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RANGE RESTRICTED ITERATIVE METHODS
FOR LINEAR DISCRETE ILL-POSED PROBLEMS∗

ALESSANDRO BUCCINI†, LUCAS ONISK‡, AND LOTHAR REICHEL‡

Abstract. Linear systems of equations with a matrix whose singular values decay to zero with increasing index
number, and without a significant gap, are commonly referred to as linear discrete ill-posed problems. Such systems
arise, e.g., when discretizing a Fredholm integral equation of the first kind. The right-hand side vectors of linear
discrete ill-posed problems that arise in science and engineering often represent an experimental measurement that is
contaminated by measurement error. The solution to these problems typically is very sensitive to this error. Previous
works have shown that error propagation into the computed solution may be reduced by using specially designed
iterative methods that allow the user to select the subspace in which the approximate solution is computed. Since
the dimension of this subspace often is quite small, its choice is important for the quality of the computed solution.
This work describes algorithms for three iterative methods that modify the GMRES, block GMRES, and global
GMRES methods for the solution of appropriate linear systems of equations. We contribute to the work already
available on this topic by introducing two block variants for the solution of linear systems of equations with multiple
right-hand side vectors. The dominant computational aspects are discussed, and software for each method is provided.
Additionally, we illustrate the utility of these iterative subspace methods through numerical examples focusing on
image reconstruction. This paper is accompanied by software.
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1. Introduction. We are interested in the approximate solution of linear systems of
equations

(1.1) Ax = bδ,

whereA ∈ Rn×n is a large matrix whose singular values decay to zero with increasing index
number without a significant gap. This makes the matrix A severely ill-conditioned and
possibly rank-deficient. Linear systems of equations with such a matrix are commonly referred
to as linear discrete ill-posed problems. They arise, for instance, from the discretization of
a Fredholm integral equation of the first kind; see, e.g., Engl et al. [15] and Hansen [17]
for discussions on ill-posed and linear discrete ill-posed problems. In particular, discrete
deconvolution problems that arise in image restoration give rise to linear discrete ill-posed
problems; see [20]. We will illustrate the performance of the methods discussed with a focus
on image restoration.

The right-hand side vector bδ ∈ Rn in linear discrete ill-posed problems typically arises
from measured data from experiments in science and engineering. These data are frequently
contaminated by a measurement error e ∈ Rn. Let b ∈ Rn denote the unknown error-free
vector associated with bδ . Then

bδ = b+ e.

We assume that the exact right-hand side b is in the range ofA. This is required when using
the discrepancy principle (see below) to determine how many steps of the chosen iterative
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methods to carry out. We are interested in computing an accurate approximation of the solution
x† of minimal Euclidean norm of the unavailable linear system of equations

(1.2) Ax = b.

We note that because of the ill-conditioning ofA and the error e in bδ , the least-squares solution
of minimal Euclidean norm of (1.1) generally does not provide a useful approximation of x†.

A popular and simple approach to determine a useful approximation of x† is to apply an
iterative solution method to (1.1) and carry out sufficiently few iterations. Let x0 = 0 be the
initial iterate used by an iterative method. The successive iterates x1,x2, . . . will approach x†

with increasing index number when the index numbers are small enough. However, because
of the ill-conditioning ofA and the error e in bδ, iterates xk with large indices will diverge
from x†. This behavior of the iterates is known as semiconvergence. Thus, there is at least one
optimal iterate xp such that∥∥xp − x†∥∥ ≤ ∥∥xk − x†∥∥ , k = 0, 1, . . .

Throughout this paper ‖ · ‖ denotes either the Euclidean vector norm or the Frobenius norm
depending on the context.

The software accompanying this paper seeks to compute an accurate approximation of x†

by determining the first iterate xp that satisfies the discrepancy principle. This approach can
be used when a bound

‖e‖ ≤ δ

is known. The discrepancy principle prescribes that an iterative method for the approximate
solution of (1.1) should be terminated as soon as an iterate xp that satisfies∥∥∥Axp − bδ∥∥∥ ≤ τδ
has been found. Here τ > 1 is a user-specified constant that is independent of δ; see [15] for a
discussion on the discrepancy principle. Note that the iterate xp determined by the discrepancy
principle depends on δ; generally, the number of iterations p increases when δ decreases.

When an upper bound for ‖e‖ is not available, the discrepancy principle cannot be applied
unless such a bound can be estimated. It is possible to compute a fairly accurate estimate
of ‖e‖ in some situations. This is illustrated in [22, 23] when the error e can be modeled
by additive white Gaussian noise of unknown variance. An application of the discrepancy
principle also requires the linear systems of equations (1.2) to be consistent. This property is
important to be able to show that the iterates xp converge to x† when δ converges to zero. In
applications, the consistency of (1.2) is particularly important when the amount of error e in
bδ is small.

There are many other approaches available to identify a suitable iterate when the dis-
crepancy principle cannot be applied, including the L-curve criterion and generalized cross
validation; see, e.g., [7, 8, 19, 27, 28, 31, 32]. These methods are referred to as “heuristic”;
they generally perform well, but may fail for certain problems; see Kindermann [27] for an
insightful discussion on heuristic methods. Some of the references listed above are concerned
with Tikhonov regularization, which is an alternative to the truncated iteration described above.
Many methods that use Tikhonov regularization quite easily can be modified to instead apply
a truncated iteration. Conversely, the iterative methods described in this paper can easily
be applied together with Tikhonov regularization; see, e.g., [24]. While the algorithms of
this paper implement stopping criteria based on the discrepancy principle, they can easily be
modified to be applicable with a heuristic rule for determining a suitable iterate.
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The generalized minimal residual (GMRES) method is a popular iterative method for
the solution of linear systems of algebraic equations with a large non-symmetric matrix that
stem from the discretization of linear well-posed problems such as elliptic partial differential
equations with Dirichlet boundary conditions [34]. The application of GMRES to the solution
of linear discrete ill-posed problems is described in, e.g., [9, 10, 11, 18]. Let the initial iterate
be x0 = 0. Then the pth iterate, xp, computed by GMRES applied to the solution of (1.1)
satisfies ∥∥∥Axp − bδ∥∥∥ = min

x∈Kp(A,bδ)

∥∥∥Ax− bδ∥∥∥ ,
where

Kp(A, bδ) = span
{
bδ,Abδ, . . . ,Ap−1bδ

}
is a Krylov subspace. We tacitly assume that p is small enough so that dim

(
Kp
(
A, bδ

))
= p.

Typically, this condition holds for linear discrete ill-posed problems when the iterations are
terminated by the discrepancy principle.

In applications where the desired solution x† of (1.2) is the discretization of a smooth
function, it has been illustrated in, e.g., [9, 18], that a variant of GMRES, known as range
restricted GMRES (rrGMRES), often delivers more accurate approximations of x† than the
standard GMRES method when applied to (1.1). The name of the method derives from the fact
that the computed iterates, xp, live inR(A). Here and throughout this paperR(M) denotes
the range of the matrix M . With initial iterate x0 = 0, the pth iterate, xp, determined by
rrGMRES satisfies ∥∥∥Axp − bδ∥∥∥ = min

x∈Kp(A,Abδ)

∥∥∥Ax− bδ∥∥∥ ,
where

(1.3) xp ∈ Kp
(
A,Abδ

)
= span

{
Abδ,A2bδ, . . . ,Apbδ

}
.

rrGMRES was first used in [9]. Properties and applications of this method are described
in [2, 3, 4, 33]. The implementation used in these references demands reorthogonalization
when computing an orthonormal basis for the Krylov subspace (1.3), because the Fourier
coefficients of bδ with respect to this basis have to be computed. An implementation that does
not require reorthogonalization was subsequently described in [29, 30].

It is natural to extend rrGMRES to the `-shifted GMRES method, which solves the
minimization problem

(1.4)
∥∥∥Ax(`)

p − b
δ
∥∥∥ = min

x∈Kp(A,A`bδ)

∥∥∥Ax− bδ∥∥∥ ,
where

x(`)
p ∈ Kp

(
A,A`bδ

)
= span

{
A`bδ,A`+1bδ, . . . ,A`+p−1bδ

}
, for ` = 0, 1, . . . , `max,

with `max typically small (usually 3–4). The superscript of x(`)
p indicates the subspace in which

this vector lives, specifically x(`)
p ∈ R(A`). Thus, rrGMRES corresponds to the shift ` = 1.

Preliminary computational results reported in [13] with `-shifted GMRES illustrated that using
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a shift ` > 1 may result in more accurate approximations of x† than those determined by
standard GMRES (0-shifted GMRES) and rrGMRES.

It is the purpose of this paper to provide further illustrations of the performance of the
`-shifted GMRES method and to discuss some computational aspects, including its efficient
implementation and storage requirement. Our implementation of the `-shifted GMRES method
does not require much more computer storage than the standard GMRES method. Moreover,
the 1-shifted GMRES method described requires less storage than the algorithm provided
in [30]. We also develop two block analogues of the `-shifted GMRES method, which are
convenient to use when the right-hand side in (1.1) is replaced by a “block vector”, i.e., a
matrix with a few columns. Linear discrete ill-posed problems of this kind arise, e.g., in
color image restoration. MATLAB codes for the `-shifted GMRES method (1.4) and its block
analogues, referred to as the `-shifted block GMRES (BGMRES) and `-shifted global GMRES
(gl-GMRES) methods, accompany this paper.

The remainder of this paper is organized as follows: Section 2 describes the `-shifted
GMRES solution method for the minimization problem (1.4) and discusses its properties. The
`-shifted BGMRES method is introduced in Section 3 followed by the `-shifted gl-GMRES
method in Section 4. Some background on image deblurring is provided in Section 5, where
we also illustrate the performance of our methods with a few computed examples. Section 6
contains concluding remarks.

2. The `-shifted GMRES method. We first review the computation of the rrGMRES
iterate, x(1)

p , by the method described in [29, 30]. Subsequently, we discuss the computation of
the `-shifted GMRES iterate, x(`)

p , for ` = 2, 3, . . . , `max, and consider computational aspects.
Throughout our derivations, we emphasize the use of elementary reflectors for the efficient
upper-triangularization of the matrix of the projected linear systems of equations.

Application of p-steps of the Arnoldi process to the matrix A with initial vector bδ

generically gives the decomposition

(2.1) AV p = V p+1Hp+1,p,

where the matrix V p+1 = [v1,v2, . . . ,vp+1] ∈ Rn×(p+1) has orthonormal columns with ini-

tial column v1 = bδ/
∥∥∥bδ∥∥∥. The matrixV p ∈ Rn×p is made up of the first p columns ofV p+1,

and Hp+1,p ∈ R(p+1)×p is an upper Hessenberg matrix with positive subdiagonal entries.

The columns of V p+1 span the Krylov subspace Kp+1

(
A, bδ

)
. The decomposition (2.1) is

the basis for the implementation of the standard GMRES method; see [34, Chapter 6]. The
computation of the decomposition (2.1) requires p matrix-vector product evaluations withA.
The decomposition is conveniently computed with the Arnoldi process, which applies the
modified Gram-Schmidt method for orthogonalization of the columns of V p+1. The Arnoldi
process is described by Algorithm 1. A discussion of this algorithm can be found, e.g., in [34].

Introduce the QR factorization of the upper Hessenberg matrixHp+1,p on the right-hand
side of (2.1),

(2.2) Hp+1,p = Q
(1)
p+1R

(1)
p+1,p,

where the matrixQ(1)
p+1 ∈ R(p+1)×(p+1) is orthogonal andR(1)

p+1,p ∈ R(p+1)×p has a leading
p × p upper triangular submatrix R(1)

p and a vanishing last row. Because Hp+1,p is upper

Hessenberg, the matrixQ(1)
p+1 can be expressed as the product of p elementary reflectors

(2.3) Q
(1)
p+1 = G1G2 . . .Gp,
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Algorithm 1: The Arnoldi process.

Input:A ∈ Rn×n and bδ ∈ Rn
Output: V j+1 ∈ Rn×(j+1) and Hj+1,j ∈ R(j+1)×j

1 Set v1 = bδ/
∥∥∥bδ∥∥∥;

2 for j = 1, 2, . . . , n do
3 Compute wj = Avj ;
4 for i = 1, 2, . . . , j do
5 hi,j = (wj ,vi);
6 wj = wj − hi,jvi;
7 end
8 hj+1,j = ‖wj‖ ;
9 if hj+1,j = 0 then

10 Stop
11 end
12 vj+1 = wj/hj+1,j ;
13 end

where the Gj ∈ R(p+1)×(p+1), for j = 1, 2, . . . , p, are symmetric elementary reflectors;
specifically,Gj is the identity matrix except for a 2× 2 block in the rows and columns j and
j + 1. It follows from (2.3) thatQ(1)

p+1 is of upper Hessenberg form. The computation of the
factorization (2.2) can be carried out in O(p2) arithmetic floating point operations (flops). For
comparison, a structure-ignoring approach such as a standard QR factorization requires O(p3)
flops.

To show that the iterates generated are in the restricted space, consider the “reduced” QR
factorization of

Hp+1,p = Q
(1)
p+1,pR

(1)
p ,

where the matrixQ(1)
p+1,p ∈ R(p+1)×p consists of the first p columns ofQ(1)

p+1 and the last row

ofR(1)
p+1,p is removed. Using these matrices, we define

W (1)
p = V p+1Q

(1)
p+1,p ∈ Rn×p.

From (2.1) and the reduced version of (2.2), it follows that

W (1)
p = AV p

(
R(1)
p

)−1
,

which shows thatR
(
W (1)

p

)
= K

(
A,Abδ

)
. We will assume for the ease of discussion that

all Krylov subspaces are of full dimension. This is the generic situation. With this notation the
minimization problem (1.4) for ` = 1 may be written as

min
y∈Rp

∥∥∥AW (1)
p y − b

δ
∥∥∥ = min

y∈Rp

∥∥∥AV p+1Q
(1)
p+1,py − b

δ
∥∥∥

= min
y∈Rp

∥∥∥V p+2Hp+2,p+1Q
(1)
p+1,py − b

δ
∥∥∥

= min
y∈Rp

∥∥∥Hp+2,p+1Q
(1)
p+1,py −

∥∥∥bδ∥∥∥ e1∥∥∥ ,
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where e1 = [1, 0, . . . , 0]T ∈ Rp+2 denotes the first axis vector and the last equality follows
from the fact that the first column of V p+2 is v1 = bδ/

∥∥∥bδ∥∥∥. Throughout, we will use the

superscript T to denote transposition. The matrices Hp+2,p+1 and V p+1 are produced by
applying p+ 1 steps of the Arnoldi process toA with the initial vector bδ .

Because both Hp+2,p+1 and Q(1)
p+1,p are upper Hessenberg, their product is a “super

upper Hessenberg matrix”, i.e., it has vanishing entries below the sub-subdiagonal. This allows
us to compute a second QR factorization

Hp+2,p+1Q
(1)
p+1,p = Q

(2)
p+2R

(2)
p+2,p

in O(p2) flops using elementary reflectors. Here the matrixQ(2)
p+2 ∈ R(p+2)×(p+2) is orthogo-

nal with zero entries below the sub-subdiagonal, andR(2)
p+2,p ∈ R(p+2)×p has a leading p× p

upper triangular submatrix, denoted byR(2)
p ∈ Rp×p, and with two vanishing last rows. With

this we have that

AW (1)
p = A2V p(R

(1)
p )−1 = AV p+1Q

(1)
p+1,p

= V p+2Hp+2,p+1Q
(1)
p+1,p = V p+2Q

(2)
p+2R

(2)
p+2,p.

(2.4)

It follows that the minimization problem (1.4) for p = 1 may be written concisely as

(2.5) min
y∈Rp

∥∥∥AW (1)
p y − b

δ
∥∥∥ = min

y∈Rp

∥∥∥∥R(2)
p+2,py −

∥∥∥bδ∥∥∥(Q(2)
p+2

)T
e1

∥∥∥∥ .
Let y(1)

p denote the solution of (2.5). Then the solution of the 1-shifted GMRES method is
given by x(1)

p = W (1)
p y

(1)
p .

We provide a brief exposition of the 2-shifted GMRES method. Let the matrix W (2)
p

consist of the first p columns of V p+2Q
(2)
p+2. Then

W (2)
p = AW (1)

p

(
R(2)
p

)−1
follows from (2.4) and implies thatR

(
W (2)

p

)
= K

(
A,A2bδ

)
. With this, the minimization

problem for the 2-shifted GMRES method can be expressed as

min
y∈Rp

∥∥∥AW (2)
p y − b

δ
∥∥∥ = min

y∈Rp

∥∥∥AV p+2Q
(2)
p+2,py − b

δ
∥∥∥

= min
y∈Rp

∥∥∥V p+3Hp+3,p+2Q
(2)
p+2,py − b

δ
∥∥∥

= min
y∈Rp

∥∥∥Hp+3,p+2Q
(2)
p+2,py −

∥∥∥bδ∥∥∥ e1∥∥∥
= min
y∈Rp

∥∥∥∥R(3)
p+3,py −

∥∥∥bδ∥∥∥(Q(3)
p+3

)T
e1

∥∥∥∥ ,
(2.6)

where the matrices V p+3 andHp+3,p are determined by applying p+ 2 steps of the Arnoldi
process to A with initial vector bδ. The matrices Q(3)

p+3 and R(3)
p+3,p stem from the QR

factorization

(2.7) Hp+3,p+2Q
(2)
p+2,p = Q

(3)
p+3R

(3)
p+3,p,
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where the matrix Q(3)
p+3 ∈ R(p+3)×(p+3) is orthogonal and the matrix R(3)

p+3,p ∈ R(p+3)×p

has a leading p× p upper triangular submatrix and three vanishing last rows. Because of the
Hessenberg-type structure of the matricesHp+3,p+2 andQ(2)

p+2,p, the matrixQ(3)
p+3 vanishes

below the sub-sub-subdiagonal. Thus, the factorization (2.7) can be computed in only O(p2)

flops by a suitable choice of elementary reflectors. Letting y(2)
p denote the solution of (2.6),

the pth iterate of the 2-shifted GMRES method is given by x(2)
p = W (2)

p y
(2)
p .

We may proceed in a similar manner to derive matrices W (`)
p ∈ Rn×p such that

R
(
W (`)

p

)
= K

(
A,A`bδ

)
. With these matrices we can compute the solution x(`)

p of
the `-shifted GMRES minimization problem for ` = 3, . . . , `max. The computation of these
solutions requires the evaluation of p+ ` matrix-vector products withA. This constitutes the
dominant computational work when the matrixA is large and p+ ` is fairly small. The latter
is typically the case when solving linear discrete ill-posed problems.

Algorithm 2: `-shifted GMRES (` ≥ 1) with the discrepancy principle.

Input:A ∈ Rn×n, bδ ∈ Rn, and ` ∈ {1, 2, 3, . . . }
Output: x(`)

p ∈ Rn

1 Set v1 = bδ/
∥∥∥bδ∥∥∥ and x(`)

0 = 0;

2 Compute ` steps of Arnoldi: AV ` = V `+1H`+1,`;
3 for p = 1, 2, . . . do
4 Compute next Arnoldi step: AV `+p = V `+p+1H`+p+1,`+p;

5 Compute QR factorization:
[
Q

(1)
p+1,R

(1)
p+1,p

]
= Hp+1,p;

6 for j = 1, 2, . . . , ` do
7 Compute QR factorization:

[
Q

(j+1)
j+p+1,R

(j+1)
j+p+1,p

]
= Hj+p+1,j+pQ

(j)
j+p,p;

8 end

9 Compute y(`)
p as the minimizer of

∥∥∥∥R(`+1)
`+p+1,py −

∥∥∥bδ∥∥∥(Q(`+1)
`+p+1

)T
e1

∥∥∥∥;

10 Compute x(`)
p = V `+pQ

(`)
`+p,py

(`)
p ;

11 Compute ‖rp‖ =
∥∥∥Ax(`)

p − bδ
∥∥∥;

12 if ‖rp‖ ≤ τδ then
13 Stop;
14 end
15 end

With the review of the works [13, 29, 30] completed, we turn to some computational
aspects of the `-shifted GMRES method. Algorithm 2 provides an implementation of this
method that terminates according to the discrepancy principle. The `-shifted GMRES method
requires `+pmatrix-vector product evaluations withA for the Arnoldi iteration in lines 2 and 4.
As mentioned above, these account for the dominant computational work for large problems.
The upper triangulation of the Hessenberg-type matrices in lines 5 and 7 may be computed
by using elementary reflectors. Since lines 6–8 are executed ` times for each one of the p
iterations of the algorithm, the total flop count is O(`p2). We remark that a straightforward
QR factorization of a (p+ 1)× p matrix requires O(p3) flops. Using the structure-ignoring
approach increases the flop count for lines 6–8 to O(`p3). However, we have found that a
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direct implementation of elementary reflectors in MATLAB is computationally slower than
using the MATLAB function qr. We comment more on this in Section 5.

Since the discrepancy principle is used as a stopping criterion for Algorithm 2, we require
the computation of the norm of the pth residual, rp, in line 11. In the standard GMRES
algorithm for solving the linear system (1.1), the pth residual can be obtained without the use
of an additional matrix-vector product; see [34, Proposition 6.9]. We will show this to be true
also for the `-shifted GMRES method.

Consider the minimization problem solved by the `-shifted GMRES method

min
y∈Rp

∥∥∥AW (`)
p y − b

δ
∥∥∥ = min

y∈Rp

∥∥∥H`+p+1,`+pQ
(`)
`+p,py −

∥∥∥bδ∥∥∥ e1∥∥∥
= min
y∈Rp

∥∥∥∥R(`+1)
`+p+1,py −

∥∥∥bδ∥∥∥(Q(`+1)
`+p+1

)T
e1

∥∥∥∥ .(2.8)

Let y(`) denote the solution of (2.8) determined by back substitution. Then the pth iterate of
the `-shifted GMRES method is given by x(`)

p = W (`)
p y

(`). Since the matrixQ(j+1)
j+p+1 may be

written as a product of j + p elementary reflectors

(2.9) Q
(`+1)
`+p+1 = G1G2 . . .G`+p,

for j = 0, 1, . . . , `, the right-hand side of the last equality of (2.8) can be expressed as∥∥∥bδ∥∥∥(Q(`+1)
`+p+1

)T
e1 = GT

`+p . . .G
T
3G

T
2G

T
1

[∥∥∥bδ∥∥∥ , 0, . . . , 0]T
= GT

`+p . . .G
T
3G

T
2 [γ1, γ2, 0, . . . , 0]

T

= GT
`+p . . .G

T
3 [γ1, γ2, γ3, 0, . . . , 0]

T

...

= [γ1, γ2, γ3, . . . , γ`+p, γ`+p+1]
T

:= g`+p+1,

(2.10)

where g`+p+1 ∈ R`+p+1 andGT
k ∈ R(`+p+1)×(`+p+1), for k = 1, . . . , `+ p.

PROPOSITION 2.1. During the pth iteration of Algorithm 2, letGk, for k = 1, 2, . . . , `+p,
be the reflector matrices used to transform H`+p+1,`+pQ

(`)
`+p,p in line 8 when j = ` into

upper triangular formR(`+1)
`+p+1,p, and define g`+p+1 as in (2.10). LetR(`+1)

p denote the p× p
upper triangular matrix obtained fromR(`+1)

`+p+1,p by deleting its last `+ 1 rows and by ḡp the
p-vector obtained from g`+p+1 by deleting the last `+ 1 components. Then:

1. The rank ofAW (`)
p is equal to the rank of R(`+1)

p . In particular, if r(`+1)
(p,p) , the last

diagonal entry ofR(`+1)
p , is equal to 0, thenA is singular.

2. The vector y(`)
p that minimizes

∥∥∥H`+p+1,`+pQ
(`)
`+p,py −

∥∥∥bδ∥∥∥ e1∥∥∥ is given by

y(`)
p =

(
R(`+1)
p

)−1
ḡp.

3. The residual vector, rp := Ax(`)
p − b

δ , at step p of Algorithm 2 satisfies

rp = V `+p+1

(
H`+p+1,`+pQ

(`)
`+p,py −

∥∥∥bδ∥∥∥ e1)
= V `+p+1

(
Q

(`+1)
`+p+1

)T
[0, . . . , 0, γp+1, . . . , γ`+p+1]T ,
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and, as a result,

‖rp‖ =
∥∥∥Ax(`)

p − b
δ
∥∥∥ =

∥∥[0, . . . , 0, γp+1, . . . , γ`+p+1]T
∥∥ =

√√√√`+p+1∑
i=p+1

(γi)2.

Proof. To show the first part, we begin by stating the generalized result from (2.4) as

AW (`)
p = V `+p+1Q

(`+1)
`+p+1R

(`+1)
`+p+1,p.

Since V `+p+1Q
(`+1)
`+p+1 is orthogonal, the matricesAW (`)

p andR(`+1)
`+p+1,p have the same rank.

If the entry r(`+1)
(p,p) of R(`+1)

`+p+1,p vanishes, then R(`+1)
`+p+1,p is of rank ≤ p − 1, and as a result

AW (`)
p also is of rank ≤ p− 1. We show now thatW (`)

p is of full rank, which immediately
implies thatA is singular. We have that

W (`)
p = AW (`−1)

p

(
R(`)
p

)−1
= A2W (`−2)

p

(
R(`−1)
p

)−1 (
R(`)
p

)−1
...

= A`W (1)
p

(
R(2)
p

)−1
. . .
(
R(`−1)
p

)−1 (
R(`)
p

)−1
= A`AV p

(
R(1)
p

)−1 (
R(2)
p

)−1
. . .
(
R(`−1)
p

)−1 (
R(`)
p

)−1
= A`−1AV p+1Q

(1)
p+1,p

(
R(2)
p

)−1
. . .
(
R(`−1)
p

)−1 (
R(`)
p

)−1
...

= V `+pQ
(`)
`+p,p.

Since both matrices V `+p andQ(`)
`+p,p are orthogonal, V `+pQ

(`)
`+p,p is of full rank. Therefore,

so isW (`)
p .

To prove the second part, we first note that for any vector y ∈ Rp,∥∥∥H`+p+1,`+pQ
(`)
`+p,py −

∥∥∥bδ∥∥∥ e1∥∥∥ =

∥∥∥∥R(`+1)
`+p+1,py −

∥∥∥bδ∥∥∥(Q(`+1)
`+p+1

)T
e1

∥∥∥∥
=
∥∥∥R(`+1)

`+p+1,py − g`+p+1

∥∥∥
=
∥∥∥R(`+1)

p y − ḡp
∥∥∥+

∥∥[0 . . . 0 γp+1 . . . γ`+p+1]T
∥∥ .

(2.11)

The minimum of the left-hand side is reached when the first term of the right-hand side

of (2.11) is zero. SinceR(`+1)
p is nonsingular, this will occur when y(`)

p =
(
R(`+1)
p

)−1
ḡp.

To show the final part of the proposition, we observe that for any x(`)
p = W (`)

p y
(`)
p ,

Ax(`)
p − b

δ = V `+p+1

(
H`+p+1,`+pQ

(`)
`+p,py − e1

∥∥∥bδ∥∥∥)
= V `+p+1Q

(`+1)
`+p+1

(
Q

(`+1)
`+p+1

)T (
Q

(`+1)
`+p+1R

(`+1)
`+p+1,py −

∥∥∥bδ∥∥∥ e1)
= V `+p+1Q

(`+1)
`+p+1

(
R

(`+1)
`+p+1,py − g`+p+1

)
.

(2.12)
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From the proof of the second part above, the norm of R(`+1)
`+p+1,py − g`+p+1 in (2.12) is

minimized when y annihilates the first p components of g`+p+1. What remains are the last
`+ 1 entries, and as a result

(2.13) Ax(`)
p − b

δ = V `+p+1Q
(`+1)
`+p+1[0, . . . , 0, γp+1, . . . , γ`+p+1]T .

The result now follows from the orthogonality of the columns of V `+p+1Q
(`+1)
`+p+1. Since

there are p leading zeros in the vector (2.13), one only needs to consider the (p+ 1)st entry to
the last:

∥∥∥Ax(`)
p − b

δ
∥∥∥ =

∥∥[0, . . . , 0, γp+1, . . . , γ`+p+1]T
∥∥ =

√√√√`+p+1∑
i=p+1

(γi)2.

By the third part of Proposition 2.1, the norm of the pth residual in line 11 of Algorithm 2
may be computed without an additional matrix-vector product evaluation with A or the
computation of x(`)

p at each step. We include this strategy in our implementation of the
`-shifted GMRES method. Lines 10 and 11 in Algorithm 2 are presented for clarity only.

We conclude this section with a comment on the storage requirement of Algorithm 2 and
note that the matrix W (`)

p in the derivation of the `-shifted GMRES method does not have
to be stored. Instead, we only store the penultimateQ-matrix from the QR factorizations of
iteration p from lines 5 and 7. The orthonormal matrix V `+p can be determined from the first
`+ p columns of the already stored matrix V `+p+1 from the Arnoldi process. Hence, the only
additional storage requirement for iteration p of the `-shifted GMRES method over standard
GMRES is an (`+ p)× p orthogonal matrix, which is usually not very large in practice (see
Section 5).

We finally remark that we will not consider breakdown and restarting of `-shifted methods
in this work, as applications to linear discrete ill-posed problems typically only require a
few iterations of the Arnoldi process to terminate according to the discrepancy principle.
When only a small number of iterations are carried out, reorthogonalization and restarting are
typically unnecessary. Indeed, we have not observed the need to carry out a large number of
iterations or the occurrence of breakdown in our numerical experiments.

3. The `-shifted block GMRES method. This section reviews the BGMRES method
and the structure of the block Arnoldi decomposition. We then derive the pth iterate, X(1)

p ,
computed by the 1-shifted BGMRES algorithm following the same line of reasoning as
in Section 2. The `-shifted BGMRES method for ` = 2, 3, . . . , `max also is discussed.
Subsequently we consider storage requirements and comment on a few computational aspects.

Our aim is to determine an approximate solution of the linear system of equations

(3.1) AX = Bδ,

whereX,Bδ ∈ Rn×k and 2 ≤ k � n. This system differs from (1.1) only in that the right-
hand side is a block vector with k columns. These columns are assume to be contaminated by
errors. Problems of this kind arise, e.g., in the restoration of color images. In this application
k = 3; see Section 5.

The BGMRES method determines an approximate solution of (3.1) by computing an
approximation of the solution of the minimization problem

min
X∈Rn×k

∥∥∥AX −Bδ
∥∥∥ .
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Here ‖ · ‖ denotes the Frobenius norm. The pth iterate,Xp, computed by BGMRES satisfies∥∥∥AXp −Bδ
∥∥∥ = min

X∈Kp(A,Bδ)

∥∥∥AX −Bδ
∥∥∥ ,

where

Kp(A,Bδ) = block span{Bδ,ABδ, . . . ,Ap−1Bδ}

=
{
X ∈ Rn×k : X =

p−1∑
i=0

AiBδΩi, Ωi ∈ Rk×k, for i = 0, 1, . . . , p− 1
}

defines a block Krylov subspace of order p; see [14]. Similarly as above, we assume that
p is small enough so that dim

(
Kp
(
A,Bδ

))
= pk. For full discussions of the BGMRES

method, we direct the interested reader to [34] and [36].
The computations are initiated by computing the QR factorization Bδ = Q̂R̂ with

Q̂ ∈ Rn×k having orthonormal columns and R̂ ∈ Rk×k being upper triangular. If the
columns ofBδ are linearly dependent, then we reduce k so that the range of the so obtained
matrix Q̂ ∈ Rn×k′ , with k′ < k, agrees with the range ofBδ . We will for notational simplicity
assume that k′ = k. The pth step of the block Arnoldi iteration applied to the matrixA and
initial matrix V 1 = Q̂ gives the block Arnoldi decomposition

(3.2) AV pk = V (p+1)kH(p+1)k,pk,

where V (p+1)k ∈ Rn×(p+1)k has orthonormal columns and H(p+1)k,pk ∈ R(p+1)k×pk

is of upper block Hessenberg form with p sub-diagonal blocks of size k × k. We have
V pk = [V 1,V 2, . . . ,V p] with each V i ∈ Rn×k having orthonormal columns. Moreover,

V T
i V j =

{
Ik for i = j,
Ok for i 6= j,

where Ik and Ok denote the identity and zero matrices of order k. The range of the matrix
V (p+1)k is the block Krylov subspace Kp+1(A,Bδ) under the assumption that all upper
triangular matrices generated by Algorithm 3 are nonsingular. This algorithm is the foundation
for the BGMRES method; see [34].

We first derive the 1-shifted BGMRES method. Introduce the QR factorization of the
upper block Hessenberg matrixH(p+1)k,pk from (3.2),

H(p+1)k,pk = Q
(1)
(p+1)kR

(1)
(p+1)k,pk,

where the matrix Q(1)
(p+1)k ∈ R(p+1)k×(p+1)k is orthogonal and R(1)

(p+1)k,pk ∈ R(p+1)k×pk

has a leading pk × pk upper triangular submatrix denoted byR(1)
pk and with vanishing last k

rows. BecauseH(p+1)k,pk is upper block Hessenberg, the matrixQ(1)
(p+1)k can be expressed

as a product of pk elementary reflectors

(3.3) Q
(1)
(p+1)k = G1G2 . . .Gpk,

whereGj ∈ R(p+1)k×(p+1)k, for j = 1, 2, . . . , pk, is a symmetric elementary reflector in the
planes j and j + 1. Thus, (3.3) shows thatQ(1)

(p+1)k is upper block Hessenberg.
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Algorithm 3: Block Arnoldi process.

Input:A ∈ Rn×n and Bδ ∈ Rn×k
Output: V (j+1)k ∈ Rn×(j+1)k and H(j+1)k,jk ∈ R(j+1)k×jk

1 Compute QR factorization
[
Q̂, R̂

]
= Bδ;

2 Set V 1 = Q̂;
3 for j = 1, 2, . . . , n do
4 ComputeW j = AV j ;
5 for i = 1, 2, . . . , j do
6 Hi,j = V T

i W j ;
7 W j = W j − V iHi,j ;
8 end
9 Compute QR factorization [V j+1,Hj+1,j ] = W j ;

10 end

Consider the reduced QR factorization H(p+1)k,pk = Q
(1)
(p+1)k,pkR

(1)
pk , where the ma-

trix Q(1)
(p+1)k,pk ∈ R(p+1)k×pk consists of the first pk columns of Q(1)

(p+1)k. Define the

matrixW (1)
p = V (p+1)kQ

(1)
(p+1)k,pk ∈ Rn×pk. Assuming thatR(1)

pk is nonsingular, it follows
from (3.2) and (3.3) that

W (1)
p = AV pk

(
R

(1)
pk

)−1
,

which shows thatR
(
W (1)

p

)
= K

(
A,ABδ

)
. The 1-shifted minimization problem∥∥∥AX(1)

p −Bδ
∥∥∥ = min

X∈Kp(A,ABδ)

∥∥∥AX −Bδ
∥∥∥

may be written as

min
Y ∈Rpk×k

∥∥∥AW (1)
p Y −B

δ
∥∥∥ = min

Y ∈Rpk×k

∥∥∥AV (p+1)kQ
(1)
(p+1)k,pkY −B

δ
∥∥∥

= min
Y ∈Rpk×k

∥∥∥V (p+2)kH(p+2)k,(p+1)kQ
(1)
(p+1)k,pkY −B

δ
∥∥∥

= min
Y ∈Rpk×k

∥∥∥H(p+2)k,(p+1)kQ
(1)
(p+1)k,pkY −E1R̂

∥∥∥ ,
(3.4)

where E1 ∈ R(p+2)k×k consists of the first k columns of the identity matrix I(p+2)k. The
last equality follows from the fact that the leading n× k submatrix of V (p+2)k is Q̂, which is
obtained from the initial QR factorization ofBδ and used in the block Arnoldi algorithm.

Since both matrices H(p+2)k,(p+1)k and Q(1)
(p+1)k,pk are upper block Hessenberg with

k× k blocks, their product has two k× k subdiagonal blocks. Therefore, the QR factorization

H(p+2)k,(p+1)kQ
(1)
(p+1)k,pk = Q

(2)
(p+2)kR

(2)
(p+2)k,pk

can be computed in O
(
(pk)2

)
flops using elementary reflectors. In this identity the matrix

Q
(2)
(p+2)k ∈ R(p+2)k×(p+2)k is orthogonal with zero entries below the second subdiagonal
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k × k block diagonals andR(2)
(p+2)k,pk ∈ R(p+2)k×pk has a leading pk × pk upper triangular

submatrix, denoted byR(2)
pk ∈ Rpk×pk, with the two last block rows vanishing. This gives

AW (1)
p = A2V pk

(
R

(1)
pk

)−1
= AV (p+1)kQ

(1)
(p+1)k,pk

= V (p+2)kH(p+2)k,(p+1)kQ
(1)
(p+1)k,pk = V (p+2)kQ

(2)
(p+2)kR

(2)
(p+2)k,pk.

(3.5)

Hence, the minimization problem (3.4) may be written as

(3.6) min
Y ∈Rpk×k

∥∥∥AW (1)
p Y −B

δ
∥∥∥ = min

Y ∈Rpk×k

∥∥∥∥R(2)
(p+2)k,pkY −

(
Q

(2)
(p+2)k

)T
E1R̂

∥∥∥∥ .
Denote the solution of (3.6) by Y (1)

p . Then the approximate solution of (3.1) determined by
the 1-shifted BGMRES method is given byX(1)

p = W (1)
p Y

(1)
p .

Following the same general path as in Section 2 and in the same manner as above for
` = 1, we may derive the appropriate matrices W (`)

p ∈ Rn×pk with orthonormal columns

such that R
(
W (`)

p

)
= K

(
A,A`Bδ

)
, for ` = 2, 3, . . . , `max. These matrices are used in

the formulation of the `-shifted BGMRES minimization problem

min
Y ∈Rpk×k

∥∥∥AW (`)
p Y −B

δ
∥∥∥ = min

Y ∈Rpk×k

∥∥∥H(`+p+1)k,(`+p)kQ
(`)
(`+p)k,pkY −E1R̂

∥∥∥
= min
Y ∈Rpk×k

∥∥∥∥R(`+1)
(`+p+1)k,pkY −

(
Q

(`+1)
(`+p+1)k

)T
E1R̂

∥∥∥∥(3.7)

with E1 ∈ R(`+p+1)k×k. Denote the solution of (3.7) by Y (`)
p . Then the solution of the

`-shifted BGMRES minimization problem is given by X(`)
p = W (`)

p Y
(`)
p . Algorithm 4

provides the details of the computations. The iterations are terminated with the discrepancy
principle.

The computation of X(`)
p requires (p + `)k matrix-vector product evaluations with A.

This constitutes the dominant computational work for large problems. We remark that on
many computers the evaluation of one matrix-block-vector product with a block vector with k
columns is much faster than the evaluation of k matrix-vector products. Therefore the count
of (p + `)k matrix-vector product evaluations generally is not an accurate measure of the
computing time required for the evaluation of p+ ` matrix-block-vector products with block
vectors with k columns.

We briefly comment on a few computational aspects of the `-shifted BGMRES algorithm.
The block Arnoldi iteration steps in lines 3 and 5 require a total of (` + p)k matrix-vector
products. These matrix-vector products are the dominant computational work when the matrix
A is large. Algorithm 4 evaluates QR factorizations in lines 6 and 8. In the pth iteration of
the algorithm, the flop count for each QR factorization in line 8 is O

(
(pk)2

)
when using

elementary reflectors. Since the lines 7–9 are executed ` times in iteration p, the total flop
count required for evaluating these QR factorizations of the upper block Hessenberg-type
matrices is O

(
`(pk)2

)
. Application of structure-ignoring QR factorizations would increase

the flop count to O
(
`(pk)3

)
.

Algorithm 4 requires the computation of the norm of the pth residual in line 12. The
explicit evaluation of the matrix-matrix product AX(`)

p can be avoided as follows. First,

observe that each matrix Q(j+1)
(j+p+1)k, for j = 0, 1, . . . , `, can be written as a product of

(j + p)k elementary reflectors. Therefore, the second term on the right-hand side of (3.7) can
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Algorithm 4: `-shifted BGMRES (` ≥ 1) with discrepancy principle.

Input:A ∈ Rn×n, Bδ ∈ Rn×k, and ` ∈ {1, 2, 3, . . . }
Output:X(`)

p ∈ Rn×k

1 Compute QR factorization:
[
Q̂, R̂

]
= Bδ;

2 Set V 1 = Q̂ and X(`)
0 = 0;

3 Compute ` steps of block Arnoldi: AV `k = V (`+1)kH(`+1)k,`k;
4 for p = 1, 2, . . . do
5 Compute next block Arnoldi step: AV (`+p)k = V (`+p+1)kH(`+p+1)k,(`+p)k;

6 Compute QR factorization:
[
Q

(1)
(p+1)k,R

(1)
(p+1)k,pk

]
= H(p+1)k,pk;

7 for j = 1, 2, . . . , ` do
8 Compute QR factorization:[

Q
(j+1)
(j+p+1)k,R

(j+1)
(j+p+1)k,pk

]
= H(j+p+1)k,(j+p)kQ

(j)
(j+p)k,pk;

9 end

10 Compute Y (`)
p as the minimizer of

∥∥∥∥R(`+1)
(`+p+1)k,pkY −

(
Q

(`+1)
(`+p+1)k

)T
E1R̂

∥∥∥∥;

11 ComputeX(`)
p = V (`+p)kQ

(`)
(`+p)k,pkY

(`)
p ;

12 Compute ‖rp‖ =
∥∥∥AX(`)

p −B
δ
∥∥∥;

13 if ‖rp‖ ≤ τδ then
14 Stop;
15 end
16 end

be expressed as

(
Q

(`+1)
(`+p+1)k

)T
E1R̂ = GT

(`+p)k . . .G
T
3G

T
2G

T
1 E1R̂

=



u1,1 . . . u1,k
...

. . .
...

upk,1 . . . upk,k
upk+1,1 . . . upk+1,k

...
. . .

...
u(`+p+1)k,1 . . . u(`+p+1)k,k


=: U (`+p+1)k,k,

(3.8)

whereU (`+p+1)k,k∈R(`+p+1)k×k andGT
i ∈R(`+p+1)k×(`+p+1)k, for i = 1, 2, . . . , (`+ p)k.

PROPOSITION 3.1. At the pth iteration of Algorithm 4, letGi, for i = 1, 2, . . . , (`+ p)k,
be the reflector matrices used to transformH(j+p+1)k,(j+p)kQ

(j)
(j+p)k,pk in line 8 when j = `

into upper triangular form R(`+1)
(`+p+1)k,pk, and define U (`+p+1)k,k as was done in (3.8). Let

R
(`+1)
pk denote the leading pk×pk upper block triangular matrix obtained fromR(`+1)

(`+p+1)k,pk

by deleting its last (`+ 1)k rows, and let Ū be the pk × k matrix obtained from U (`+p+1)k,k

by deleting the last (`+ 1)k rows. Then:
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1. The rank ofAW (`)
p is equal to the rank ofR(`+1)

pk . In particular, if r(`+1)
(pk,pk), the last

diagonal entry ofR(`+1)
pk , vanishes, thenA is singular.

2. The matrix Y (`)
p ∈ Rpk×k, which minimizes

∥∥∥H(`+p+1)k,(`+p)kQ
(`)
(`+p)k,pkY −E1R̂

∥∥∥ ,
is given by

Y (`)
p =

(
R

(`+1)
pk

)−1
Ūpk.

3. The residual matrix rp := AX(`)
p −B

δ in iteration p of Algorithm 4 satisfies

rp = V (`+p+1)k

(
H(`+p+1)k,(`+p)kQ

(`)
(`+p)k,pkY −E1R̂

)

= V (`+p+1)k

(
Q

(`+1)
(`+p+1)k

)T


0 . . . 0
...

. . .
...

0 . . . 0
upk+1,1 . . . upk+1,k

...
. . .

...
u(`+p+1)k,1 . . . u(`+p+1)k,k


.

Therefore,

‖rp‖ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0 . . . 0
...

. . .
...

0 . . . 0
upk+1,1 . . . upk+1,k

...
. . .

...
u(`+p+1)k,1 . . . u(`+p+1)k,k



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Proof. The first part can be shown similarly as the analogous result in Proposition 2.1.
The generalization of (3.5) for ` ≥ 1 can be written as

AW (`)
p = V (`+p+1)kQ

(`+1)
(`+p+1)kR

(`+1)
(`+p+1)k,pk.

SinceV (`+p+1)kQ
(`+1)
(`+p+1)k has orthonormal columns, the matricesAW (`)

p andR(`+1)
(`+p+1)k,pk

have the same rank. If the entry r(`+1)
(pk,pk) of R(`+1)

(`+p+1)k,pk vanishes, then R(`+1)
(`+p+1)k,pk is of

rank ≤ pk − 1, and, as a result,AW (`)
p also has rank ≤ pk − 1. SinceW (`)

p is of full rank,
the matrixA is singular.
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For the second part, we note that for any matrix Y ∈ Rpk×k,∥∥∥H(`+p+1)k,(`+p)kQ
(`)
(`+p)k,pkY −E1R̂

∥∥∥
=

∥∥∥∥R(`+1)
(`+p+1)k,pkY −

(
Q

(`+1)
(`+p+1)k

)T
E1R̂

∥∥∥∥
=
∥∥∥R(`+1)

(`+p+1)k,pkY −U (`+p+1)k,k

∥∥∥

=
∥∥∥R(`+1)

pk Y − Ūpk

∥∥∥+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0 . . . 0
...

. . .
...

0 . . . 0
upk+1,1 . . . upk+1,k

...
. . .

...
u(`+p+1)k,1 . . . u(`+p+1)k,k



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

(3.9)

The minimum of the left-hand side is achieved when the first term on the right-hand side

of (3.9) is zero. SinceR(`+1)
pk is nonsingular, this will occur when Y (`)

p =
(
R

(`+1)
pk

)−1
Ūpk.

To show the last part we note that for anyX(`)
p = W (`)

p Y
(`)
p ,

AX(`)
p −B

δ = V (`+p+1)k

(
H(`+p+1)k,(`+p)kQ

(`)
(`+p)k,pkY −E1R̂

)
= V (`+p+1)kQ

(`+1)
(`+p+1)k

(
Q

(`+1)
(`+p+1)k

)T (
Q

(`+1)
(`+p+1)kR

(`+1)
(`+p+1)k,pkY −E1R̂

)
= V (`+p+1)kQ

(`+1)
(`+p+1)k

(
R

(`+1)
(`+p+1)k,pkY −U (`+p+1)k,k

)
.

The second part above shows that the norm ofR(`+1)
(`+p+1)k,pkY −U (`+p+1)k,k is minimized

when Y annihilates the upper pk × k block of U (`+p+1)k,k. What remains is the lower
(` + 1)k × k block entries of U (`+p+1)k,k, which we, for simplicity, denote by Ũ (`+1)k,k.
This gives

AX(`)
p −B

δ = V (`+p+1)kQ
(`+1)
(`+p+1)k

[
0

Ũ (`+1)k,k

]
.

The result now follows from the observation that the matrix V (`+p+1)kQ
(`+1)
(`+p+1)k has or-

thonormal columns. We obtain

(3.10) ‖rp‖ =
∥∥∥Ũ (`+1)k,k

∥∥∥ .
Formula (3.10) allows us to evaluate the norm of the pth residual in line 12 of Algorithm 4

without computing an additional matrix-block-vector product with the matrixA or computing
X(`)
p . Regarding the storage requirement of Algorithm 4, we note that the matrixW (`)

p does

not have to be stored. Instead, we only store the second to lastQ-matrix (i.e.,Q(`)
(`+p)k) from

the QR factorizations of iteration p from lines 6 and 8. Thus, the only additional storage
requirement for iteration p of the `-shifted BGMRES method over the standard BGMRES
method is a (`+ p)k × pk orthogonal matrix, which usually is not large.
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4. The `-shifted global GMRES method. An alternative approach for solving the block
linear system (3.1) is based on the global Arnoldi process. This process requires less storage
than Algorithm 3 for the same number of iterations. The global Arnoldi process and the
associated global GMRES (gl-GMRES) method were introduced by Jbilou et al. [25, 26].
Among the advantages of the global Arnoldi process, when compared with the standard block
Arnoldi process of Section 3 with the same block size, is that the former does not require a
special handling of the linear dependence of the vectors in a block; see Baglama et al. [1]
for a discussion of linear dependence in the context of the (standard) block Lanczos method.
Moreover, the computations are simpler with the global Arnoldi process. A comparison of the
convergence properties is provided by Frommer et al. [16].

We begin by defining some notation necessary to discuss the global Arnoldi process and
the gl-GMRES method. We then derive the `-shifted gl-GMRES algorithm and discuss some
of its computational aspects.

The Kronecker product of two matricesG = [gi,j ] ∈ Rn×n andH ∈ Rp×p is defined as

G⊗H :=


g1,1H g1,2H · · · g1,nH
g2,1H g2,2H · · · g2,nH

...
...

...
gn,1H gn,2H · · · gn,nH

 ∈ Rnp×np.

For general matricesA,B, C, andD of appropriate sizes, we have

(AC)⊗ (BD) = (A⊗B)(C ⊗D),

where as an immediate consequence

A⊗B = (I ⊗B)(A⊗ I) = (A⊗ I)(I ⊗B),(4.1)

for suitably sized identity matrices I . We let vec(·) denote the operation which transforms a
general matrix A ∈ Rm×n to a vector a ∈ Rmn by stacking the columns of A from left to
right. We also define the inner product

〈A,B〉F : = tr(ATB) = (vec(A))
T vec(B),(4.2)

where tr(·) denotes the trace.
Let a = [a1, a2, . . . , ap]

T ∈ Rp, and introduce the product

V pk ∗ a =

p∑
i=1

aiV i,

where we recall from Section 3 that V pk = [V 1,V 2, . . . ,V p] ∈ Rn×pk and V i ∈ Rn×k, for
i = 1, 2, . . . , p. We have

V pk ∗H = [V pk ∗H :,1,V pk ∗H :,2, . . . ,V pk ∗H :,p] = V pk (H ⊗ Ik) ,(4.3)

whereH :,i, for i = 1, 2, . . . , p, denotes the ith column of a matrixH ∈ Rp×p and Ik ∈ Rk×k
is the identity matrix. Moreover,

(V pk ∗H) ∗ a = V pk ∗Ha.

The global Arnoldi process is an alternative to the block Arnoldi process. It uses the inner
product (4.2). Algorithm 5 executes p steps of the global Arnoldi process with the matrix
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Algorithm 5: Global Arnoldi process.

Input:A ∈ Rn×n and Bδ ∈ Rn×k
Output: V (j+1)k ∈ Rn×(j+1)k and Hj+1,j ∈ Rj+1×j

1 Set V 1 = Bδ/
∥∥∥Bδ

∥∥∥;

2 for j = 1, 2, . . . , n do
3 ComputeW j = AV j ;
4 for i = 1, 2, . . . , j do
5 hi,j = 〈W j ,V i〉F ;
6 W j = W j − hi,jV i;
7 end
8 hj+1,j = ‖W j‖ ;
9 V j+1 = W j/hj+1,j ;

10 end

A and an initial block vector V 1 = Bδ/
∥∥∥Bδ

∥∥∥. Throughout this section ‖·‖ denotes the
Frobenius norm unless indicated otherwise.

As the global Arnoldi process orthogonalizes block columns of the matrix V pk, it is not
necessary to compute an initial QR factorization as was done in Algorithm 3. At step p, the
global Arnoldi process gives the relation

(4.4) AV pk = V (p+1)k ∗Hp+1,p,

where we note that the Hessenberg matrix is of dimension (p+ 1)× p, whereas the analogous
matrix in the relation from the block Arnoldi process (3.2) discussed in the previous section
has dimension (p+ 1)k × pk. We assume that all subdiagonal entries ofHp+1,p are positive.
This is the generic case as otherwise the algorithm breaks down. For linear discrete ill-posed
problems, breakdown occurs exceedingly rarely. We therefore will not discuss this issue.

Algorithm 5 determines the matrices

V pk = [V 1, . . . ,V p] ∈ Rn×pk and V (p+1)k = [V 1, . . . ,V p+1] ∈ Rn×(p+1)k,

where the block columns V i ∈ Rn×k are F-orthonormal, i.e.,

(4.5) 〈V i,V j〉F =

{
1 for i = j,
0 for i 6= j.

From the recursion formulas of Algorithm 5 and the fact that V 1 = Bδ/
∥∥∥Bδ

∥∥∥, we have

(4.6) V j = Pj−1(A)Bδ, j = 1, 2, . . . , p,

for some block polynomials of degree precisely j − 1 defined by

Pj−1(A)Bδ =

j−1∑
i=0

AiBδΩi, Ωi ∈ Rk×k, for i = 0, 1, . . . , j − 1.

Using (4.5) and (4.6) one can show that the set
{
V j

}p
j=1

forms an orthonormal basis for the
block Krylov subspace given by

Kp(A,Bδ) = block span{Bδ,ABδ, . . . ,Ap−1Bδ}.

We assume this space to be of dimension p. This is the generic situation.
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We apply the gl-GMRES method to determine an approximate solution of the linear system
of equations (3.1). Jbliou et al. [25, 26] show that at step p of this method, only a p-dimensional
least-squares problem has to be solved. This may result in significant computational savings
over the BGMRES method. The global Arnoldi process and the gl-GMRES method are
well discussed in [25, 26]. Applications of global methods to the solution of linear systems
of equations with multiple right-hand sides are described in [5, 26]. The former reference
discusses applications to the restoration of images that have been contaminated by blur and
noise.

Similarly to Sections 2 and 3, we now derive the 1-shifted gl-GMRES method. We bypass
the discussion of the Hessenberg structured matrices since the results of Section 2 will hold.
For the initial iterateX(1)

p = 0 ∈ Rn×k, the pth iterate determined byX(1)
p of the 1-shifted

gl-GMRES method satisfies (3.4). Analogously as in Section 2, we consider the reduced
QR factorizationHp+1,p = Q

(1)
p+1,pR

(1)
p of the Hessenberg matrix obtained with the global

Arnoldi process (4.4). Using the relations (4.3) and (4.1), we write (4.4) as

AV pk = V (p+1)k(Hp+1,p ⊗ Ik) = V (p+1)k(Q
(1)
p+1,p ⊗ Ik)(R(1)

p ⊗ Ik).(4.7)

Introduce

W (1)
p = V (p+1)k(Q

(1)
p+1,p ⊗ Ik) ∈ Rn×pk.

Using (4.7) and the fact thatHp+1,p may be written as a product of elementary reflectors (see
Section 2), we note that

W (1)
p = AV pk(R(1)

p ⊗ Ik)−1,

which shows thatR
(
W (1)

p

)
= K

(
A,ABδ

)
. We are lead to the minimization problem

min
y∈Rp

∥∥∥AW (1)
p ∗ y −B

δ
∥∥∥ = min

y∈Rp

∥∥∥AV (p+1)k(Q
(1)
p+1,p ⊗ Ik) ∗ y −Bδ

∥∥∥
= min
y∈Rp

∥∥∥V (p+2)k(Q
(2)
p+2 ⊗ Ik)(R

(2)
p+2,p ⊗ Ik) ∗ y −Bδ

∥∥∥
= min
y∈Rp

∥∥∥V (p+2)k ∗
(
Q

(2)
p+2R

(2)
p+2,py −

∥∥∥Bδ
∥∥∥ e1)∥∥∥

= min
y∈Rp

∥∥∥∥R(2)
p+2,py −

∥∥∥Bδ
∥∥∥(Q(2)

p+2

)T
e1

∥∥∥∥ ,
(4.8)

where e1 ∈ Rp+2 denotes the first axis vector. Let y(1)
p denote the solution of (4.8). Then the

solution of the 1-shifted gl-GMRES method is given byX(1)
p = W (1)

p ∗ y
(1)
p .

Following the same line of reasoning as in Sections 2 and 3, we can derive the appropriate
matrices W (`)

p ∈ Rn×pk such that R
(
W (`)

p

)
= K

(
A,A`Bδ

)
. Let the initial iterate be

X
(`)
0 = 0 ∈ Rn×k. Then the pth iterate of the `-shifted gl-GMRES method,X(`)

p , satisfies

(4.9)
∥∥∥AX(`)

p −B
δ
∥∥∥ = min

X∈K(A,A`Bδ)

∥∥∥AX −Bδ
∥∥∥ .

We may simplify (4.9) as follows∥∥∥AX(`)
p −B

δ
∥∥∥ = min

y∈Rp

∥∥∥AW (`)
p ∗ y −B

δ
∥∥∥

= min
y∈Rp

∥∥∥∥R(`+1)
`+p+1,py −

∥∥∥Bδ
∥∥∥(Q(`+1)

`+p+1

)T
e1

∥∥∥∥ ,(4.10)
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where e1 ∈ R`+p+1 denotes the first axis vector. Denoting the solution of (4.9) by y(`)
p , the

solution of the `-shifted gl-GMRES minimization problem is given byX(`)
p = W (`)

p ∗ y
(`)
p .

Algorithm 6 describes the `-shifted gl-GMRES method. Termination is achieved with the
discrepancy principle.

Algorithm 6: `-shifted gl-GMRES (` ≥ 1) with discrepancy principle.

Input:A ∈ Rn×n, ;Bδ ∈ Rn×k, and ` ∈ {1, 2, 3, . . . }
Output:X(`)

p ∈ Rn×k

1 Set V 1 = Bδ/
∥∥∥Bδ

∥∥∥ and X(`)
0 = 0;

2 Compute ` steps of global Arnoldi: AV `k = V (`+1)k ∗H`+1,`;
3 for p = 1, 2, . . . do
4 Compute next global Arnoldi step: AV (`+p)k = V (`+p+1)k ∗H`+p+1,`+p;

5 Compute QR factorization:
[
Q

(1)
p+1,R

(1)
p+1,p

]
= Hp+1,p;

6 for j = 1, 2, . . . , ` do
7 Compute QR factorization:

[
Q

(j+1)
j+p+1,R

(j+1)
j+p+1,p

]
= Hj+p+1,j+pQ

(j)
j+p,p;

8 end

9 Compute y(`)
p as the minimizer of

∥∥∥∥R(`+1)
`+p+1,py −

∥∥∥Bδ
∥∥∥(Q(`+1)

`+p+1

)T
e1

∥∥∥∥
2

;

10 ComputeX(`)
p = V (`+p)k

(
Q

(`)
`+p,py

(`)
p ⊗ Ik

)
;

11 Compute ‖rp‖ =
∥∥∥AX(`)

p −B
δ
∥∥∥;

12 if ‖rp‖ ≤ τδ then
13 Stop;
14 end
15 end

The computational work for large problems with Algorithm 6 is dominated by the `+ p
matrix-vector products with A in lines 2 and 4. Algorithm 6 requires the computation of
QR factorizations in lines 5 and 7. The flop count for these factorization using elementary
reflectors is O(`p2). For comparison, a standard QR algorithm would require O(`p3) flops.

Algorithm 6 is terminated with the discrepancy principle. The computation of the norm of
the pth residual, rp, in line 11 can be simplified similarly as described in the previous sections.
Below we provide a result analogous to Propositions 2.1 and 3.1.

Because the matrices Q(j+1)
j+p+1, for j = 0, 1 . . . , `, may be written as products of ele-

mentary reflectors given by (2.9), the right-hand side of the last inequality of (4.10) may be
expressed as (

Q
(`+1)
`+p+1

)T
e1

∥∥∥Bδ
∥∥∥ = GT

`+p . . .G
T
3G

T
2G

T
1

[∥∥∥Bδ
∥∥∥ , 0, . . . , 0]T

= [γ1, γ2, γ3, . . . , γ`+p, γ`+p+1]
T

=: g`+p+1,

(4.11)

where g`+p+1 ∈ R(`+p+1) andGT
k ∈ R(`+p+1)×(`+p+1), for k = 1, 2, . . . , `+ p.

PROPOSITION 4.1. Consider the pth iteration of Algorithm 6. For k = 1, 2, . . . , `+ p,
letGk be the reflector matrices used to transformH`+p+1,`+pQ

(`)
`+p,p in line 7 when j = `
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into upper triangular form R(`+1)
`+p+1,p, and define g`+p+1 similarly as in (4.11). Let R(`+1)

p

denote the p× p upper triangular matrix obtained fromR(`+1)
`+p+1,p by deleting the last `+ 1

rows, and let ḡp ∈ Rp be obtained from g`+p+1 by deleting the last `+ 1 components. Then:

1. The rank of AW (`)
p equals the rank of R(`+1)

p . In particular, if r(`+1)
(p,p) , the last

diagonal entry ofR(`+1)
p , vanishes, thenA is singular.

2. The vector y(`)
p that minimizes

∥∥∥R(`+1)
`+p+1,py − g`+p+1

∥∥∥ is given by

y(`)
p =

(
R(`+1)
p

)−1
ḡp.

3. The residual rp := AX(`)
p −B

δ at step p of Algorithm 6 satisfies

rp = V (`+p+1)k ∗
(
R

(`+1)
`+p+1,py −

∥∥∥Bδ
∥∥∥(Q(`+1)

`+p+1

)T
e1

)
.

Therefore,

‖rp‖ =
∥∥∥R(`+1)

`+p+1,py − g`+p+1

∥∥∥
=
∥∥[0 . . . , 0, γp+1, . . . , γ`+p+1]T

∥∥ =

√√√√`+p+1∑
i=p+1

(γi)2.

The proof of Proposition 4.1 is analogous to the proof of Proposition 2.1. We therefore
omit the details. The third result of Proposition 4.1 allows the computation of the norm of
the pth residual in line 11 without evaluating an additional matrix-block-vector product with
A or computing X(`)

p . Additionally, while rp lives in Rn×k, the computation of its norm
only requires taking the norm of the last ` + 1 entries of an ` + p + 1 vector. This results
in computational savings when k is large. We include this computational strategy in our
implementation of the `-shifted gl-GMRES algorithm.

We conclude this section with some comments on the storage requirement of Algorithm 6.
Similarly as for the shifted methods of Sections 2 and 3, we do not require storage of the
matrixW (`)

p . Instead, we only store the penultimateQ-matrix from the QR factorization of
iteration p from lines 5 and 7. The F-orthonormal matrix V (`+p)k is determined by the first
`+ p block columns of the already stored V (`+p+1)k-matrix from the global Arnoldi process.
Therefore, the only additional storage requirement in iteration p of the `-shifted gl-GMRES
method over the standard gl-GMRES method is an (`+ p)× p orthogonal matrix.

5. Numerical examples. We illustrate the performance of the `-shifted GMRES, BGM-
RES, and gl-GMRES methods with several examples. The algorithms terminate the iterations
with the discrepancy principle. To evaluate the quality of computed solutions, we compute the
relative reconstructive error (RRE) defined by

RRE(x(`)
p ) =

∥∥∥x(`)
p − x†

∥∥∥
‖x†‖

and RRE(X(`)
p ) =

∥∥∥X(`)
p −X

†
∥∥∥∥∥∥X†∥∥∥ ,

where x(`)
p and X(`)

p denote the approximate solutions determined by the algorithms at
iteration p for the linear and block linear systems, respectively. Here, the Euclidean vector
and the Frobenius matrix norms are used in their appropriate contexts. We refer to the RRE of
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the pth iterate computed by the appropriate `-shifted method as the breakout RRE value. The
exact solutions are represented by x† orX†.

To provide a measure of the computational effort required by the `-shifted methods in our
examples, we also tabulate the number of steps of the appropriate Arnoldi process required
by each method to terminate according to the discrepancy principle. The actual number of
matrix-vector or matrix-block-vector product evaluations withA may be computed by adding
the shifted quantity ` to the tabulated number of iterations for any `-shifted method. While
shifted variants do require additional matrix-vector or matrix-block-vector product evaluations
withA, they typically yield computed approximate solutions with lower RRE values.

We begin with a Fredholm integral equation in one space dimension and then proceed
to image deblurring problems in two space dimensions. We will restore a gray-scale image
to illustrate the performance of the `-shifted GMRES method and a color image to explore
the performance of the `-shifted BGMRES and gl-GMRES methods. We also compare the
use of elementary reflectors for the upper-triangularization of Hessenberg-type matrices to
MATLAB’s backslash command.

Our computational work was carried out in MATLAB R2020b on a MacBook Pro laptop
running MacOS Catalina with an i5 Dual-Core Intel processor with @2.7 GHz and 8 GB of
RAM. The computations were carried out with about 15 significant decimal digits.

Example Shaw. Our first example is a Fredholm integral equation of the first kind
discussed by Shaw in [35]. The integral is given by

(5.1)
∫ π

2

−π2
κ(ω, σ)x(σ) dσ = b(ω), −π

2
≤ ω ≤ π

2
,

with kernel

κ(ω, σ) = (cos(σ) + cos(ω))

(
sin(ζ)

ζ

)2

, where ζ = π (sin(σ) + sin(ω)) .

The matrixA is obtained by discretizing the integral (5.1) using a Nyström method based on
a composite trapezoidal quadrature rule with 1000 equidistant nodes [29]. This discretization
gives a nonsymmetric matrixA ∈ R1000×1000. The right-hand side function b(ω) is chosen
so that the solution x(σ) is the sum of two Gaussian functions. Application of this equations
are described in [35]. The exact solution of the discretized problem satisfies b = Ax†,
where x†, b ∈ R1000. The condition number of the matrixA as determined by the MATLAB
function cond is about 1016; thus,A is numerically singular. Its singular values decay without
a significant gap and cluster at zero. A vector e ∈ R1000 is formed with normally distributed
random entries with zero mean to simulate noise so that bδ = b+ e; the vector e is scaled so
as to correspond to a specific percentage noise level

v = 100

(
‖e‖
‖b‖

)
.

We will refer to v as the noise level, and will consider two noise levels: 1% and 0.1%.
The required number of Arnoldi iterations and RRE values at breakout for the `-shifted

GMRES methods for noise levels 1% and 0.1% are displayed in Table 5.1. The best recon-
structions with the smallest RRE values among the shifted methods are displayed in Figure 5.1.
For 1% noise, the quality of the restoration improves as ` is increased from ` = 0 to ` = 3.
Carrying out more iterations does not improve the quality of the computed restorations. In
the 0.1% case, both 2- and 3-shifted GMRES methods perform better than their lesser shifted
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TABLE 5.1
Results for the Shaw example for the iterative methods for two noise levels. The iteration numbers display the

number of Arnoldi iterations necessary for the discrepancy principle to be satisfied. Breakout RRE values presented
correspond to the pth iterative solution when the discrepancy principle is satisfied.

Noise Level Method Iterations Breakout RRE

1% 0-shifted GMRES 6 0.1471
1-shifted GMRES 6 0.1214
2-shifted GMRES 9 0.0599
3-shifted GMRES 9 0.0533

0.1% 0-shifted GMRES 7 0.0553
1-shifted GMRES 7 0.0560
2-shifted GMRES 9 0.0525
3-shifted GMRES 10 0.0525
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(b)

FIG. 5.1. Shaw example: (a) The highest quality solution for 1% noise level for 3-shifted GMRES at breakout
is shown by the dashed cyan curve. (b) The highest quality solution for 0.1% noise level for 2-shifted GMRES at
breakout is shown by the dashed red curve. The desired solutions are represented by the solid black curve.

counterparts. These RRE comparisons can be seen in Figure 5.2 for both noise levels. The
cost of an improved solution here is the additional matrix-vector product evaluation that has
to be carried out in the Arnoldi iterations for the `-shifted GMRES algorithms when a larger
`-value is used. Relative residual plots for all methods and for both noise levels are displayed
in Figure 5.3. The iterations are terminated when the residual error is smaller than or equal to
τδ with τ = 1.01 and δ = v.

To provide context to the discussion in Section 2 regarding the use of elementary reflectors
versus a standard QR factorization algorithm for the upper triangulation of Hessenberg-type
matrices, we provide an experimental result in Table 5.2. Here, we report computational
timings and ratios for the 0-shifted GMRES solution for the Shaw example with 0.1% noise.
The column “Reflection Time” shows timings in seconds required to bring the upper Hessen-
berg matrix determined by the standard (non-shifted) GMRES method to upper triangular
form by an application of successive elementary reflectors and for computing the solution
x
(0)
p by back substitution. The “Backslash Time” column refers to timings in seconds for

solving the least-squares problem with a Hessenberg matrix using the backslash operation
in MATLAB. Because the Hessenberg matrix here is non-square, the backslash operation
uses QR factorization and computes a least-squares solution. The timings in this table were
produced by averaging 100 Shaw experiments under the same conditions.
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FIG. 5.2. Shaw example: RRE plots vs. iteration numbers for (a) 1% and (b) 0.1% noise levels for `-shifted
GMRES methods for ` = 0, 1, 2, 3 at breakout. Line descriptions: green circles: 0-shifted GMRES, magenta
triangles: 1-shifted GMRES, red crosses: 2-shifted GMRES, and cyan stars: 3-shifted GMRES.
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FIG. 5.3. Shaw example: Relative residual plots vs. iteration numbers for (a) 1% and (b) 0.1% noise levels for
`-shifted GMRES methods for ` = 0, 1, 2, 3 at breakout. The black dashed horizontal line represents the breakout
level according to the discrepancy principle. Line descriptions: green circles: 0-shifted GMRES, magenta triangles:
1-shifted GMRES, red crosses: 2-shifted GMRES, and cyan stars: 3-shifted GMRES. (Note that the plots focus on the
later iterations for better resolution.)

The “Reflection-Backslash” column ratios for all iterations are above one. This indicates
that using reflectors implemented in MATLAB may be ill-advised. We note that, while one
might expect the timings in both columns of Table 5.2 to increase with each iteration, in
general these matrices are very small and so a large timing variance can be expected. Finally,
its worthwhile to mention that this experiment does not have to be carried out with a shifted
method, since these methods would have produced Hessenberg-type matrices with a larger
lower bandwidth, which would have required the use of additional reflectors to achieve upper
triangulation.

The remaining two examples investigate the shifted methods applied to the restoration of
images that have been contaminated by spatially invariant blur and noise. Image deblurring
can be modeled by a Fredholm integral equation of the first kind,

(5.2)
∫
Ω

κ(u, s, v, t)x(u, v) du dv = b(s, t), (s, t) ∈ Ω,

where b represents the blurred image, κ is the point spread function (PSF), and Ω is the
domain of the exact image represented by x. When the blur is spatially invariant, κ in the
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TABLE 5.2
Shaw example: Application of elementary reflectors versus backslash. Timings for the upper triangulation of

Hessenberg matrices. The timings were determined by averaging 100 experiments and are given in seconds.

Iteration Number Reflection Time Backslash Time Reflection-Backslash Ratio

1 8.08× 10−3 5.20× 10−3 1.55
2 2.38× 10−2 1.49× 10−2 1.60
3 1.38× 10−2 7.17× 10−3 1.93
4 1.10× 10−2 5.42× 10−3 2.04
5 1.28× 10−2 5.43× 10−3 2.36
6 9.65× 10−3 3.92× 10−3 2.46
7 1.04× 10−2 3.10× 10−3 3.37

(a) ((b) ((c)

FIG. 5.4. Satellite example: (a) true image (256× 256 pixels) , (b) PSF (20× 20 pixels), (c) blurred and 3%
noised image (256× 256 pixels).

integral equation is of the form κ(u, s, v, t) = κ(u− s, v − t). Discretization of (5.2) gives a
linear discrete ill-posed problem of the form (1.1), where the structure ofA ∈ Rn×n depends
on the structure of κ and on the boundary condition (BC) of the PSF (see [6, 12, 20] for more
details). Some common BCs include periodic, zero, and reflexive. We will use the latter two.

Example Satellite. We consider the restoration of a satellite image that has been blurred
by a two-dimensional non-symmetric Gaussian function, whose non-zero and non-scaled
discrete PSF entries are given by

(5.3) P i,j = exp

(
−1

2

[
i− k
j − h

]T [
s21 ρ2

ρ2 s22

]−1 [
i− k
j − h

])
,

where the parameters s1, s2, and ρ define the orientation and width of the PSF centered at
(k, h). Gaussian PSFs are well known to produce extremely ill-conditioned matrices. This is
evident by the rapid decay of their singular values to zero. Further discussion regarding the
above PSF and close variants may be found in [20, 21]. Because of the astronomical nature of
the image, we impose zero boundary conditions, and we introduce 3% Gaussian noise in the
same manner as in the Shaw example. The true image, PSF, and blurred and noised image are
displayed in Figure 5.4.

The iteration count and breakout RRE values for the satellite example are shown in
Table 5.3. Figure 5.5 displays the image reconstructions determined at breakout for each of
the shifted GMRES variants. We note the significant RRE improvement when using ` ≥ 1
compared to 0-shifted GMRES for this example. However, the improvement for the 2-shifted
variant compared to the 1-shifted variant is much smaller than in the Shaw example. The
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TABLE 5.3
Satellite example: Iteration entries show the number of Arnoldi iterations necessary for the discrepancy principle

to be satisfied. Breakout RRE values correspond to the pth iterative solution when the discrepancy principle is
satisfied.

Method Iterations Breakout RRE
0-shifted GMRES 3 0.3106
1-shifted GMRES 5 0.2511
2-shifted GMRES 8 0.2491
3-shifted GMRES 10 0.2533

(a) (b)

(c) (d)

FIG. 5.5. Satellite example: (a) 0-shifted GMRES, (b) 1-shifted GMRES, (c) 2-shifted GMRES, (d) 3-shifted
GMRES reconstructions at breakout.

iterative evolution of the RREs and the relative residual plots are provided in Figure 5.6. The
left-hand plot displays the relative residual progression, and the right-hand plot shows the
RRE values for each iteration of the four variants considered.

Example Board. Our final example considers the use of the `-shifted BGMRES and
`-shifted gl-GMRES methods to reconstruct the colored board image which is blurred by a
two-dimensional non-symmetric Gaussian function, whose non-zero PSF entries are given
by (5.3). Here we consider a slightly different PSF than in the satellite example for expositional
purposes. A colored image such as board provides a natural way to test block methods since a
colored image stored in the RGB format may be thought of as an n× n× 3 array with each
n× n submatrix corresponding to a color. In order to make it applicable to our methods, we
parse the array into three n× n matrices (one for each color) and store each matrix as a vector
with n2 entries. Thus, each vector corresponds to a color channel; see [20] for details. As the
structure beyond the boundary of the image is unknown, we impose reflexive BCs. We also
introduce 5% Gaussian noise. The true colored image, PSF, and blurred and noised image are
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FIG. 5.6. Satellite example: (a) relative residual plot vs. iteration number and (b) RRE plot vs. iteration numbers
for 3% noise for `-shifted GMRES methods for ` = 0, 1, 2, 3 at breakout. The black dashed horizontal line in (a)
represents the breakout level according to the discrepancy principle. Graph descriptions: green circles: 0-shifted
GMRES, magenta triangles: 1-shifted GMRES, red crosses: 2-shifted GMRES, and cyan stars: 3-shifted GMRES.

(a) (b) (c)

FIG. 5.7. Board example: (a) true image (300× 300× 3 pixels), (b) PSF (20× 20 pixels), (c) blurred and
5% noised image (300× 300× 3 pixels).

displayed in Figure 5.7.
The iteration count and breakout RRE values for the board example are shown in Table 5.4.

The best reconstructions in terms of the lowest RRE values among each of the `-shifted
BGMRES and `-shifted gl-GMRES variants are displayed in Figure 5.8. Similarly to the
previous examples, the `-shifted BGMRES and gl-GMRES methods with ` ≥ 1 provide a
significant improvement in the quality of the reconstructions determined when compared to
reconstructions determined by 0-shifted variants. The 2-shifted BGMRES method yield a
slight improvement over its 1-shifted variant.

For this example, we found the `-shifted gl-GMRES methods to perform better than
their BGMRES counterparts in terms of the quality of the reconstructed images achieved.
Among all variants, the 1-shifted gl-GMRES method achieved the smallest RRE value. The
iterative evolution of the RREs and the relative residual plots are provided in Figure 5.9 for
the BGMRES methods and in Figure 5.10 for the gl-GMRES methods. The left-hand plots
depict the relative residual progression, and the right-hand plots show the RRE values for each
iteration. These plots display the same general behavior as for the satellite example.

6. Conclusions. This investigation expands upon already available work on the advan-
tages of applying `-shifted Arnoldi-type methods to the solution of linear discrete ill-posed
problems. Along with formalizing the `-shifted GMRES method already investigated, we
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(a) ((b)

FIG. 5.8. Board example: Highest reconstructed approximate solutions determined by the (a) 2-shifted BGMRES
method and the (b) 1-shifted gl-GMRES method at breakout.
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FIG. 5.9. Board example: (a) relative residual plot against iteration numbers and (b) RRE plot against iteration
numbers for 5% noise for `-shifted BGMRES methods for ` = 0, 1, 2, 3 at breakout. The black dashed horizontal
line in (a) represents the breakout level according to the discrepancy principle. Graph descriptions: green circles:
0-shifted BGMRES, magenta triangles: 1-shifted BGMRES, red crosses: 2-shifted BGMRES, and cyan stars: 3-shifted
BGMRES.
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FIG. 5.10. Board example: (a) relative residual plot vs. iteration numbers and (b) RRE plot vs. iteration
numbers for 5% noise for `-shifted gl-GMRES methods for ` = 0, 1, 2, 3 at breakout. The black dashed horizontal
line in (a) represents the breakout level according to the discrepancy principle. Graph descriptions: green circles:
0-shifted gl-GMRES, magenta triangles: 1-shifted gl-GMRES, red crosses: 2-shifted gl-GMRES, and cyan stars:
3-shifted gl-GMRES.
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TABLE 5.4
Board example: Iteration entries correspond to the number of block or global Arnoldi iterations necessary for

the discrepancy principle to be satisfied. Breakout RRE values presented correspond to the pth approximate solution
determined when the discrepancy principle is satisfied.

Method Iterations Breakout RRE
0-shifted BGMRES 3 0.5230
1-shifted BGMRES 6 0.4731
2-shifted BGMRES 10 0.4718
3-shifted BGMRES 13 0.4746
0-shifted gl-GMRES 3 0.5014
1-shifted gl-GMRES 7 0.4651
2-shifted gl-GMRES 10 0.4707
3-shifted gl-GMRES 13 0.4738

introduced the `-shifted BGMRES and `-shifted gl-GMRES methods, and provide software
capable of running all `-shifted methods discussed. Moreover, we commented on the com-
putational cost and storage requirements of these methods. Examples in Section 5 illustrate
that `-shifted methods with ` > 1 can give iterates that approximate the desired solution more
accurately than when ` = 1 or ` = 0.

Supplementary material. The accompanying software is available at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol58/addition/p348.php

in form of a compressed file entitled ellShiftedPkg.zip. Installation details are discussed in the
file CodePrimer.pdf as well as in the README.md file.
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