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Abstract. This paper is concerned with a collocation-quadrature method for solving systems of Prandtl’s
integro-differential equations based on de la Vallée Poussin filtered interpolation at Chebyshev nodes. We prove
stability and convergence in Hölder-Zygmund spaces of locally continuous functions. Some numerical tests are
presented to examine the method’s efficacy.
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1. Introduction. In this paper, we propose a numerical procedure to solve systems of
singular integro-differential equations of the type
σζ2(y) + aζ ′1(y) +

b

π

∫ 1

−1

ζ ′1(x)

x− y
dx− 1

π

∫ 1

−1
κ1(x, y)ζ1(x)dx = g1(y),

y ∈ (−1, 1),

σζ1(y) + aζ ′2(y) +
b

π

∫ 1

−1

ζ ′2(x)

x− y
dx+

1

π

∫ 1

−1
κ2(x, y)ζ2(x)dx = g2(y),

with σ ∈ R\{0}, and where for i = 1, 2, κi(x, y) and gi(y) are given functions defined in
Ω := (−1, 1)2 and (−1, 1), respectively. The constants a, b ∈ R are such that a2+b2 = 1, and
the unknown solution Z = (ζ1, ζ2) is a differentiable function satisfying the zero boundary
condition

Z(−1) = Z(1) = 0.

In view of the nature of the solution and according to the property∫ 1

−1

G′(x)

x− y
dx− G(1)

1− x
− G(−1)

1 + x
=

d

dy

∫ 1

−1

G(x)

x− y
dx, y ∈ (−1, 1),

holding for any G satisfying G′ ∈ Lp(−1, 1), for some p > 1 (see [22, Lemma 6.1, Cap
II]), the solution can be rewritten as Z = (f1ϕ, f2ϕ), where ϕ(x) :=

√
1− x2. Taking into

account that ∫ 1

−1

G(x)

(x− y)2
ϕ(x)dx =

d

dy

∫ 1

−1

G(x)

x− y
ϕ(x)dx,

and that the choice a = 0, b = 1 ensures that for y ∈ (−1, 1) [14] (see also [3, Th.2.1] and
[27, Th2.3],[28])∣∣∣∣∫ 1

−1

G(x)

x− y
ϕ(x)dx

∣∣∣∣ ≤ C‖G‖Zr(ϕ), C > 0, for all G ∈ Zr(ϕ), r > 0,
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with Zr(ϕ) denoting the Zygmund space defined in (2.1), where the constant C is independent
of G and y. Hence, we are going to consider the following systems of hypersingular integral
equations:
(1.1)

σf2(y)− 1

π

∫ 1

−1

f1(x)

(x− y)2
ϕ(x)dx− 1

π

∫ 1

−1
log |x− y|f1(x)ϕ(x)dx

+
1

π

∫ 1

−1
k1(x, y)f1(x)ϕ(x)dx = g1(y),

y ∈ (−1, 1),

σf1(y)− 1

π

∫ 1

−1

f2(x)

(x− y)2
ϕ(x)dx− 1

π

∫ 1

−1
log |x− y|f2(x)ϕ(x)dx

+
1

π

∫ 1

−1
k2(x, y)f2(x)ϕ(x)dx = g2(y),

for the unknown f = (f1, f2). Here the kernels κi, i = 1, 2, have been split as

κi(x, y) = log |x− y|+ ki(x, y).

The functions g1, g2, k1, k2 may have algebraic singularities at the endpoints ±1 and/or on the
boundary ∂Ω, and we show that the solution f inherits their singular behaviors. For this reason
we consider system (1.1) in suitable subspaces of weighted continuous functions. Letting

D : f → Df, Df(y) := − 1

π

∫ 1

−1

f(x)

(x− y)2
ϕ(x)dx,

H : f → Hf, Hf(y) := − 1

π

∫ 1

−1
log |x− y|f(x)ϕ(x)dx,

Ki : f → Kif, Kif(y) :=
1

π

∫ 1

−1
ki(x, y)f(x)ϕ(x)dx, i = 1, 2,

the system (1.1) can be rewritten as

(1.2)

{
σf2(y) + (D +H +K1)f1(y) = g1(y),

σf1(y) + (D +H +K2)f2(y) = g2(y).

Integro-differential equations are models for many different problems arising for instance
in biology, viscoelasticity, fluid mechanics, physics, and engineering (see [4, 7, 8, 9, 11, 12,
13, 18, 19, 20, 22, 25, 26, 35]). In fluid mechanics, singular integro-differential equations of
Prandtl’s type emerge in problems involving aerofoil and propeller theory, as well as in the
contact interaction between a finite-length stringer with a variable along-the-length stiffness
in tension-compression. Hence, methods for solving them have got a lot of attention (see,
e.g., [1, 2, 5, 6, 10, 15, 23, 24, 32]).

A system of hypersingular integro-differential equations (HIDE) appears, for example, in
the model describing the weak interface between two elastic materials containing a periodic
array of micro-crazes [35]. Indeed, the boundary conditions for the solution of the problem
are given in terms of an HIDE system.

The purpose of this paper is to present a numerical method for solving systems of the
type (1.1), seeking the solution in a couple of weighted Zygmund-type spaces equipped with
the uniform norm. The approach proposed here is based on the quadrature method described
in [6] involving discrete de la Vallée Poussin (VP) polynomials, interpolating a given function
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at the zeros of a Chebyshev polynomial of the second kind. This tool, introduced and studied
in [33, 34] in a more general context, appears especially convenient in view of its uniform
boundedness in the space of locally continuous functions. Related approximation errors have
been recently characterized in [30] in the case of four Chebyshev weights, providing in [31]
also error estimates in Zygmund-type subspaces (see also [29]). In particular, in the case
k1 = k2, we combine the aforementioned method with a procedure presented in [21], which
converts the system (1.2) into two independent equations.

Hence, the numerical method we get is stable and convergent in suitable Zygmund
weighted spaces. Error estimates in a weighted uniform norm are also given, and the well
conditioning of the final linear systems is stated. Finally, some numerical experiments are
provided to illustrate the agreement between the theoretical estimates and the numerical results.

The paper is organized as follows. Section 2 includes the definition of the spaces in
which the current problem is investigated as well as the relevant properties of the VP operator.
In Section 3 mapping features of the operators involved in (1.1) are given, and sufficient
conditions assuring existence and uniqueness of the solution are proved. In Section 4, we
describe the procedure we propose in both the cases, i.e., for the complete system and the
system separated into two independent equations. In Section 5 some numerical tests are
presented. Section 6 includes proofs of the main results, and in Appendix A it is shown how
to compute the matrices of the final linear systems.

2. Preliminaries. Throughout the paper C stands for any positive constant having differ-
ent values at different occurrences, and C 6= C(n, f, . . .) means that C > 0 is independent of
n, f, . . . Moreover, Pm denotes the space of all algebraic polynomials of degree at most m.
For any bivariate function g(x, y), we denote by gy the function of the variable x only, with y
fixed, and similarly by gx the function of the variable y only.

2.1. Function spaces. With ϕ(x) =
√

1− x2, let

Cϕ =

{
f ∈ C0((−1, 1)) : lim

x→±1
f(x)ϕ(x) = 0

}
,

endowed with the norm

‖f‖ϕ = max
x∈[−1,1]

|f(x)ϕ(x)|.

Denote by

Em(f)ϕ = inf
P∈Pm

‖f − P‖ϕ

the error of the best approximation of f ∈ Cϕ by polynomials. The limit conditions assure the
validity of the Weierstrass theorem in Cϕ, i.e., [16]

lim
m
Em(f)ϕ = 0, ⇔ f ∈ Cϕ.

By means of Em(f)ϕ it is possible to define in Cϕ the Zygmund-type subspaces of order
s ∈ R+,

(2.1) Zs(ϕ) =

{
f ∈ Cϕ : sup

m>0
(m+ 1)sEm(f)ϕ < +∞

}
,

equipped with the norm

‖f‖Zs(ϕ) = ‖f‖ϕ + sup
m>0

(m+ 1)sEm(f)ϕ.
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Finally, setting f = (f1, f2), we consider the product spaces

Cϕ × Cϕ = {(f1, f2) : f1, f2 ∈ Cϕ} , Zs(ϕ)× Zs(ϕ) = {(f1, f2) : f1, f2 ∈ Zs(ϕ)} ,

equipped with the norms

‖f‖Cϕ×Cϕ
= max{‖f1‖Cϕ

, ‖f2‖Cϕ
}, ‖f‖Zs(ϕ)×Zs(ϕ) = max{‖f1‖Zs(ϕ), ‖f2‖Zs(ϕ)},

respectively.

2.2. Discrete de la Vallée Poussin interpolating polynomial. Let {pj}j be the orthonor-
mal polynomial sequence with respect to the Chebyshev weight ϕ, i.e.,

pj(x) =

√
2

π

sin (j + 1)t

sin t
, t = arccosx, |x| ≤ 1,

and for a given even integer N ∈ N, denote by

xk = cos

(
2kπ

3N + 2

)
, k = 1, . . . ,

3

2
N,

the zeros of p 3
2N

. Moreover, let {λk}
3
2N

k=1 be the Christoffel numbers related to ϕ. Then,
the N -th discrete de la Vallée Poussin polynomial with respect to the weight ϕ, introduced
in [33, 34] in a more general context, is defined as

VNf(x) =

3
2N−1∑
j=0

cj(f)qj(x),

where

qj(x) :=


pj(x) if j = 0, . . . , N,

2N − j
N

pj(x)− j −N
N

p3N−j(x) if N + 1 ≤ j ≤ 3
2N − 1,

and

cj(f) =

3
2N∑
k=1

λkpj(xk)f(xk)

are discretizations of the Chebyshev-Fourier coefficients by the 3
2N -th Gauss-Chebyshev

quadrature rule with respect to ϕ. The polynomial VNf interpolates the function f at the knots
xk, k = 1, . . . , 32N , and reproduces polynomials of degree at most N . On the other hand, as
proved in [33], VN is a projection onto the so-called V P space defined as

SN = span
{
qj : j = 0, . . . ,

3

2
N − 1

}
,

for which the polynomials {qj}
3
2N−1
j=0 , which are orthogonal with respect to the inner product

〈f, g〉ϕ =

∫ 1

−1
f(x)g(x)ϕ(x)dx,
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represent an orthogonal basis. The space SN is nested between two classical polynomial
spaces, i.e.,

PN ⊂ SN ⊂ P2N−1.

By the specific feature of preserving polynomials in SN , VN : f → VN (f) belongs to the
so-called polynomial quasi projectors.

As proved in [33, 34] the map VN : Cϕ → Cϕ is uniformly bounded with respect to
N . Hence it is an optimal tool for approximating functions and allows for the following
estimate [33]:

‖f − VNf‖ϕ ≤ CEN (f)ϕ, for all f ∈ Cϕ, C 6= C(N, f).

Besides the VP space SN , we consider the modified V P space

S̃N = span
{
q̃j : j = 0, . . . ,

3

2
N − 1

}
generated by the polynomials

q̃j(x) :=


pj(x)
j+1 if j = 0, . . . , N,

2N − j
N

pj(x)

j + 1
− j −N

N

p3N−j(x)

3N − j + 1
if N + 1 ≤ j ≤ 3

2N − 1.

The introduction of the space S̃N is crucial. Indeed, as shown in [6, Proposition 3.1], the
operator D is a bijective map from S̃N into SN , and the important relation holds

(2.2) VNDf = Df, for all f ∈ S̃N .

Finally, we recall the following result [6, Lemma 5.1]:
LEMMA 2.1. For any polynomial P̃N

P̃N (y) =

3
2N−1∑
j=0

aj q̃j(x) ⇒ VN P̃N (y) =

3
2N−1∑
j=0

ajwjqj(x),

with

(2.3) wj =

{
1
j+1 , 0 ≤ j ≤ N
1
N

{
2N−j
j+1 + j−N

3N−j+1

}
, N + 1 ≤ j ≤ 3

2N − 1.

3. Main results. Introduce the matrices

J :=

[
O I
I O

]
, D :=

[
D O
O D

]
, H :=

[
H O
O H

]
, K :=

[
K1 O
O K2

]
,

where I and O are the identity and null operators, respectively, and the arrays

f :=

[
f1
f2

]
, g :=

[
g1
g2

]
.

Equation (1.2) can be written as

(3.1) (σJ + D + H + K)f = g.
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The following assertions are crucial in order to study the solvability of the system (3.1).
LEMMA 3.1. Under the assumptions ki(x, y)ϕ(y) ∈ C0([−1, 1]2), i = 1, 2, and

ki(x, ·) ∈ Zs(ϕ) uniformly with respect to x ∈ [−1, 1] for some s > 0, i = 1, 2,

K : Zs+1(ϕ)× Zs+1(ϕ)→ Zs(ϕ)× Zs(ϕ) is a compact operator.
LEMMA 3.2. For any s > 0, H : Zs(ϕ) × Zs(ϕ) → Zs(ϕ) × Zs(ϕ) is a compact

operator.
LEMMA 3.3. For any s > 0,D : Zs+1(ϕ)× Zs+1(ϕ)→ Zs(ϕ)× Zs(ϕ) is a bounded

map, having a bounded inverse.
As a consequence of the above lemmas and of the classical Fredholm’s alternative theorem,

the next result provides sufficient conditions so that the system (3.1) is uniquely solvable.
THEOREM 3.4. Under the assumptions of Lemmas 3.1, if Ker(σJ+D+H+K) = {0}

in Zs+1(ϕ)× Zs+1(ϕ), then for any g ∈ Zs(ϕ)× Zs(ϕ) the equation

(σJ + D + H + K)f = g

admits a unique and stable solution f ∈ Zs+1(ϕ)× Zs+1(ϕ).
Now, we describe the discretization method proposed to approximate the solution of the

system (1.2), which is an extended application of the method proposed in [6]. Using the N -th
discrete de la Vallée Poussin polynomial in (2.2), let us define the following discrete operators

HN := VNH,

and

KN,i := VNK̃N,i, with K̃N,if(y) := − 1

π

∫ 1

−1
VNki,y(x)f(x)ϕ(x)dx, i = 1, 2.

Moreover, letting

VN :=

[
VN O
O VN

]
, K̃N =

[
K̃N,1 O

O K̃N,2

]
,

we define the following matrices of approximating operators

V̄N := σVNJ, HN := VNH, KN := VNK̃N ,

and the following array

gN :=

[
g1,N
g2,N

]
= VNg.

Then, the proposed numerical method consists of solving in place of the system (3.1) the
following finite-dimensional system

(3.2) (V̄N + D + HN + KN )fN = gN

for the unknown solution

fN =

[
f1,N
f2,N

]
.
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The following proposition holds true:
PROPOSITION 3.5. If a solution fN of (3.2) exists, it belongs to S̃N × S̃N , where

S̃N × S̃N := {(f1, f2) : fi ∈ S̃N}.
Letting

TN := V̄N + D + HN + KN T := σJ + D + H + K,

the following theorem gives the assumptions under which fN is unique when it exists.
THEOREM 3.6. Let us assume that the kernels ki, i = 1, 2, satisfy ki(x, y)ϕ(y) ∈

C0([−1, 1]2) and

ki(x, ·) ∈ Zs(ϕ) uniformly with respect to x ∈ [−1, 1] for some s > 0, i = 1, 2,

and that Ker(σJ + D + H + K) = {0} in Zs+1(ϕ)×Zs+1(ϕ). Then for N > N0 with N0

being a fixed positive and sufficiently large integer, the matrices of operators

TN : Zs+1(ϕ)× Zs+1(ϕ)→ Zs(ϕ)× Zs(ϕ)

have bounded inverses, and

(3.3) sup
N
‖T−1N ‖Zs(ϕ)×Zs(ϕ)→Zs+1(ϕ)×Zs+1(ϕ) < +∞.

Moreover, the condition numbers of TN tend to the condition number of T, i.e.,

(3.4) lim
N→∞

‖TN‖Zs+1(ϕ)×Zs+1(ϕ)→Zs(ϕ)×Zs(ϕ)‖T
−1
N ‖Zs(ϕ)×Zs(ϕ)→Zs+1(ϕ)×Zs+1(ϕ)

‖T‖Zs+1(ϕ)×Zs+1(ϕ)→Zs(ϕ)×Zs(ϕ)‖T−1‖Zs(ϕ)×Zs(ϕ)→Zs+1(ϕ)×Zs+1(ϕ)
= 1.

In view of the previous result, for any g ∈ Zs(ϕ)×Zs(ϕ), the approximating system (3.2)
admits a unique solution fN ∈ Zs+1(ϕ)× Zs+1(ϕ).

The next theorem provides conditions under which the sequence {fN}N converges to the
unique solution f of the system (3.1) in Cϕ × Cϕ.

THEOREM 3.7. Let the assumptions of Theorem 3.6 be satisfied. For every g ∈ Zs(ϕ)×
Zs(ϕ) and for N > N0, with N0 being a fixed positive and sufficiently large integer, we have

‖f − fN‖Cϕ×Cϕ
≤ C
Ns
‖g‖Zs(ϕ)×Zs(ϕ), C 6= C(N, f).(3.5)

4. Computation of the approximate solution. We consider the general case with
K1 6= K2 and the special case when K1 = K2 separately.

4.1. The general case K1 6= K2. Since f1,N , f2,N ∈ S̃N , we express these functions
in terms of the orthogonal basis {q̃mn }n of S̃N , i.e.,

fN (y) = (f1,N , f2,N )T =

 3
2N−1∑
j=0

f
(1)
j q̃j(y),

3
2N−1∑
j=0

f
(2)
j q̃j(y)

T

=
(

Q̃ · F (1), Q̃ · F (2)
)T

,

(4.1)

where

Q̃ = (q̃0, . . . , q̃ 3
2N−1

), F (1) = (f
(1)
0 , . . . , f

(1)
3
2N−1

)T , and F (2) = (f
(2)
0 , . . . , f

(2)
3
2N−1

)T .
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Taking into account Lemma 2.1, we have

VNf1,N (y) = Q(y)VNF (1) and VNf2,N (y) = Q(y)VNF (2),

where Q = (q0, . . . , q 3
2N−1

) and VN := diag(wj)j=0,.., 32N−1
, with wj defined in (2.3).

Denoting by IN the identity matrix of order 3
2N and recalling the definitions of the matrices

AN ,BN introduced in [6, pp. 693–695] (reported for the reader’s convenience in Appendix A),
by (3.2), we have

(D +HN )f1,N (y) = Q(y) · (IN +AN )F (1),

(D +HN )f2,N (y) = Q(y) · (IN +AN )F (2),

KN,1f1,N (y) = Q(y) · B(1)N F (1), KN,2f2,N (y) = Q(y) · B(2)N F (2),

g1,N (y) = Q(y) ·G(1), g2,N (y) = Q(y) ·G(2),

where

G(1) :=
(
g
(1)
0 , . . . , g

(1)
3
2N−1

)T
, g

(1)
j := cj(g1) =

3
2N∑
k=1

λkpj(xk)g1(xk),

G(2) :=
(
g
(2)
0 , . . . , g

(2)
3
2N−1

)T
, g

(2)
j := cj(g2) =

3
2N∑
k=1

λkpj(xk)g2(xk).

Hence, we have

Q(y)
(
σVNF (2) + (IN +AN + B(1)N )F (1)

)
= Q(y) ·G(1),

Q(y)
(
σVNF (1) + (IN +AN + B(2)N )F (2)

)
= Q(y) ·G(2),

and the unknown vector (F (1), F (2))T will be the solution of the following linear system

σVNF (2) + (IN +AN + B(1)N )F (1) = G(1),

σVNF (1) + (IN +AN + B(2)N )F (2) = G(2)

having the block matrix form

(4.2)

[
(IN +AN + B(1)N ) σVN

σVN (IN +AN + B(2)N )

] [
F (1)

F (2)

]
=

[
G(1)

G(2)

]
.

By solving the above linear system we compute the approximating array fN by (4.1).

4.2. The special case K1 = K2 = K. Following a technique introduced in [21],
we transform (3.2) into a separable system of two independent finite-dimensional equations.
Setting

f̂N := f1,N + f2,N , f̃N := f1,N − f2,N ,
ĝN := g1,N + g2,N , g̃N := g1,N − g2,N ,

(4.3)

the following proposition holds:
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PROPOSITION 4.1. The finite-dimensional system (3.2) can be reformulated as

(σI +D +KN +HN )f̂N = ĝN ,(4.4)

(−σI +D +KN +HN )f̃N = g̃N .(4.5)

Hence, for determining fN , we have to compute f̂N , f̃N , i.e., we have to apply twice the
method in [6]. For the convenience of the reader we report in the following the main steps to
perform this computation. Taking into account that f̂N , f̃N ∈ S̃N and recalling the definition
of Q̃ given in the previous section, we write

f̂N (y) =

3
2N−1∑
j=0

f̂j q̃j(y) = Q̃ · F̂,(4.6)

f̃N (y) =

3
2N−1∑
j=0

f̃j q̃j(y) = Q̃ · F̃,(4.7)

where

F̂ = (f̂0, . . . , f̂ 3
2N−1

)T , F̃ = (f̃0, . . . , f̃ 3
2N−1

)T .

Since

∀f ∈ S̃N ⇒ VNf, Df, HNf, KNf ∈ SN ,

with the notation used in the previous section, we get

VN f̂N (y) = Q(y) · VN F̂, VN f̃N (y) = Q(y) · VN F̃,

Df̂N (y) = Q(y) · F̂, Df̃N (y) = Q(y) · F̃,

HN f̂N (y) = Q(y) · AN F̂, HN f̃N (y) = Q(y) · AN F̃,

KN f̂N (y) = Q(y) · BN F̂, KN f̃N (y) = Q(y) · BN F̃,

ĝN (y) = Q(y) · Ĝ, g̃N (y) = Q(y) · G̃,

where

Ĝ :=
(
ĝ0, . . . , ĝ 3

2N−1

)T
, ĝj := cj(ĝ) =

3
2N∑
k=1

λkpj(xk)ĝ(xk),

G̃ :=
(
g̃0, . . . , g̃ 3

2N−1

)T
, g̃j := cj(g̃) =

3
2N∑
k=1

λkpj(xk)g̃(xk).

Summing up, we can rewrite the approximate equations (4.4)–(4.5) as{
Q(y)(σVN +RN )F̂ = Q(y) · Ĝ,

Q(y)(−σVN +RN )F̃ = Q(y) · G̃,

where

RN = IN +AN + BN .
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Consequently, the unknowns arrays F̂ and F̃ are the unique solutions of the two linear systems
of equations, {

(σVN +RN )F̂ = Ĝ,(4.8a)

(−σVN +RN )F̃ = G̃.(4.8b)

After solving these systems, we compute the approximate solutions of (4.4)–(4.5) using (4.6)
and (4.7) and then the approximation

fN =

[
f1,N
f2,N

]
, with f1,N =

f̂N + f̃N
2

, f2,N =
f̂N − f̃N

2
,

of the unique solution f of system (3.1).
REMARK 4.2. It is hardly necessary to note that in the case K1 = K2 = 0, the system

reduces to two separable linear systems as in (4.4)–(4.5), both of which involving matrices of
coefficients of bandwidth 2 and having dominant diagonal. Of course, this special structure
enables the realization of a strong computational reduction in solving the linear systems.

5. Numerical tests. In this section, we offer some numerical examples to demonstrate
the theoretical results obtained in the previous sections. Denoting by X a sufficiently large
mesh of equally spaced points in [−1, 1], in each test we report the absolute weighted errors

EN := max
x∈X

(
|f(x)− fN (x)|ϕ(x)

)
,

where n := 3
2N denotes the number of collocation nodes and fN the numerical solution

computed by the proposed method. Moreover, we also compute the condition numbers
(defined for any A ∈ Rn×n as cond(A) = ‖A‖∞‖A−1‖∞) of the involved linear systems,
providing in the general case (systems (4.8a)–(4.8b))

condN = cond

[
(IN +AN + B(1)N ) σVN

σVN (IN +AN + B(2)N )

]
,

and in the special case K1 = K2 = K (system (4.2))

c̃ondN := max{cond(σVN +RN), cond(−σVN +RN)}.

We point out that all the computations were performed with 16 decimal digits, and the
solutions of the linear systems have been computed by the Gaussian elimination method.
Moreover, in the cases where the exact solution is unknown, the errors shown in the tables
have been computed assuming as the exact solution the values obtained for n = 1024 or
equivalently N = 1536.

Now we present the following examples:
EXAMPLE 5.1. σ = 1, k(x, y) = |y|+ |x|,

g(y) =

 7/(15π) + 5|y|
16 + 1

64 (−9 + 120y2 − 8y4 + 10 log 4)

1
320π (64 + 60π|y|+ 5π(25− 152y2 + 8y4 + 6 log 4))

 ,
having as exact solution

f(y) =

(
y2 + 1

2
,
y2 − 1

2

)T
.
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EXAMPLE 5.2. σ = 1, k(x, y) =
∣∣cos

(
y − π

4

)∣∣ 92 + | sin(x)| 72 ,

g(y) =

(
1

2

(
|y| 112 + y cos(y)

)
,

1

2

(
|y| 112 − y cos(y)

))T
.

EXAMPLE 5.3. H ≡ 0, σ = 1, k(x, y) = (x2 + y2) cos(xy),

g(y) =

(
y|y|+ |y + 0.2| 52

2
,
y|y| − |y + 0.2| 52

2

)
.

EXAMPLE 5.4. K ≡ 0, σ = 1,

g(y) =

(
1,

1

2
(1 + cos(2y))

)T
.

EXAMPLE 5.5. σ = 1,

k1(x, y) =
∣∣∣cos

(
y − π

4

)∣∣∣4.5 + | sin(x)|3.5, k2(x, y) = (x+ y)2,

g(y) =
(
|y|5.5, y cos(y)

)T
.

EXAMPLE 5.6. σ = 1
2 , k1(x, y) = exp((x+ y)3), k2(x, y) = 1 + |x− y|3.5,

g(y) =
(
(1− y2) arccos(y), (1− y2) arcsin(y)

)T
.

The numerical results are given in Table 5.1.

5.1. Comments to the numerical tests. Examples 5.1–5.4 deal with the case k1(x, y) =
k2(x, y) = k(x, y), while Examples 5.5–5.6 deal with the general case k1(x, y) 6= k2(x, y).

Referring to Example 5.1, this is the only case where the solution is known. By solving a
well-conditioned linear system of order n = 3072, the solution is approximated with at least 7
exact decimal digits. This means that the numerical error is much smaller than the theoretical
estimate. Since supx∈[−1,1] kx ∈ Z1(ϕ), g ∈ Z1(ϕ)× Z1(ϕ) and according to Theorem 3.7
the theoretical errors goes like O

(
1
N

)
.

In Example 5.2, supx∈[−1,1] kx ∈ Z3.5(ϕ), g ∈ Z3.5(ϕ)×Z3.5(ϕ), and the expected rate
of convergence is O

(
1

N3.5

)
. Also in this case the numerical results exceed the expectations

from the theoretical estimates since with n = 384 we get an error of almost machine precision.
The condition number of the corresponding linear systems is ≤ 3.

In Example 5.3 the rate of convergence is O
(

1
N2

)
since g ∈ Z2(ϕ) × Z3.5(ϕ), and

supx∈[−1,1] kx ∈ Zs(ϕ) for any s. The errors confirm this behavior, and the condition
numbers of the linear system are less than 5.

In Example 5.4, a solution with 13 exact decimal digits is achieved by solving a well
conditioned linear system of order only 36 (corresponding to n = 24). This fast convergence
agrees with the theoretical expectation since g and kx are very smooth functions. The
theoretical estimate assures that the error behaves like O

(
1

N3.5

)
in both Examples 5.5–5.6.

Hence, we conclude that in all the tests our method’s high performance has been established.
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TABLE 5.1
Numerical results for Examples 5.1–5.6.

Example 5.1 Example 5.2
n c̃ondN EV PN n c̃ondN EV PN
12 2.64 1.76e-3 12 2.48 6.92e-6
24 2.77 4.74e-4 24 2.61 8.50e-8
48 2.84 1.23e-4 48 2.67 1.08e-9
96 2.87 3.14e-5 96 2.70 1.40e-11
192 2.89 7.95e-6 192 2.71 2.03e-13
384 2.89 1.99e-6 384 2.72 4.54e-15
768 2.90 5.01e-7
1536 2.90 1.25e-7
3072 2.91 3.13e-8

Example 5.3 Example 5.4
n c̃ondN EV PN n c̃ondN EV PN
12 4.16 2.81e-04 12 2.29 4.20e-9
24 4.40 3.83e-05 24 2.40 1.07e-14
48 4.50 3.67e-06 48 2.46 1.19e-14
96 4.55 4.24e-07 96 2.49 1.08e-14
192 4.58 5.26e-08 192 2.50 1.27e-14
384 4.59 5.62e-09
768 4.60 3.99e-10
1536 4.60 1.07e-10

Example 5.5 Example 5.6
n condN EV PN n condN EV PN
12 4.69 7.77e-06 12 12.22 1.88e-4
24 4.69 9.83e-08 24 12.22 9.06e-7
48 4.69 1.48e-09 48 12.22 1.56e-8
96 4.69 3.09e-11 96 12.22 2.03e-10
192 4.69 9.52e-13 192 12.22 4.06e-12
384 4.69 3.67e-14 384 12.22 9.18e-14
768 4.69 5.61e-15 768 12.22 8.07e-15

6. The proofs.

Proof of Lemma 3.1. The operator K : Zs+1(ϕ)×Zs+1(ϕ)→ Zs(ϕ)×Zs(ϕ) is compact
if and only the operators O : Zs+1(ϕ) → Zs(ϕ) and Ki : Zs+1(ϕ) → Zs(ϕ), i = 1, 2, are
compact (see [32, p. 153]). The null operator is trivially compact, and the operatorKi, i = 1, 2,
are compact as a consequence of [6, Proposition 2.3] with ν = ξ = 0 and [6, (28)].

Proof of Lemma 3.2. Analogously to the operator K (see the proof of Lemma 3.1), the
matrix operator H is compact if and only if the operator H is compact. This is true as a
consequence of [6, Theorem 2.2].

Proof of Lemma 3.3. It is easy to verify that

‖Df‖Zs(ϕ)×Zs(ϕ) = max{‖Df1‖Zs(ϕ), ‖Df2‖Zs(ϕ)}
≤ ‖D‖Zs+1(ϕ)→Zs(ϕ)‖f‖Zs+1(ϕ)×Zs+1(ϕ),
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and then

‖D‖Zs+1(ϕ)×Zs+1(ϕ)→Zs(ϕ)×Zs(ϕ) ≤ ‖D‖Zs+1(ϕ)→Zs(ϕ).

Thus, the boundedness of the matrix operator D as a map from Zs+1(ϕ) × Zs+1(ϕ) into
Zs(ϕ) × Zs(ϕ) follows from the boundedness of the operator D : Zs+1(ϕ) → Zs(ϕ) [6,
Theorem 2.1]. Moreover, it is easy to see that its inverse is the matrix operator

D−1 =

[
D−1 O
O D−1

]
,

where D−1 : Zs(ϕ) → Zs+1(ϕ) is the bounded inverse of the operator D [6, (15)]. Thus,
since

‖D−1‖Zs(ϕ)×Zs(ϕ)→Zs+1(ϕ)×Zs+1(ϕ) ≤ ‖D
−1‖Zs(ϕ)→Zs+1(ϕ),

the matrix operator D−1 is the bounded inverse of D.
Proof of Proposition 3.5. Recalling that VN is a projection in the space SN defined

in (2.2), it is easy to see that VN is a projection in the space SN × SN , and

DfN = gN − V̄N fN −HN fN −KN fN

= VNg − σVNJfN −VNHfN −VNK̃N fN ∈ SN × SN ,

where SN × SN = {(f1, f2) : fi ∈ SN}. Moreover, since D is a bijective map from S̃N into
SN , it is easy to deduce that D : S̃N × S̃N → SN × SN is bijective, too. Then, if a solution
fN of (3.2) exists, it belongs to S̃N × S̃N .

Proof of Theorem 3.6. Taking into account that from (2.2) we get VND = D, the
system (3.2) can be expressed in the following form:

VN (σJ + D + H + K̃N )fN = VNg,

i.e., as a projection of the equation

(σJ + D + H + K̃N )fN = g

by the projector VN . Consequently we can deduce the solvability of the approximating sys-
tem (3.2) by standard arguments of projection methods (see, for example, [17, Theorem 4.2]).
In particular, if

(6.1) lim
N
‖(σJ + H + K)− (V̄N + HN + KN )‖Zs+1(ϕ)×Zs+1(ϕ)→Zs(ϕ)×Zs(ϕ) = 0,

then we deduce the uniqueness of the solutions of the approximating systems (3.2) by the
uniqueness of the solution of system (3.1), i.e., (3.3), and

lim
N
‖TN‖Zs+1(ϕ)×Zs+1(ϕ)→Zs(ϕ)×Zs(ϕ) = ‖T‖Zs+1(ϕ)×Zs+1(ϕ)→Zs(ϕ)×Zs(ϕ)

and

lim
N
‖T−1N ‖Zs(ϕ)×Zs(ϕ)→Zs+1(ϕ)×Zs+1(ϕ) = ‖T−1‖Zs(ϕ)×Zs(ϕ)→Zs+1(ϕ)×Zs+1(ϕ),

i.e., (3.4). Taking into account that

(6.2) ‖σJf−V̄N f‖Zs+1(ϕ)×Zs+1(ϕ) = σmax{‖f2−VNf2‖Zs+1(ϕ), ‖f1−VNf1‖Zs+1(ϕ)},
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(6.3) ‖H−HN‖Zs+1(ϕ)×Zs+1(ϕ)→Zs(ϕ)×Zs(ϕ) ≤ ‖H −HN‖Zs+1(ϕ)→Zs(ϕ),

and
‖K−KN‖Zs+1(ϕ)×Zs+1(ϕ)→Zs(ϕ)×Zs(ϕ)

≤ max{‖K1 −KN,1‖Zs+1(ϕ)→Zs(ϕ), ‖K2 −KN,2‖Zs+1(ϕ)→Zs(ϕ)},
(6.4)

using [6, Theorems 3.2, 4.1 and 4.2], the identity (6.1) follows.
Proof of Theorem 3.7. We note that

f − fN = T−1N
[
(g −VNg) + (σJf − V̄N f) + (K−KN )f + (H−HN )f

]
.

Taking into account (3.3), (6.2), (6.3), (6.4), and

‖g −VNg‖Zs(ϕ)×Zs(ϕ) = max{‖g1 − VNg1‖Zs(ϕ), ‖g2 − VNg2‖Zs(ϕ)},

from [6, Theorems 3.2, 4.1, and 4.2] under the assumptions g1, g2 ∈ Zs(ϕ) and f1, f2 ∈
Zs+1(ϕ), we deduce

‖f − fN‖Zr(ϕ)×Zr(ϕ) ≤
C

Ns−r ‖f‖Zs+1(ϕ)×Zs+(ϕ).

The bound (3.5) follows from the above estimate when r → 0+.
Proof of Proposition 4.1. By (4.3)

f1,N =
f̂N + f̃N

2
, f2,N =

f̂N − f̃N
2

,

g1,N =
ĝN + g̃N

2
, g2,N =

ĝN − g̃N
2

,

and by replacing them in (1.2), we get

σ
(
f̂N − f̃N

)
+ (D + K̃N +HN )

(
f̂N + f̃N

)
= (ĝN + g̃N ) ,(6.5)

σ
(
f̂N + f̃N

)
+ (D + K̃N +HN )

(
f̂N − f̃N

)
= (ĝN − g̃N ) .(6.6)

Then, (4.4) and (4.5) follow by adding and subtracting (6.5) and (6.6), respectively.
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Appendix A. Matrices of the linear system. For the convenience of the reader, we report
here the matrices of the final linear system, already given in [6] in a more general form.

VN := diag(wj)j=0,.., 32N−1
,

with wj defined in (2.3). The matrix AN is a bandwidth-2 matrix defined as

AN (i, i) = βi, 0 ≤ i ≤ 3

2
N − 1,

AN (i, i+ 2) = αi+2, 0 ≤ i ≤ 3

2
N − 3,

AN (i, i− 2) = γi−2, 2 ≤ i ≤ 3

2
N − 1,
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with

α` :=


− 1

4`(`+1) 2 ≤ ` ≤ N,
− 1

4N

[
2N−`
`(`+1) + `−N

(3N−`+1)(3N−`+2)

]
N + 1 ≤ ` ≤ 3

2N − 1,

0 otherwise,

β` :=



1
4

(
1
2 + 2 log 2

)
` = 0,

1
2`(`+2) ` = 1, 2, . . . , N,

1
2N

[
2N−`
`(`+2) + `−N

(3N−`)(3N−`+2)

]
N + 1 ≤ ` ≤ 3

2N − 2,

1
4N

[
2(N+2)(9N−2)
3N(9N2−4) + 2(N−2)(9N+14)

(3N+2)(3N+4)(3N+6)

]
` = 3

2N − 1,

γ` :=


− 1

8 ` = 0,

− 1
4(`+1)(`+2) ` = 1, 2, . . . , N,

− 1
4N

[
2N−`

(`+1)(`+2) + `−N
(3N−`+1)(3N−`)

]
` = N + 1, . . . , 32N − 3,

0 otherwise;

BN :=
1

π
(PNΛN )KN (PNΛN )

T QN ,

B(1)N :=
1

π
(PNΛN )K(1)

N (PNΛN )
T QN ,

B(2)N :=
1

π
(PNΛN )K(2)

N (PNΛN )
T QN ,

with

ΛN := diag(λj)j=0,.., 32N−1
, QN := diag(〈qj , q̃j〉)j=0,.., 32N−1

,

PN = {pi−1(xj)}i,j=1,..., 32N
, KN = {k(xj , xi)}i,j=1,..., 32N

,

K(1)
N = {k1(xj , xi)}i,j=1,..., 32N

, K(2)
N = {k2(xj , xi)}i,j=1,..., 32N

.

REFERENCES

[1] M. R. CAPOBIANCO, G. CRISCUOLO, AND P. JUNGHANNS, A fast algorithm for Prandtl’s integro-differential
equation, J. Comput. Appl. Math., 77 (1997), pp. 103–128.

[2] M. R. CAPOBIANCO, G. CRISCUOLO, P. JUNGHANNS, AND U. LUTHER, Uniform convergence of the
collocation method for Prandtl’s integro-differential equation, ANZIAM J., 42 (2000), pp. 151–168.

[3] M. R. CAPOBIANCO, G. MASTROIANNI, AND M. G. RUSSO, Pointwise and uniform approximation of
the finite Hilbert transform, in Approximation and Optimization, Vol. I, D. D. Stancu, G. Coman,
W. W. Breckner, and P. Blaga, eds., Transilvania Press, Cluj-Napoca, 1997, pp. 45–66.

[4] Y. CHEN, Integral equation methods for multiple crack problems and related topics, Appl. Mech. Rev., 60
(2007), pp. 172–194.

[5] M. C. DE BONIS AND D. OCCORSIO, Quadrature methods for integro-differential equations of Prandtl’s
type in weighted spaces of continuous functions, Appl. Math. Comput., 393 (2021), Paper No. 125721,
19 pages.

[6] M. C. DE BONIS, D. OCCORSIO, AND W. THEMISTOCLAKIS, Filtered interpolation for solving Prandtl’s
integro-differential equations, Numer. Algorithms, 88 (2021), pp. 679–709.

[7] J. M. ELLIOTT, R. I.VACHON, D. F. DYER, AND J. R. DUNN, Numerical solutions of the integro-differential
equations of high-speed radiating boundary layers, Internat. J. Heat Mass Transfer, 16 (1973), pp. 1648–
1651.

[8] L.-M. IMBERT-GERARD, F. VICO, L. GREENGARD, AND M. FERRANDO, Integral equation methods for
electrostatics, acoustics, and electromagnetics in smoothly varying, anisotropic media, SIAM J. Numer.
Anal., 57 (2019), pp. 1020–1035.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

NUMERICS FOR SYSTEMS OF HYPERSINGULAR IDE 393

[9] N. I. IOAKIMIDIS, Application of the method of singular integral equations to elasticity problems with
concentrated loads, Acta Mech., 40 (1981), pp. 159–168.

[10] , A natural interpolation formula for Prandtl’s singular integrodifferential equation, Internat. J. Numer.
Methods Fluids, 4 (1984), pp. 283–290.

[11] A. I. KALANDIYA, Mathematical Methods of Two-Dimensional Elasticity, Nauka, Moscow, 1973.
[12] F. W. KING, Hilbert Transforms Vol.1 & Vol 2, Cambridge University Press, Cambridge, 2009.
[13] I. K. LIFANOV, L. N. POLTAVSKII, AND G. M. VAINIKKO, Hypersingular Integral Equations and Their

Applications, Chapman & Hall, Boca Raton, 2004.
[14] U. LUTHER AND M. G. RUSSO, Boundedness of the Hilbert transformation in some weighted Besov type

spaces, Integral Equations Operator Theory, 36 (2000), pp. 220–240.
[15] B. N. MANDAL AND A. CHAKRABARTI, Applied Singular Integral Equations, Science Publishers, Enfield,

2011.
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