(z) = A=

The floating-point computation produces a sequence of approximations ¢,, =~ ¢, with ¢y = cg.
Using the standard model recalled in Section 7 and the fact that multiplication by 2 is exact,
the analogue of the local estimate (2.2) reads

9.2) Cnt1 = (26, — én—1)(1 +€n), len] < u.
Let §,, = &, — ¢,. By subtracting (1 + ¢,,) times (9.1) from (9.2) and reorganizing, we get
Ont1 — 20p 4 01 = en(Cna1 + 260 — 0p—1),
which rewrites
(271 =24 2)8(2) = (2) © (27 te(2) + (2 — 2)8(2)).
We multiply this equation by z to get
(1 - 2)2%0(2) = (2(2)) ® (e(2) + 2(2 — 2)3(2)).

Denote y(z) = (1 — 2)28(z) and b(z) = (1 — 2)~2 — 1. Since |e,,| < uand b(z) > 0, we
have

7(2) = (22(2)) © (¢(2) + b(2)7(2)) < u (Fe(2) + b(2)*(2)) ,
and therefore
y(2) < u(fe(z) +b(2)(2))

where b(0) = 0. By Lemma 6.3, it follows that

u _eol (1-2)%u
1) «<hi(e) el s = 702)2 120 twzt (1t

whence

z |CO‘ v =6 z
(9.3) §(2) < (N s e 5(2),

where o > f3 are the roots of 22 — 2(1 + u)z + (1 + u).
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From (9.3), a trained eye immediately reads off the essential features of the bound.
Perhaps the most important information is its asymptotic behavior as the working precision
increases. For a bound that depends on a problem dimension 7, it is customary to focus
(sometimes implicitly) on the leading order term as u — 0 for fixed® n and in some cases to
further simplify it by looking at its asymptotic behavior for large n.

In the present case, the definition of « as a root of 22 — 2(1 + u)z + (1 + u) yields
a =1+ u'/? + O(u), and hence

5 |co|u

9.4) 5(z) = Gt Ow*?)  asu—0,

or equivalently
- 1
9.3) O = g(n—|—1)(n—|—2)(n—‘—Z’»)\co|u—&—0(u3/2)7 u— 0, nfixed.

The fact that 6,, &~ n3|co|u/6 in the sense that im0 (u™0,) ~p_se0 n°|co|u/6 also follows
directly from (9.4) using Lemma 5.1. (One also sees that 5, = Ca™ + O(n) asn — oo for
fixed u, where C could easily be made explicit. This is however less relevant for our purposes,
cf. Remark 9.1 below.)

As observed by one of the referees, (9.1) is a special case of the classical three-term
recurrence for Chebyshev polynomials. One has ¢,, = ¢ Uy, (1), where U,, is the Chebyshev
polynomial of the second kind. One can thus view ¢, as the value at 1 of a Chebyshev series
reduced to a single term and compare (9.5) with known error bounds for the floating-point
evaluation of Chebyshev series. For example, the bound from [1, Theorem 6] specializes in
our setting to |0,,| < 5(n + 1)(n? + Ltn + 3)|colu + O(u?) and is hence just slightly worse
than (9.5), though much more general.

In order to obtain a bound that holds for all n and u, we can majorize both (1 — z)~
(1 —B2)"' by (1 — az)~ ! in (9.3). We obtain §(z) < |co|u(l — az)~%, and therefore

L and

(n+1)(n+2)(n+3) o

(9.6) 16, < b < |col s

Recalling that ¢,, = ¢o(n + 1), we conclude that é,, = ¢, (1 + 7,,), where

2 3
9.7) 1| < %a"u.
For an even more precise bound, one could also isolate the leading term of the series expansion

of §(z) with respect to u and reason as above to conclude that

9.8) 17| < =(n+2)(n + 3)u + p(n)a™u?

| =

for some explicit polynomial p(n).

With no other assumption on the error of subtraction than the first standard model of
floating-point arithmetic, the bound (9.3) is sharp: when ¢y > 0 and ¢, = u, we have
6(z) = 6(2). This means that the exponential growth with n, for fixed u is unavoidable under
these hypotheses. However, the exponential factor only starts contributing significantly when

6See Higham’s book [19] for many examples and in particular the discussion of linearized bounds at the beginning
of Section 3.4. Already in equation 3.7, the implicit assumption nu < 1 is not sufficient to ensure that the neglected
term is O(u?2) if n is allowed to grow while u tends to zero.
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FIG. 9.1. The measured error in the evaluation of the sequence (cy) defined by (9.1) in IEEE binary32
floating-point arithmetic (v = 2724 ~ 6 - 10~8). For each n, we plot the maximum observed error on cp, for 997
exactly representable values of co regularly spaced in the interval [t /2, 7w|. The script used to produce these plots is
available in the supplementary material.

n becomes extremely large compared to the working precision. It is natural to control it
by tying the growth of n to the decrease of w. In particular, it is clear that o™ = O(1) if
n = O(u~"/?). One can verify more precisely that o™ < easlongasn < (a—1)"' ~u~1/2,
and o™ < 3foralln < u=1/2 provided that u < 2-7. The leading term on the right-hand
side of (9.8) is optimal as well, for the same reason.

Figure 9.1 illustrates, on two different scales, the accumulation of errors in numerical
experiments. The script used to produce this plot is available in the supplementary material’.
We can see that the relative error actually growths roughly linearly until it saturates around 1
(meaning that the computed results no longer have a single correct significant digit but remain
of the correct order of magnitude). Thus the bounds (9.7), (9.8) are still very pessimistic
compared to reality. This was to be expected: indeed, it would be quite surprising for all local
errors €, to align to reach the worst case rather than be more or less evenly distributed in
[—u, u]. The standard model does not capture this fact. We refer to Higham [19, Section 2.8]
and Higham and Mary [20] for a discussion of the kinds of bounds that can be derived if one
is willing to make assumptions on the distribution of individual rounding errors.

REMARK 9.1. Starting back from (9.3), one may be tempted to write the partial fraction
decomposition of ) (z) and deduce an exact formula for On. Doing so leads to

by = (Aa" — BB" —u~" A o B=A-1-u"!

n—( o B u n)|CO|u’ _(a—1)2(a—6)’ - u .
This expression is misleading, for it involves cancellations between terms that tend to infinity
as u goes to zero. In particular, we have A ~ %u*3/2 asu — 0.

10. Relative errors, infinite order: scaled Bernoulli numbers. For a more sophisticated
application of the same idea, let us study the floating-point computation of scaled Bernoulli
numbers as described by Brent [6, Section 7] (see also Brent and Zimmermann [8, Sec-
tion 4.7.2]). This section is the first where not only the method but the results are new.

The scaled Bernoulli numbers are defined in terms of the classical Bernoulli numbers By,
by by, = By /(2k)!. Their generating series has a simple explicit expression:

Re _ VzE/2
(10.1) b(z) = kzzokak = G (37D

Thttps://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol58/addition/pl96.php
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One possible algorithm for computing b, suggested by Reinsch according to Brent [6, Sec-
tion 12], is to follow the recurrence

k—1

1 b
10.2 = _ J .
(10.2) b (2k)14F ;0 (2k 4+ 1 — 2j)14F—3

In [8, Exercise 4.35], it is asked to “prove (or give a plausibility argument for)” the fact that
the relative error for by when computed using (10.2) in floating-point arithmetic is O (k%u).
The O(k*u)-bound is already mentioned without proof in [6] and again in [7, Section 2]. Paul
Zimmermann (private communication, June 2018) suggested that the dependency in k may
actually be linear rather than quadratic.

Our goal in this section is to prove a version of the latter conjecture. Like in the previous
section, it cannot be true if the O(-) is interpreted as uniform as v — 0 and k — oo
independently. It does hold, however, when u and k are restricted to a region where their
product is small enough, as well as in the sense that the relative error 7, for fixed k satisfies
|nx] < Cru when w is small enough, for a sequence Cy, which itself satisfies Cj, = O(k) as
k — oco. We will in fact derive a fully explicit, non-asymptotic bound in terms of u and k.

Based on the form of (10.1), denote w = 1/z/2, and for any f € C[[z]], define f* by

fr(w) = f4w?),

so that f*(w) = f(z). In particular, we have b*(w) = w/ tanh w. We will use the following
classical facts about the numbers |bg|.
LEMMA 10.1. The absolute values of the scaled Bernoulli numbers satisfy

w 2 2 4

bi| ~ 0o 3 gb < P
tanw’ 2Kl e (2)2k (2m)2k ] (2m)2k

ﬁb*(w) =2

where the last formula assumes k > 1.

Proof. The expression of *b*(w) can be deduced from that of b* (w) and the fact that Ba,,
has sign (—1)"*! for n > 1, using the relation tanh(iw) = i tan(w). The other statements
follow from the expression of Bernoulli numbers using the Riemann zeta function; see, e.g.,
[35, formula (25.6.2)]. 0

Let l;k denote the approximate value of by, computed using (10.2). We assume that the
computed value of n! is equal to n!/(1 + ¢, ), with g,, = 6,,_o in the notation of Section 7,
forn > 2 and g9 = ¢q1 = 1. According to the modified standard model of floating-point
arithmetic, this holds true if n! is computed as (((2 x 3) x 4) x --- x n) and the working
precision is at least [log, n], even with no special treatment of multiplications by powers of
two. The local error introduced by one step of the iteration (10.2) then behaves as follows.

LEMMA 10.2. At every step of the iteration (10.2), the computed value by, has the form

k—1 Py
N bi(1+ ) A A
103 = e =3 Pl < ol <o
=0

Proof. The computation of by (= 1) involves no rounding error. Assume k£ > 1, and first
consider the term aj, = 1/((2k)!4%) outside the sum. By assumption, the computed value
of (2k)!is (2k)!/(1 + gax), and the multiplication by 4% that follows is exact. Inverting the
result introduces an additional rounding error. The computed value of the whole term is hence
ar (1 + 7,), where 7}, = 02;_1. By the same reasoning, the term with index j in the sum is
computed with a relative error 7y ; = 6o(j,_;)41 forall j, k. If v ; denotes the relative error in
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the addition of the term with index ¢ to the partial sum for 0 < j < ¢ — 1, then the computed
value of the sum is hence

>
I
—

k—1

bi(1+ 715
(2k + 1 — 2j)14k—7 g(l +Uka)-

<.
Il
=)

Taking into account the relative error v}, of the final subtraction leads us to (10.3), with

k—1
Ttsp=0+r)+vh), Lty =0+ +vp) [Q+ k),
i=j
which concludes the proof. a
Let 0y, = by, — by.. A comparison of (10.3) with (10.2) yields

k—1
d; b t
b= i~ e
'4’f = (2k +1 — 25)14k—3"
which rearranges into
E k-1

05 Sk b +($ )tk
10.4 J = J
(10.4) ;(%—&—1—2])4’“ TR CTSTIT ]2::0 2k+1—2;)4k 7

Using the bounds from Lemma 10.2, with 93(k_ j)+2 replaced by é4(k_ j)+2 to obtain slightly
simpler expressions later, it follows that

k
Z fa +Zl |b|+‘5|94(k —j)+2
2k+1—2] WA | S (2k)1aF 2k +1—2j)dk—

= Jj=

(10.5)

Let us introduce the auxiliary series

z z sinh w N w
= ;;J @hyar — o S = @R w SC) = G
C(z) = 020 (2) o C(2), S(z) =02 (2) o (S(z) — 1).

The inequality (10.5) (note that the sum on the right-hand side stops at & — 1) translates into
8(2)S(z) < C(2) + 5(2) (*b(2) +#8(2)) -

Since S (z) has nonnegativg coefficients [35, (4.19.4)], we obtain the bound for the inverse
S(z)~! =iw/sin(iw) < S(z), hence

8(2) < S(2)C(2) + 5(2)S(2)b(2) + 5(2)5(2)F(2).
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Using Lemma 7.2 to rewrite the Hadamard products, we have

C(z) = C(a?z) — C(z) = cosh(aw) — cosh(w),

sinh(a*w) — sinh(w)

(10.7) S(z) = a%S(a*z) — S(z) — (a®> — 1) = —(a*—1),

w

where @ = 1 + u. In addition, Lemma 10.1 gives a formula for #b(z). Thus (10.6) yields an
explicit, if complicated, majorant series for 0(z).

It is not immediately clear how to extract a readable bound for dy, in the style of (9.6).
However, we can already prove an asymptotic version of Zimmermann’s observation. The
calculations leading to Propositions 10.3 and 10.5 can be verified with the help of a computer
algebra system. A worksheet that illustrates how to do that using Maple is provided in the
supplementary material®.

PROPOSITION 10.3. When k is fixed and for small enough u, the relative error n, = 6y, /by,
satisfies |ni| < Cru for some Cy. In addition, the constants Cy, can be chosen such that
Cr =0(k) as k — oc.

Proof. As u tends to zero, we have

5(z2) = (2(1 — coshw) cos(w) N 4(coshw — 1) 4+ wsinhw

w2 sin(w)? w~lsinw

> u + O(u?)
=: {(2)u + O(u?),

where the coefficients are to be interpreted as formal series in z. Hence, for fixed k, the
error &, is bounded by &yt + O(u2) as u — 0. The function £*(w) is meromorphic, with
double poles at w = =+, corresponding for f (z) to a unique pole of minimal modulus (also of
order two) at z = 472, This implies (by Lemma 5.1) that (27)2*&;, = O(k) as k — co. The
result follows using the growth estimates from Lemma 10.1. a

In other words, there exist a constant A and a function R such that n, < Aku + R(k,u),
where R(k,u) = o(u) as u — 0 for fixed k, but R(k,«) might be unbounded if & tends to
infinity while « tends to zero. (Remark 10.7 below shows that an exponential dependency in k
is in fact unavoidable.) To get a bound valid for all u and k in a reasonable region, let us study
the denominator of (10.6) more closely. A similar argument applied to é in place of & would
make the constant A explicit.

LEMMA 10.4. For small enough u > 0, the function h : w — S*(w) — $*(w)~" has
exactly two simple zeros o = +m /(1 4 p(u)) closest to the origin, with

(10.8) o(u) = 2(cosh(r) — Du + O(u?), wu — 0.

Furthermore, if u < 2715, then one has 0 < ¢(u) < 2(cosh(w) — 1)u, and h has no other
zero than +« in the disk |w| < p := 6.2.

Proof. To start with, observe that when u = 0, the term 5‘*(w) in the definition of h
vanishes identically, leaving us with h(w) = S*(w)~' = w~'sinw. The zeros of 1/5*
closest to the origin are located at w = =4, the next closest at w = +27, and hence outside
the disk |w| < p.

Let us focus on the zero at w = 7. Since h/(7) = 1/ for u = 0, the Implicit Function
Theorem applies and shows that, locally, the zero varies analytically with u. One obtains the
asymptotic form (10.8) by implicit differentiation.

8https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol58/addition/pl96.php
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We turn to the bounds for ¢(u). The power series expansion of S* with respect to w has

nonnegative coefficients, showing that h(7) = S*(7) > 0. Now, with a« = 1 + w as in (10.7),
isolate the first nonzero term of that series and write

Let K = 2(cosh(w) — 1) and wyg = 7/(1 + Ku). One has

(10.9) G(a*wg) — G(wg) < (a* — 1)wo max |G (two)].

1<t<a
Note that a?wq < 7 for all u < 1/2. Since G(w) >> 0, it follows that
G(a*wy) — G(wp) < (a* — DwoG’ (1),

therefore the term S* (wy) in h(wp) satisfies

6

. -1
S* (wo) < “ng + (a2 — 1)G' ().

As for the other term, the inequality sin(m — v) > v — v3/6 (u > 0) applied to the element
v =7 —wy = Kuwy yields

. w2
—S*(wo) ™' < —Ku + (Ku)3?0.

Collecting both contributions and substituting in the value G'(7) = (K — 72)/2, we obtain

a® —1 2 a? -1 w?
K-7)-K Ku)?—-2.
6 Gk T2 Eom) - Kud (K

h(wg) < h =

The right-hand side is an explicit rational function of u, satisfying
h~ (—27%(K — 1) + K/2)u?

as u — 0. One can verify that it remains negative for 0 < u < 276, Thus, one has
h(wg) < 0 < h(w), and h has a zero in the interval w € [wq, 7], that is, a zero of the form
a=7/(1+ p(u)) with0 < p(u) < Ku, as claimed. The corresponding statement for —«
follows by parity.

It remains to show that £+« are the only zeros of h in the disk |w| < p. We do it by
comparing them to the zeros of 1/ S* using Rouché’s theorem.

To this end, note first that the expression |sin(pe*®)| reaches its minimum for 6 € [0, /2]
when § = 0. Indeed, one has [sin(pe’?)|? = cosh(psin@)? — cos(pcosf)?. The term
cosh(psin )? is strictly increasing on the whole interval. For § < 6y := arccos(37/(2p)),
the term — cos(pcos)? is increasing as well, so that |sin(pe’)| > |[sinp| in that range,
whereas for 6y < 6 < 7, we have [sin(pe??)|? > cosh(psinfy)? —1 > 1 > [sinp|%
It follows that |sinw| > |sinp|, and hence |S*(w)~!| > p~'|sinp|, for w = pe'? with
0 < 6 < /2, and by symmetry on the whole circle |w| = p.
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Turning to S* (w) and reasoning as in (10.9) starting from (10.7), one can write

|5*(w)| < (a®> = 1) sup |cosh(tw) — 1| < (a® — 1) cosh(a?p)
1<t<a?

for |w| = p. Comparing these bounds leads to

5% (w)| <1072 < |S*(w) ™, Jw]=p, 0<u<27

Therefore, h(w) has the same number of zeros as w ™! sin w inside the circle. a

PROPOSITION 10.5. Forall 0 < u < 2716, we have by, = bi.(1 + ny), where
Ine] < (1 + 21.2u)*(1.1k + 446)u.

Proof. We use the notation of the previous lemma. In the expression (10.6) of ) (2), the
series S(z) and C(z) define entire functions, while #b* (w) = 2 — w/ tan w is a meromorphic
function with poles at w € ©Z. These observations combined with Lemma 10.4 imply that
6* is meromorphic in the disk |w| < 6.2, with exactly four simple poles located at w = +a
and w = £m. Only the first two poles depend on u.

One has 6*(w) ~ —(1 —w/7)~! as w — . Let F* denote the derivative of the mapping
w — wS* (w). With the help of a computer algebra system, it is not too hard to determine
that the singular expansion as w — « reads

5 (w) C*(a?) —cosa+2a tsina 1 _ R(u)
F*(a) — cosa l—w/a " 1—w/a’

and one has R(u) = 1 + (2cosh 7 — 2 — wsinh 7)u + O(u?) as u — 0. The expansions at
—a and —7 follow since §* is an even function. Set
2 R(u R(u 1 1
PR () (W ) .,
l-w/a 14+w/a 1-w/mr 14w/w

“(u, w),

where g* (u, -) now is analytic for |w| < 6.2 ~ 1.977 and vanishes identically when u = 0.
Since

R(u) 1 _ R(u) — 1 - elw)w/m
ltw/a 1+w/m7 1+w/a (Axtw/a)(1tw/7)’
we have
s 2R 1) 20(w)(2+ e(w)(w/m)?
T = Ty - (w1 - (o) T
that is,
5(2) 2Rw) —1) | 20()2+p(u)z/(n)° o, 2).

"1 2/@aR (1 2/2aP)(1 - 2/ @2n))

By Cauchy’s inequality, for any A < 1.9, the Taylor coefficients g, of g(u, -) satisfy

Arw) ~ *
loul < Gygerr AW = max - lg*(ww),
and therefore
1010 () < AR 1 2002+ o(w)z/Ga)? | Avw)

1—2/(2a)? (11— 2/(2a)2)2 1—2/2nN)2
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FIG. 10.1. The bound from Proposition 10.5 (top curve) and the measured error (bottom curve) in multiples
of the unit roundoff u for the evaluation of the scaled Bernoulli numbers in 53-bit floating-point arithmetic with
unbounded exponents. The script used to produce this plot is available in the supplementary material.

where we have bounded vz/(1 — vz) with v = 1/(27)? by the same expression with
v=1/(2a)%

For0 < uw < 2716 and using the enclosure of ¢(u) from Lemma 10.4, a brute force
evaluation using interval arithmetic yields the bounds

IR() 1] < (ma R ())u < 720 W

< 2.2u.
SageMath code for computing these estimates can be found in the supplementary material®.
By the same method, choosing A = /3/2 and making use of the fact that g*(0, w) = 0, we
get

We substitute these bounds in (10.10) to conclude that

Or < (2 x 72(20) 72 + 2.2k(2a) 72F + 747(270) ")

1
< oL ((2.2k +2 x 72)(1 4 2(cosh m — 1)u)?* + 747(2/3)%)u
(1 + 21.2u)?k
—————(2.2k + 891)u.
mpe (28I
The claim follows since, as noted in Lemma 10.1, |bg| > 2(27r)*2”C forall k > 1. |

COROLLARY 10.6. For all u and k satisfying 0 < u < 2716 4nd 43ku < 1, one has
b, = br(1 4 1) with || < (3k + 1213)u.

Proof. The assumption on ku implies (1 4 21.2u)%* <e. 0

Proposition 10.5 and Corollary 10.6 seem difficult to improve significantly, at least if
we keep reasoning analytically, without bringing into play the discrete low-level behavior of
rounding errors. Figure 10.1 illustrates that, as in the previous section, the bounds nevertheless
overestimate the actual accumulated errors. The script used to produce this plot is available in
the supplementary material'”.

https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol58/addition/pl96.php
Opttps://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol58/addition/pl96.php
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REMARK 10.7. Let us now prove our claim that no bound of the form 1, = O(ku) can
hold uniformly with respect to v and k. In the notation of Lemma 10.2, suppose that we
have s, = wand t; ; = ék_j for all k£, j. These values are reached, e.g., by taking vy ; = u
and v, = r; = r}, = 0 for all ¢, j, k. Since the vy, ; and v}, represent individual rounding
errors, this corresponds to a feasible situation in our model. Then, (10.4) translates into
5(2)S(2) = C(2)u — (0 © 8)(2)(b(2) + 6(2)), that is,

C(z)u — (S((l +u)z) — S(z))b(z)
S((14u)z) '

0(z) =

For small u, the denominator vanishes at z = 3 := —472/(1 + u), while the numerator is
analytic for |w| < 7 and does not vanish at 3 (it tends to —1 as u — 0 since S(8) ~ u/2
and 6(3) ~ —2u~1). Thus, the radius of convergence of §(z) is at most 472 /(1 + u). This
implies that 7, grows exponentially for fixed u.

11. Two variables: the equation of a vibrating string. As part of an interesting case
study of formal program verification in scientific computing, Boldo et al. [3, 4, 5] give a
full worst-case rounding error analysis of a simple explicit finite difference scheme for the
one-dimensional wave equation

2 2

(11.1) 9p _ 62@

ot? Ox?
Such a finite difference scheme is nothing but a multi-dimensional linear recurrence—in the
present case a two-dimensional one—with a time index ranging over the natural numbers
while the space index is restricted to a finite domain. We rephrase the relatively subtle error
analysis using a slight extension of the language introduced in the previous sections. Doing so
does not change the essence of the argument, but possibly makes it more palatable.

We use the notation and assumptions of [4, Section 3.2], [5, Section 5], except that we
flip the sign of §¥ to keep with our usual conventions. Time and space are discretized into
a grid with time step At and space step Az. To the continuous solution p(z, t) corresponds
a double sequence (pf) where k£ > 0 is the space index and 0 < ¢ < n is the time index.
Taking central differences for the derivatives in (11.1) and letting a = (cAt/Ax)? leads to

1 0o, @
p; = p; + 5 (Piv1 — 2pi +pi-1),
(11.2) 2
pitt =2 = pi T Falply - 208 + k), k>

The problem is subject to the boundary conditions p§ = p* = 0, k € N, and we are given
initial data (p?)?". In accordance with the Courant-Friedrichs-Lewy condition, we assume
O0<a<l.

Boldo et al. study an implementation of (11.2) in double-precision floating-point arith-
metic, but their focus is on the propagation of absolute errors. Their local error analysis shows
that the computed values (pF) corresponding to (p¥) satisfy'!

7=l + 0

~ ~ a - - a
13) & B =3+ S0 — 280+ 0y) + 6] — (80 + S 00, — 200 +60))
BTt =25 BT+ a(l = 2 B 0T k>

!'The correcting term involving 69 in the expression of 5} will help make the expression of the overall error more
uniform.


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

ERROR ANALYSIS OF RECURRENCES USING GENERATING SERIES 217

with |6 < & := 78 - 2752 for all i and all k¥ > 1. While the discussion of error propaga-
tion in [4, 5] assumes 00 = 0, the machine-checked proof actually allows for initial errors
|69] < 69 := 14 - 2752 and gives the additional bound |6} | < 6 := 81 -27°3, Both in [4, 5]
and here, the computation of these local bounds is the only step of the analysis that depends
on the assumption that the computation is run in double precision.

From there, they prove [5, Theorem 5.2] that one has |pF — p¥| < £6(k + 1)(k + 2) for
all 7 and k. (As usual, a naive analysis would lead to an exponential bound.) The main aim of
this section is to give a new proof of this result.

The iterations (11.2) and (11.3) are, a priori, valid for 0 < ¢ < n only, but it is not hard to
see that they can be made to hold for all i € Z by extending the sequences (p¥), (5¥), and (6¥)
by odd symmetry and (2n)-periodicity with respect to 7. Viewing time as the main variable,
we encode space-periodic sequences of period 2n by generating series of the form

co n—1

(11.4) Fla,t)y =YY" flaith e,

k=0i=—n

where Q = R[z]/(z*" — 1) is the ring of polynomials modulo 2°" — 1. When f is an element
of Q[[t]], we denote

[ty =Y 3 Rttt ) =3k ) = e
k

k>2u 1

7

Multiplication by 2 and ¢ in Q[[t]], respectively, corresponds to backward shifts of the indices
iand k.

Let A(z,t) = p(x,t) — p(x,t) (where A, p, and p all are special cases of (11.4)) be
the generating series of the global error. Our goal is to obtain bounds for the A¥. We
start by expressing A(x,t) in terms of d(x,t). This is effectively a more precise version
of [5, Theorem 5.1] covering initial data with numeric errors.

PROPOSITION 11.1. One has

(1L.5) Az, t) = Az, t)n(x, t),
where
116  Awt)=— " 0. t) = 6(z, 1) — ()b (2),

1—p(x)t+12’
with
o) =2+alz™t -2+ 1).

Proof. By comparing (11.3) with (11.2) and observing how A} simplifies thanks to the
correcting term in ;, we get

A} = df, k=01,
(1L7) k+1 k k—1 k k k k+1
AP = 2AF — AL a(AF - 2AF A )P k1> 2
In terms of series, (11.7) translates into

(11.8) A(z) = 6% (), Al(z) = 6 (x),
(11.9) t7 'A% (x,t) = 2AY (z,t) — tA(z, t) +a(z™ — 2+ 2)AY (2, t) +t716% (x, 1).
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Taking into account (11.8), equation (11.9) becomes
A(z,t) = 2t(A(w,t) — do(2)) — 2 Az, ) + a(z™ — 2+ 2)t(A(z,t) — 6°(x)) + 6(x, 1),
that is,

(1—2+a(z™t =2+ )t + Az, t) = §(x,t) — o(2)tdo ().

The coefficient on the left-hand side of this identity is invertible in [[¢]], leading to the
equality A(x,t) = Az, t)n(x, t). g

Rather than by bivariate majorant series, we will control elements of Q[[¢]] by majorant
series in a single variable relative to a norm on 2. We say that f € Rx[[t]] is a majorant
series of f € A[[t]] with respect to a norm ||-||s on an algebra A and write f <, f, when
Ifells < fr for all k € N. The basic properties listed in Section 6 extend in the obvious way.
In particular, if ||-||, |||, ||||s are norms such that [|uv||, < |lul-||v]s, then f <, f and

g <s gimply fg <q fg.
Foru = )", u;x* € , we define

it=—n i=—n

n—1 n—1 1/2 1
n—
bl = 3 Juil, fhulle = (Z u> ol = k).

Note the inequality [|uv]|eo < |[ul/1||v||oo for u, v € § (an instance of Young’s convolution
inequality).
The local error analysis yields
5.2

5(2,1) Koo 60+ 6t + 15t .

Using the notation of Proposition 11.1, one has ||(z)||; < 2, hence [¢(2)0°(2) |00 < 26°
and

ot? < )

1—t " 1—t

(11.10) N(w, 1) Koo 0° + (61 + 280)t +

We first deduce a bound for the global error in the quadratic mean with respect to space. We
will later get a second proof of this result as a corollary of Proposition 11.4; the main interest
of the present one is that it does not rely on Lemma 11.3.

PROPOSITION 11.2. One has

Von
A(Ji,t) <2 m&

In other words, the root mean square error at time k satisfies

1= Va2
(Z(Af)?) )

n
=0

Proof. The elements of €2 can be evaluated at the 2n-th roots of unity, and the collection
u* = (u(w))y2n=1 of values of a polynomial v € € is nothing but the discrete Fourier
transform of its coefficients. The coefficientwise Fourier transform of formal power series,

F@) = (1) = (f(w; t))wrn=1,
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is an algebra homomorphism from Q[[t]] to C2"*[[t]]. One easily verifies Parseval’s identity for
the discrete Fourier transform:

u € Q,

D P——Y
ul|os = —||u*||2,
2 277, 2

where the norm on the right-hand side is the standard Euclidean norm on C?",
The uniform bound (11.10) resulting from the local error analysis implies

V2n -
77(37at) <2 1777;57

and Parseval’s identity yields

2né

*
t :
() <2 7

Atz = w = ¢, the factor X in (11.5) takes the form

1

Aw, 1) = 1= bt + 127

bo =14 a(cosf — 1),
where —1 < b, <_1 due to the assumption that 0 < a < 1. The denominator therefore factors
as (1 — (,t)(1 — (i), where |(,| = 1, so that we have
1 < 1
(1—=¢ut)(1—Cut) (1—1)2

in C[[t]] and hence \*(t) <o (1 — )72
Since the entrywise product in C?" satisfies [[u*v*||2 < ||u*||oo||v*
and n* combine into

AMw,t) =

o, the bounds for \*

2nd

N0 () <2

Using Parseval’s identity again, we conclude that

V2nd

Az, t) = Mz, t)n(z, t) <2 [(ENE

as claimed. The second formulation of the result comes from the symmetry of the data: one
has A(z~ 1, 1) = —A(x, 1), hence | AF[|3 = 25" (AR forallk. O

Proposition 11.2 immediately implies A(z,t) <o, 6v2n(1 —t)~3. However, this
estimate turns out to be too pessimistic by a factor v/2n. The key to better bounds is the
following lemma, proved (with the help of generating series!) in Appendix C of [5]. The
argument, due to M. Kauers and V. Pillwein, reduces the problem to an inequality of Askey
and Gasper via an explicit expression in terms of Jacobi polynomials that is proved using
Zeilberger’s algorithm. It remains intriguing to find a more direct way to derive the uniform
bound for A.

LEMMA 11.3. The coefficients \¥ of \(x,t) are nonnegative.

Strictly speaking, the nonnegativity result in [5] is about the coefficients, not of
Az, t) € Q[[t]] as defined above, but of its lift to R[x, 2~ 1][[¢]] obtained by interpreting (11.6)
in the latter ring. It is thus slightly stronger than the above lemma.
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From this lemma it is easy to deduce a more satisfactory bound for the global error,
matching that of [5, Theorem 5.2].
PROPOSITION 11.4. One has the bound

A(l‘,lf) <L W,

that is,

AP < 50k +1)(k +2)

N =

foralliand k.
Proof. Lemma 11.3 implies A(z,t) <3 A(1,t). This bound combines with (11.10) to
give
Az, t) = Mz, t)n(z, t) Koo A(1,1) o _ 9
I - ) 77 9 o] I (1_t)_(1_t)33

just like in the proof of Proposition 11.2. 0

12. Solutions of linear differential equations. For the last application, we return to
recurrences of finite order in a single variable. Instead of looking at a specific sequence, though,
we now consider a general class of recurrences with polynomial coefficients. It is technically
simpler and quite natural to restrict our attention to recurrences associated to nonsingular
differential equations under the correspondence from Lemma 4.2: thus, we consider a linear
ordinary differential equation

(12.1) pr(2)y"(2) + -+ p1(2)y (2) + po(2)y(2) =0,

where po, . .., p, € C[z], and assume that p,.(0) # 0. We expect that this assumption could
be lifted by working along the lines of [30].

It is classical that (12.1) then has r linearly independent formal power series solutions
and all these series are convergent in a neighborhood of 0. Suppose that we want to evaluate
one of these solutions at a point lying within its disk of convergence. A natural way to proceed
is to sum the series iteratively, using the associated recurrence to generate the coefficients.
Our goal in this section is to give an error bound for the approximation of the partial sum
computed by a version of this algorithm. We do not consider the truncation error here (see
however Remark 12.3 below).

We formulate the computation as an algorithm based on interval arithmetic that returns an
enclosure of the partial sum. Running the whole loop in interval arithmetic would typically
lead to enclosures of width that grows exponentially with the number of computed terms and
thus to a catastrophic loss of accuracy. Instead, the algorithm executes the body of the loop
in interval arithmetic, which saves us from going into the details of the local error analysis
but “squashes” the computed interval to its midpoint after each loop iteration. It maintains a
running bound for the discarded radii that serves to control the overall effect of the propagation
of local errors. This way of using interval arithmetic does not create long chains of interval
operations depending on each other and only produces a small overestimation.

The procedure is presented as Algorithm 1. While, to the best of our knowledge, the
algorithm is new, the approach just sketched is a very natural one. The main contribution of
this section is the automated error analysis that makes it applicable.
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In the algorithm and the analysis that follows, we use the notation of Section 4 for
differential and recurrence operators, with the symbol 9 denoting d/dz. When P = p,.0"+- - -
is a differential operator, we denote by

p(P) = min{[¢] : pr(§) = 0} € [0, o0]

the radius of the disk centered at the origin and extending to the nearest singular point. Variable
names set in bold represent complex intervals, or balls, and operations involving them obey
the usual laws of midpoint-radius interval arithmetic (i.e.,  * y is a reasonably tight ball
containing x * y, for all z € =, y € y, and for every arithmetic operation *). We denote by
mid(x) the center of a ball & and by rad(x) its radius.

As mentioned, the key feature of Algorithm 1 is that step 5al computes u,, based only
on the centers of the intervals ©,,_1, ..., U,_s, ignoring their radii. In the remainder of this
section, we will prove that thanks to the correction made at step 6, the enclosure returned
when the computation succeeds is nevertheless correct. The algorithm may also fail at step 6,
but that can always be avoided by increasing the working precision (provided that interval
operations on inputs of a radius tending to zero produce results of a radius that tends to zero).

With the notation from the algorithm, let u(z) be a power series solution of P - u = 0
corresponding to initial values ug € uy, ..., u, € u,. The Cauchy existence theorem implies
that such a solution exists and that u(z) converges on the disk |z| < p(P). We recall basic
facts about the recurrence obtained at step 1. Let Q(X) = X(X —1)--- (X —r +1).

LEMMA 12.1. The coefficient sequence (uy,) of u(z) satisfies

(12.3) bo(n)un = b1 (N)un—1 + -+ + bs(N)tp_s,

where one has by(n) = p,(0)Q(n). In particular, by is not the zero polynomial.

Proof. Observe that for p € C|z], the operator Op = pd + p’ has p as a leading coefficient
when viewed as a polynomial in 9 with coefficients in C[z] written to the left. It follows that
2#9% = (20)* + (terms involving lower powers of 3) and therefore that 2" P can be written as
a polynomial in z and 20, as implicitly required by the algorithm. That the operator L(S~1, n)
annihilates (u,,) follows from Lemma 4.2.

The only term of 2" P, viewed as a sum of monomials p; ; 23 9%, that can contribute to by
is p.(0)2"0", for all others have i — j < 0. The relation zX9% = (20 — k + 1)2F =191 then
shows that by(n) = p,-(0)Q(n), where po(0) # 0 by assumption. a

Leta(z) = Mc ta(1 — az)~™ where M, ¢, and « are the quantities computed at step 2
of the algorithm.

LEMMA 12.2. Let y, ) be power series such that P -y < 0"~Y(0 — a) - 9. If one has
|yn| < Gn forn <, then y < g.

Proof. Let P = 9"~1(8 — a(z)), that is,

Mc o ) =

D _ ar—1 _
P=0 (8 (1—-az)m

where

. <r1> (m+i—1)! Mc lait?
{

fi(z) = (m—l)! (1_az)m+i'

The parameters ¢, m, and « are chosen so that (1 — £712)7! <« (1 — az)™! for ev-
ery root ¢ of p,, and hence p.(2)~! < ¢ (1 — az)™™. Since, additionally, one has
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Algorithm 1

Input An operator P = p,.(2)0" + - - - 4+ p1(2)9 + po(2), with p,.(0) # 0. A vector (u,,)"_}
of ball initial values. An evaluation point ¢ € C with || < p(P). A truncation
order V.

Output A complex ball containing Zg;ol un, ("™, where u(z) is the solution of P - v = 0
corresponding to the given initial values.
1. [Compute a recurrence relation.] Define L € K[X]|[Y] by z"P = L(z,z0). Compute
polynomials by (n), . . ., bs(n) such that

L(S_l,n) =bo(n) — bl(n)S_l — o —bg(n)S™*.

2. [Compute a majorant differential equation.] Let m = max(1,degp,). Compute a ra-
tional a ~ p(P)~! such that p(P)™! < a < [¢|7!. (If p(P) = oo, take, for instance,
a =~ [¢|71/2.) Compute rationals ¢ ~ |p,.(0)| and M such that 0 < ¢ < [p,(0)| and
M > maxj—) Y5547 Ipijla =7

3. [Initial values for the bounds.] Compute positive lower bounds for the first » terms of
the series §(z) = exp (Mc™'a [; (1 — az)™™). (This is easily done using arithmetic on
truncated power series with ball coefficients.) Deduce rationals ¢ > max’_g (|wn|/Gn)
and 6o > max"_4 (|0, /n)-

4. [Initialize the recurrence.] Set

(’a,r_s, . ,11_1,110, ce ;ﬂr—l) = (O7 N 7O,I'Ilid('u,o)7 . ,mid('u,r_l)),

so =0, ty = 1, 7 = 0. (Although most variables are indexed by functions on n for ease of
reference, only (%,—;)5_g, Sn, tn, and 77 need to be stored from one loop iteration to the
next.)
5. Forn=1,...,N,do:
(a) If n > r, then:
1. [Next coefficient.] Compute

in ball arithmetic.
2. [Round.] Set @,, = mid(w,). (If u,, contains 0, it can be better in practice to
force i, to 0 even if mid(wu,,) # 0 and increase rad(u,,) accordingly.)
3. [Local error bound.] Let pt = [tp—1| + -+ - + |tn—s|. If u # 0, then update 7 to
max(7, ), where 1, = rad(w,)/u.
(b) [Next partial sum.] Compute ¢t,, = ( -t,—1 and s,, = S;,—1 + Up—1t,—1 using ball
arithmetic.
6. [Account for accumulated numerical errors.] Compute o > c¢(|¢] + -+ - + [(|®). If o7 > 1,
then signal an error. Otherwise, compute
MeC| , Ay > 50+ﬁ00(1:kA)ﬁeXp A .
(1= al¢))™ 1—o1) 1—on

(12.2) A>

and increase the radius of sy by Ay.
7. Return sy .
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(az)?(1 — az)™! < (1 — az)~L, it follows that, for 0 < i < r,

pr(2) < c(l—az)m B < (1-az)m < fil?),

pi(2) Zj |pi,j|2j Z| | —j (az)j Mc tait!
il
- pZJ C(l _ O[Z)"L
by definition of M. By Proposition 6.4, these inequalities and our assumptions on ¢ imply
that one has y < 7. 0

Lemma 12.2 applies in particular to series y, § with P-y = 0 and §' = ag. The solution g
of the latter equation with gy = 1 is the series

(12.4) g(z) = exp /Z a(w)dw
0

already encountered at step 3 of the algorithm. Observe that none of its coefficients vanishes.
Therefore, step 3 runs without error and ensures that |u,,| < Ggg, (and |0, | < 5o gn) forn < r.
As P - u = 0, the lemma implies u < g.

REMARK 12.3. Therefore, the tails of the series i(z) = pg(z) determined by Algo-
rithm 1 are majorant series of the tails of u(z). This means that the algorithm can be modified
to simultaneously bound the truncation and rounding error, and most of the steps involved
can be shared between both bounds. We refer the reader to [29] and the references therein
for more on the computation of tight bounds for truncation errors. Though our focus here
is on the propagation of local errors, the modified algorithm is the more interesting one for
applications in rigorous computing, for it can serve as the basic brick of an algorithm for
computing rigorous enclosures of solutions of ODEs with polynomial coefficients.

Let us now turn to the loop. As usual, consider the computed coefficient sequence (i),
and let §,, = 4,, — u,,. Write

(bl (’I’L)’l]n,1 + 4+ bs(n)ﬂnfs) + €n, r<n < N,

so that |e,,| < rad(u,,). Let n, = e, /(|tn—1] + -+ + |tn—s|) when r < n < N and the
denominator is nonzero and 7,, = 0 otherwise. We thus have, for all n € Z,

(12.3)  bo(n)ty, — b1 (N)p—1 — -+ — bs(N)Up—s = bo(M)Np(|Upn—1| + - -+ + |Un—s|)

and, thanks to step 5a3 of the algorithm, |n,,| < 7. By subtracting (12.3) from (12.5) and
bounding 7,, by 7, we obtain

(12.6)  [bo(n)dn — by (n)dn_1 — - — bs(n)On_s| < Q) (|1 + - + |En_s]).

Letp(z) =z + -+ + 2°.
LEMMA 12.4. Let € Rx|[z]] be any majorant series of (¢ *u)'(z). The equation

(12.7) (1 = eip(2))(2) = (a(2) + g’ (2))d(2) + cijo(z).

admits a solution S(z) with the initial value &, computed at step 3, and this solution is a
majorant series of §(z).
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Proof. In terms of generating series, (12.6) rewrites as 2" P-§(z) < cfQ(20)(z) - *u(2).
As already observed in the proof of Lemma 12.1, one has Q(z0) = 2"9", so that the previous
equation is equivalent to

P-3(z) < cifd”p(2) - F(2).
Let 4 be the solution of
(12.8) (0 —a(2)) - 4(2) = ciidp(2) - Fa(z)

with 49 = do. By Proposition 6.4, we have dy(z) < 4(z), where § is given by (12.4). In
addition, as noted when discussing step 3, we have |0,,| < 50 gn, for n < r, hence |9, | < 4,
for n < r. As 4 also satisfies P - § < 0"(0 — a) - 4, we can conclude that 6 < 4 using
Lemma 12.2. But then, since & = u + &, we have @ < fu + 4, hence (gp”a)/ <L 0+ (9F)
and (12.8) implies
3 = a4+ e (¢40) < cligd + (a+ i’ )i + cifp,

where we note that (0) = 0. This inequality is of the form required by Lemma 6.5, which
yields the existence of 4 and the inequality 4 < 5. We thus have § < <K 5. 0

It remains to solve the majorant equation (12.7) to get an explicit bound for 5.

PROPOSITION 12.5. The generating series §(z) of the global error for u,, committed by
Algorithm 1 satisfies

(129) 5(s) < DT TP+ 20(2) ( _Fa(z) ) i() = Mo

1 —cijp(z) 1 —cijp(z) (1 —az)m™
Proof. The solution h(z) of the homogeneous part of (12.7) with ho = 1 is given by

a(w)

M) = et p/ T etro(a) "

Observe that
/ ~ N ~ ~ ~ ~ N ~
(M) < tio(pg) = to(¢’ + a)j < do(¢’ + pa)h

so that, in Lemma 12.4, we can take #(z) = (¢’ + pa)h. The method of variation of
parameters then leads to the expression

5(2) = h(z) <So+cn /O ’ f’(“’)dw> — () (50 + et (tp(z) + /0 Zw(w)&(w)dw)).

h(w)
Using the bounds from Lemma 6.6

2 a(w) za(z)
e e

, / " p(w)a(w)dw < zp(2)a(2),

we see that §(z) is bounded by the right-hand side of (12.9). Note in passing that za(z) could
be replaced by foz a at the price of a slightly more complicated final bound. a
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Step 6 of Algorithm [ effectively computes an upper bound for |5(¢)| using inequal-
ity (12.9). It follows that the returned interval s, contains the exact partial sum Zg;ol U ("
corresponding to the input data, as stated in the specification of the algorithm. This concludes
the proof of correctness of Algorithm 1.

REMARK 12.6. Instead of €, /(|@p—1| + - - - + |Gn—s|), one could compute a run-time
bound directly for |e,, / b, |. Doing so leads to a somewhat simpler variant of the above analysis.
We chose to present the version given here because it is closer to plain floating-point error
analysis—and gives us an excuse to illustrate the generalization to recurrences with polynomial
coefficients of the technique of Section 9. Another small advantage is that plugging in a sharper
first-order majorant equation as suggested below requires no other change to the algorithm,
whereas it may not be obvious how to compute a good lower bound for b

It is natural to ask how this algorithm compares to naive interval summation. We limit
ourselves to a short informal discussion. When the operator P, the series u(z), and the
evaluation point ( are fixed, our bound Ay for the global error decreases linearly with bo + 7.
Suppose that we run the algorithm with a relative working precision of ¢ bits. Under the
reasonable assumptions that rad(u,,) = O(27") for 0 < n < r and that both 7, and rad(s,,)
are'> O(n927) for some d, we then have Ay = O(N27*). As the truncation order N
necessary for reaching an accuracy |sy — u(¢)] < 277is N = O(g), this means that, for
fixed u and ¢, the algorithm needs no more than ¢ + O(log ¢) bits of working precision to
compute an enclosure of u(¢) of width 279. In the same setting, computing the partial sum
purely in ball arithmetic (that is, without Step 5a2 of Algorithm 1) may require a working
precision of the order of ¢ + AN bits, for some A\ depending on the recurrence.

The majorant series of Proposition 12.5 was chosen to keep the algorithm simple, not
to optimize the error bound, so that we do not expect the version described here to be
practical. One helpful feature it does have is that the parameter « can be taken arbitrarily close
to p(p,.)~! without forcing other parts of the bound to tend to infinity. (This is in contrast with
the geometric majorant series typically found in textbook proofs of theorems on differential
equations.) Nevertheless, the exponential factor in (12.2) can easily grow extremely large, and
we expect Algorithm 1 to lead to unusable bounds in practice for moderately complicated
examples. Even in simple cases, forcing a majorant series of finite radius of convergence when
Py 1s constant is far from optimal.

The same idea, though, can be used with a more sophisticated choice of majorant series.
In particular, the algorithm adapts without difficulty if a(z) is a sharper rational majorant of
the coefficients of the equation. As a first step toward making the algorithm practical, we
have implemented a variant based on the more flexible framework of [29] in the ore_algebra
package [26, 28] for SageMath. Preliminary experiments suggest that, in some cases, it
is very effective in reducing the working precision necessary for computing enclosures of
solutions of differential equations with polynomial coefficients. At this stage, though, it does
not consistently run faster than naive interval summation, due both to overestimation issues
and to the computational overhead of obtaining good bounds. We leave it to future work
to develop an efficient Taylor method for solving linear ODEs with polynomial coefficients
incorporating the technique presented in this section. It would also be interesting to extend
the analysis to the computation of “logarithmic series” solutions of linear ODEs at regular
singular points.

12Such a growth for 7 is reasonable since the coefficients b; of the recurrence are polynomials. Regarding s.,, we
can in fact expect to have rad (¢, )/¢" = O(n27t), and, since u, (™ converges geometrically to zero, rad(sy) ~
rad(sn—1) + O(nun¢™271) + O(271), leading to rad(s,) = O(n27%).
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Supplements. Additional resources are available with this paper at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol58/addition/pl96.php

e File: bernoulli.mw (+ bernoulli.pdf)
Maple worksheet with calculations on scaled Bernoulli numbers (supporting material
for Section 10). Also available as pdf-version bernoulli.pdf.

e File: num.ipynb (+ num.html)
SageMath notebook for the computation of numeric bounds used in the proof of
Proposition 10.5. Also available as html-version num.html.

e File: plot-toy.jl
Julia program used to produce Figure 9.1.

e File: plot-bernoulli.jl
Julia program used to produce Figure 10.1.
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