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A MODIFIED ALTERNATING POSITIVE SEMIDEFINITE SPLITTING
PRECONDITIONER FOR BLOCK THREE-BY-THREE SADDLE POINT

PROBLEMS∗
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Abstract. We propose a modified alternating positive semidefinite splitting (MAPSS) preconditioner for solving
block three-by-three saddle point problems that arise in linear programming and the finite element discretization of
Maxwell equations. Spectral properties of the MAPSS-preconditioned matrix are discussed and analyzed in detail.
As the efficiency of the MAPSS preconditioner depends on its parameters, we derive fast and effective formulas to
compute the quasi-optimal values of these parameters. Numerical examples show that the MAPSS preconditioner
performs better than the APSS preconditioner.
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1. Introduction. We consider the following block three-by-three saddle point problem:

(1.1) Au ≡

 A BT 0
−B 0 −CT
0 C 0

xy
z

 =

 f
−g
h

 ≡ b,

where A ∈ Rn×n is symmetric positive definite, B ∈ Rm×n and C ∈ Rl×m are full row-rank
matrices, x, f ∈ Rn, y, g ∈ Rm, and z, h ∈ Rl. Here, BT and CT denote the transposes
of the matrices B and C, respectively. It is easy to verify that the coefficient matrix A is
nonsingular so that the linear system (1.1) has a unique solution [6, 14, 16].

The linear system (1.1) arises in many areas of scientific computing and engineering ap-
plications, such as in the Karush-Kuhn-Tucker conditions of quadratic programming problems,
in finite element methods for solving time-dependent Maxwell equations with discontinuous
coefficients, in least-squares problems [1, 2, 5, 8, 14, 36, 49], and so on.

Although the linear system (1.1) has a block three-by-three structure, it can be regarded
as a block two-by-two matrix as in the following formulas:

A =

 A BT 0

−B 0 −CT
0 C 0

 and A =

 A BT 0
−B 0 −CT
0 C 0

 .
Obviously, these matrices have block structures similar to the standard and generalized saddle
point problems [8, 14, 22]. As it is well-known, there are many effective iterative methods
and algebraic preconditioners for solving these saddle point problems, such as Uzawa-type
methods [17, 31, 38, 50], successive overrelaxation-type (SOR-type) methods [15, 33, 34, 35,
44, 48], Hermitian and skew-Hermitian splitting-type (HSS-type) methods [9, 10, 12, 13, 19, 21,
23, 24, 25, 28, 30, 32, 40, 41, 43, 47, 51, 52], shift-splitting-type (SS-type) methods [18, 27, 53],
and so on [2, 4, 5, 6, 11]. However, because of the complicated structure of the coefficient
matrix of the linear system (1.1), these iterative methods cannot be straightforwardly applied
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to solve it, and they often show poor numerical performance. Therefore, there is a great need
to find specific iterative methods to solve the three-by-three saddle point problem (1.1).

Fortunately, some iteration methods and preconditioning techniques have been proposed
for the linear system (1.1) in recent years. Based on the shift splitting (SS) technique, first
proposed and discussed in [18], Cao [26] proposed the SS and the relaxed SS (RSS) precondi-
tioner. Later, Wang and Zhang [45] proposed the generalized SS (GSS) preconditioner, and Xie
and Li [46] presented the block diagonal-type preconditioners. Furthermore, Bai, Golub, Lu,
and Yin [11] first proposed the positive-definite and skew-Hermitian splitting (PSS) iteration
method for solving non-Hermitian positive definite linear systems, and by further extending
this idea, Liang and Zhang [39] presented the alternating positive semidefinite splitting (APSS)
preconditioner for solving double saddle point problems. The APSS preconditioning can be
considered as a special case of the BASI preconditioning in [5]. Also, Salkuyeh, Aslani, and
Liang [42] applied the APSS preconditioner in conjunction with Krylov subspace iteration
methods to solve the linear system (1.1).

When the APSS preconditioner is used to accelerate Krylov subspace iteration methods, it
is often difficult to choose the parameter α in the APSS preconditioner for different numerical
examples in the extreme case when α→ 0+ or α→ +∞. In order to overcome this shortcom-
ing, in this paper we give a useful formula for choosing such a parameter. Moreover, to further
improve the computational efficiency of the APSS preconditioner, we propose a modified
APSS (MAPSS) preconditioner for the block three-by-three saddle point problem (1.1). By re-
moving the term αI and introducing another positive parameter β, we then obtain the MAPSS
preconditioner. We analyze and discuss spectral properties of the MAPSS-preconditioned
matrix and give practical formulas for choosing the parameters involved in the APSS- and
MAPSS-preconditioned matrices. In addition, numerical results are reported to show the
effectiveness of the MAPSS preconditioner.

The paper is organized as follows. In Section 2, we introduce the MAPSS preconditioner
and give its algorithmic implementation for accelerating Krylov subspace iteration methods.
In Section 3, we analyze spectral properties of the preconditioned matrix with respect to the
MAPSS preconditioner. Efficient practical formulas for computing the optimal values of the
parameters involved in the MAPSS and APSS preconditioners are derived in Section 4. In
Section 5, several examples are used to verify that the numerical performance of the MAPSS
preconditioner outperforms the APSS preconditioner. Finally, in Section 6, we give concluding
remarks.

2. The MAPSS preconditioner. First, we introduce the APSS preconditioner [42].
Based on the idea of the HSS iteration method [12], the matrix A is split into

A = (αI +A1)− (αI −A2) = (αI +A2)− (αI −A1),

where

A1 =

 A BT 0
−B 0 0
0 0 0

 , A2 =

0 0 0
0 0 −CT
0 C 0

 ,
and α > 0 is a parameter and I is the identity matrix. On basis of these splittings and the HSS
iteration spirit, the authors in [42] proposed the following APSS preconditioner:

P̃APSS =
1

2α
(αI +A1)(αI +A2) =

1

2

αI +A BT − 1
αB

TCT

−B αI −CT
0 C αI

 .
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Since the factor 1
2 in the above matrix has no effect on the preconditioned linear system, we

can simply drop it and write the preconditioning matrix PAPSS = 1
α (αI +A1)(αI +A2) in

the decomposed form

PAPSS =
1

α

αI +A BT 0
−B αI 0
0 0 αI

αI 0 0
0 αI −CT
0 C αI

 ,
in which the first matrix admits the LU decompositionαI +A BT 0

−B αI 0
0 0 αI

 =

αI +A+ 1
αB

TB BT 0
0 αI 0
0 0 αI

 I 0 0
− 1
αB I 0
0 0 I

 ,
while the second matrix admits the LU decompositionαI 0 0

0 αI −CT
0 C αI

 =

αI 0 0
0 αI + 1

αC
TC −CT

0 0 αI

I 0 0
0 I 0
0 1

αC I

 .
It follows that

PAPSS =
1

α

αI +A+ 1
αB

TB BT 0
0 αI 0
0 0 αI

 I 0 0
− 1
αB I 0
0 0 I


×

αI 0 0
0 αI + 1

αC
TC −CT

0 0 αI

I 0 0
0 I 0
0 1

αC I

 .(2.1)

In this way, we obtain an efficient method for solving a linear system of the form PAPSSw = r
with respect to the unknown w and the right-hand side r. Indeed, when we apply the APSS pre-
conditioner to accelerate Krylov methods, such as the generalized minimum residual (GMRES)
method, we need to solve a linear system of the formPAPSSw = r, wherew =

[
wT1 ;wT2 ;wT3

]T
and r =

[
rT1 ; rT2 ; rT3

]T
. Based on the matrix decomposition in (2.1), we obtain an algorithmic

implementation of the APSS preconditioner as follows.

ALGORITHM 1 (APSS Preconditioning).

Step 1: Solve
(
αI +A+

1

α
BTB

)
w1 = r1 −

1

α
BT r2 to obtain w1.

Step 2: Solve
(
αI +

1

α
CTC

)
w2 = r2 +

1

α
CT r3 +Bw1 to obtain w2.

Step 3: Compute w3 =
1

α
(r3 − Cw2).

In Algorithm 1, the matrices αI +A+
1

α
BTB and αI +

1

α
CTC are symmetric positive

definite, and the factors α and 1
α appear in all coefficient matrices of Algorithm 1. This makes

the choice of the parameter α significantly difficult. Therefore, we turn to consider removing
the term αI in Step 1 and introducing another positive parameter β in Step 2. In this way, we
obtain the so-called MAPSS preconditioner.
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Note that the factor 1
2 has no substantial effect on the preconditioner. We construct the

MAPSS preconditioner as follows:

PMAPSS =
1

α

A+ 1
αB

TB BT 0
0 αI 0
0 0 αI

 I 0 0
− 1
αB I 0
0 0 I


×

αI 0 0
0 αI + 1

βC
TC −CT

0 0 βI

I 0 0
0 I 0
0 1

βC I


=

1

α

 A BT 0
−B αI 0
0 0 αI

αI 0 0
0 αI −CT
0 C βI


=

 A BT − 1
αB

TCT

−B αI −CT
0 C βI

 ,
where α and β are given positive parameters.

Based on the above matrix decompositions, we solve a linear system of the form
PMAPSSw = r by the following algorithm.

ALGORITHM 2 (MAPSS Preconditioning).

Step 1: Solve
(
A+

1

α
BTB

)
w1 = r1 −

1

α
BT r2 to obtain w1.

Step 2: Solve
(
αI +

1

β
CTC

)
w2 = Bw1 + r2 +

1

β
CT r3 to obtain w2.

Step 3: Compute w3 =
1

β
(r3 − Cw2).

From a comparison of Algorithm 1 and Algorithm 2 we deduce the following observations.

In Algorithm 1, two linear subsystems with the coefficient matrices αI + A +
1

α
BTB

and αI +
1

α
CTC need to be solved at each iteration step, while in Algorithm 2 the two

linear subsystems to be solved are characterized by the coefficient matrices A+
1

α
BTB and

αI +
1

β
CTC. The factors α and 1

α appear in the same coefficient matrices in Steps 1 and 2

of Algorithm 1, while Algorithm 2 avoids this unfavorable case. Consequently, it is much
easier to estimate the parameters α and β in Algorithm 2 than just choosing the parameter α
in Algorithm 1.

3. Analysis of the preconditioned matrix P−1
MAPSSA. In this section, we discuss and

analyze spectral properties of the preconditioned matrix P−1
MAPSSA. We have the following

result.
THEOREM 3.1. Let A ∈ Rn×n be symmetric positive definite and B ∈ Rm×n and

C ∈ Rl×m be of full row-rank. Then, the preconditioned matrix P−1
MAPSSA has an eigenvalue 1

with algebraic multiplicity at least n, and the remaining eigenvalues λ1, λ2, . . . , λm+l satisfy
the condition

m+l∑
i=1

λi = m+

m∑
i=1

ηi,
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where η1, η2, . . . , ηm are the eigenvalues of the matrix

T = ŜM−1
2 − 1

αβ
ŜCTCM−1

2 ,

with

M1 = A+
1

α
BTB, M2 = αI +

1

β
CTC, S1 = BM−1

1 BT , and Ŝ = S1 − αI.

Proof. The difference between the preconditioner PMAPSS and the coefficient matrix A,
denoted byRMAPSS, is given by

(3.1) RMAPSS = PMAPSS −A =

0 0 − 1

α
BTCT

0 αI 0
0 0 βI

 .
By using the block decomposition of the matrix PMAPSS, we get

P−1
MAPSS = α


1

α
I 0 0

0 M−1
2

1

β
M−1

2 CT

0 − 1

β
CM−1

2

1

β
I − 1

β2
CM−1

2 CT



×


M−1

1 − 1

α
M−1

1 BT 0

1

α
BM−1

1 − 1

α2
S1 +

1

α
I 0

0 0
1

α
I



=


M−1

1 − 1

α
M−1

1 BT 0

M−1
2 BM−1

1 − 1

α
M−1

2 Ŝ
1

β
M−1

2 CT

− 1

β
CM−1

2 BM−1
1

1

αβ
CM−1

2 Ŝ
1

β
I − 1

β2
CM−1

2 CT

 .

Hence, straightforward computations yield

P−1
MAPSSA = I − P−1

MAPSSRMAPSS

=


I M−1

1 BT
1

α
M−1

1 BTCT

0 I +M−1
2 Ŝ

1

α
M−1

2 ŜCT

0 − 1

β
CM−1

2 Ŝ − 1

αβ
CM−1

2 ŜCT

 .(3.2)

It is then clear that the matrix P−1
MAPSSA has an eigenvalue 1 with algebraic multiplicity at least

n, while the remaining eigenvalues are the same as those of the matrix

(3.3) Z =

 I +M−1
2 Ŝ

1

α
M−1

2 ŜCT

− 1

β
CM−1

2 Ŝ − 1

αβ
CM−1

2 ŜCT

 .
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Denote by

Z =

[
Im 0
0 0

]
+ T̃ ,

where

T̃ =

 M−1
2 Ŝ

1

α
M−1

2 ŜCT

− 1

β
CM−1

2 Ŝ − 1

αβ
CM−1

2 ŜCT

 ≡ XY,
with

X =

 M−1
2

− 1

β
CM−1

2

 and Y =

[
Ŝ

1

α
ŜCT

]
.

Moreover, let T = Y X . Then, T̃ and T have the same nonzero eigenvalues [14, Theorem 1.19],
and it holds that

tr(Z) = tr

{[
Im 0
0 0

]
+ T̃

}
= m+ tr(T̃ ) = m+ tr(T ).

Here tr(Z) stands for the trace of the matrix Z. Now, the final claim of the theorem is
immediately obtained.

REMARK 3.2. Under the conditions of Theorem 3.1, we have
m∑
i=1

ηi = tr(T )

= tr(ŜM−1
2 )− 1

αβ
tr(ŜCTCM−1

2 ) = tr(M−1
2 Ŝ)− 1

αβ
tr(M−1

2 ŜCTC)

= tr

[
M−1

2 Ŝ(I − 1

αβ
CTC)

]
= tr

{
M−1

2 Ŝ

[
I − 1

α
(αI +

1

β
CTC) + I

]}
= tr

[
M−1

2 Ŝ(2I − 1

α
M2)

]
= 2tr(M−1

2 Ŝ)− 1

α
tr(Ŝ).

As it is well-known, the convergence of Krylov subspace iteration methods depends not
only on the distributions of the eigenvalues of the preconditioned matrix, but also on the number
of the corresponding linearly independent eigenvectors [3, 7, 14]. In the following theorem,
we investigate the properties of the linearly independent eigenvectors of the preconditioned
matrix P−1

MAPSSA.
THEOREM 3.3. If the conditions of Theorem 3.1 hold, then the preconditioned matrix

P−1
MAPSSA has the following n+ j linearly independent eigenvectors:

1. n eigenvectors of the form [uT` ; 0T ; 0T ]T (` = 1, 2, . . . , n) corresponding to the
eigenvalue 1, where u` ∈ Rn are arbitrary linearly independent vectors;

2. j eigenvectors of the form [ûT` ; v̂T` ; ŵT` ]T (` = 1, 2, . . . , j) corresponding to the
eigenvalues λ 6= 1, where v̂ 6= 0 satisfies[

I +M−1
2 Ŝ

(
1

1− λ
I +

1

αβλ
CTC

)]
v̂ = 0,

and ŵ and û are given by

ŵ =
1− λ
λβ

Cv̂, û = M−1BT
(

1

λ− 1
I − 1

αβλ
CTC

)
v̂.
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Proof. Let λ be an eigenvalue of the preconditioned matrix P−1
MAPSSA and [uT ; vT ;wT ]T

be the corresponding eigenvector. By (3.2) we obtain
I M−1

1 BT
1

α
M−1

1 BTCT

0 I +M−1
2 Ŝ

1

α
M−1

2 ŜCT

0 − 1

β
CM−1

2 Ŝ − 1

αβ
CM−1

2 ŜCT


uv
w

 = λ

uv
w

 .
After straightforward calculations, we can rewrite the above equations as

(λ− 1)u−M−1
1 BT

(
v +

1

α
CTw

)
= 0,[

(1− λ)I +M−1
2 Ŝ

]
v +

1

α
M−1

2 ŜCTw = 0,

1

β
CM−1

2 Ŝv +

(
λI +

1

αβ
CM−1

2 ŜCT
)
w = 0.

(3.4)

If λ = 1, then the equations in (3.4) are reduced to

M−1
1 BT

(
v +

1

α
CTw

)
= 0,

M−1
2 Ŝ

(
v +

1

α
CTw

)
= 0,

1

β
CM−1

2 Ŝv +

(
I +

1

αβ
CM−1

2 ŜCT
)
w = 0.

(3.5)

Multiplying the second equation in (3.5) from the left by − 1

β
C, we have

− 1

β
CM−1

2 Ŝ(v +
1

α
CTw) = 0,

which together with the third equation in (3.5) gives w = 0. Substituting w = 0 into the
first equation in (3.5), we obtain M−1

1 BT v = 0. By the positive definiteness of M−1
1 and

the full row-rank property of B we have v = 0. Therefore, there are n linearly independent
eigenvectors [uT` ; 0T ; 0T ]T (` = 1, 2 . . . , n) corresponding to the eigenvalue 1, where u`
(` = 1, 2, . . . , n) are arbitrary linearly independent vectors.

If λ 6= 1, then, combining the second and third equations in (3.4), we obtain

w =
(1− λ)

λβ
Cv.

Substituting the above equation into the first and the second equations in (3.4), we have

u = M−1BT
(

1

λ− 1
I − 1

αβλ
CTC

)
v

and

(3.6)
[
I +M−1

2 Ŝ

(
1

1− λ
I +

1

αβλ
CTC

)]
v = 0.
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If v = 0, thenw = 0 and u = 0, which contradicts the fact that [uT ; vT ;wT ]T is an eigenvector.
So, it holds that v 6= 0. Hence, when there exists an v 6= 0 that satisfies (3.6), there will be
j linearly independent eigenvectors [ûT` ; v̂T` ; ŵT` ]T (` = 1, 2, . . . , j) that correspond to the
eigenvalue λ 6= 1.

Finally, we show that the above mentioned n+ j eigenvectors are linearly independent.
That is to say, we need to prove that

(3.7)

 u1 · · · un
0 · · · 0
0 · · · 0


 θ1

...
θn

+

 û1 · · · ûj
v̂1 · · · v̂j
ŵ1 · · · ŵj


 θ̂1

...
θ̂j

 =

 0
...
0


holds only when the vectors θ = [θ1, . . . , θn]T and θ̂ = [θ̂1, . . . , θ̂j ]

T are zero. Obviously,
the first matrix in (3.7) consists of the eigenvectors corresponding to the eigenvalue 1 for
case 1 in Theorem 3.3, and the second matrix is formed from the eigenvectors corresponding
to the eigenvalues λ` 6= 1 (` = 1, 2, . . . , j). By left-multiplying P−1

MAPSSA on both sides of
equality (3.7), we obtain u1 · · · un

0 · · · 0
0 · · · 0


 θ1

...
θn

+

 û1 · · · ûj
v̂1 · · · v̂j
ŵ1 · · · ŵj


 λ1θ̂1

...
λj θ̂j

 =

 0
...
0

 .
Subtracting the above equations from (3.7), we see that û1 · · · ûj

v̂1 · · · v̂j
ŵ1 · · · ŵj


 (λ1 − 1)θ̂1

...
(λj − 1)θ̂j

 =

 0
...
0

 .
Since [ûT` ; v̂T` ; ŵT` ]T (` = 1, 2, . . . , j) are j linearly independent vectors and they correspond
to the eigenvalues λ` 6= 1 (` = 1, 2, . . . , j), we obtain θ̂ = 0. Substituting θ̂ = 0 into (3.7),
we obtain θ = 0. Hence, the preconditioned matrix P−1

MAPSSA has n+ j linearly independent
eigenvectors.

An upper bound for the degree of the minimal polynomial of the preconditioned matrix
P−1

MAPSSA is given in the following theorem.

THEOREM 3.4. Let the conditions of Theorem 3.1 be satisfied. Then, the dimension of the
Krylov subspace K(P−1

MAPSSA,b) is at most m+ l + 1.

Proof. The characteristic polynomial of the matrix P−1
MAPSSA defined in (3.2) is given by

ψ(λ) = det
(
λI − P−1

MAPSSA
)

= (λ− 1)n
m+l∏
`=1

(λ− λ`),

where λ` (` = 1, 2, . . . ,m + l) are the eigenvalues of the matrix Z in (3.3). Using the

Cayley-Hamilton Theorem [14, Theorem 1.21], we have
m+l∏
`=1

(Z − λ`I) = 0.

Let us define the polynomial

φ(λ) = (λ− 1)

m+l∏
`=1

(λ− λ`).
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Then, we obtain

φ(P−1
MAPSSA) =

(
P−1

MAPSSA− I
)m+l∏
`=1

(
P−1

MAPSSA− λ`I
)

= 0.

Hence, the degree of the minimal polynomial of the preconditioned matrix P−1
MAPSSA is at most

m+l+1. Consequently, the dimension of the corresponding Krylov subspaceK(P−1
MAPSSA,b)

is at most m+ l + 1.

4. The strategy of parameter selection. It is worth noting that the efficiency of the
MAPSS preconditioner largely depends on the choice of the parameters α and β. In this
section, we discuss and analyze how to choose the parameters α and β involved in the MAPSS
and APSS preconditioners.

The choice of parameters is very complicated for most preconditioners, such as, for
instance, SS-type preconditioners [26, 27, 45, 53]. Hence, it is often necessary to perform many
experiments to experimentally choose optimal parameters. Fortunately, efficient formulas
for obtaining nearly optimal parameters can be obtained by adopting certain approximation
strategies; see [4, 8, 9, 20, 29, 37] for more details. Motivated by the idea of Huang [37], we
give a practical way for choosing the parameters in the MAPSS preconditioner.

We first define a function f(α, β) = ‖RMAPSS‖2F depending on α and β and then select
these parameters by minimizing f(α, β), whereRMAPSS is given by (3.1) and ‖ · ‖F denotes
the Frobenius norm. From straightforward computations we obtain

f(α, β) = ‖RMAPSS‖2F = tr(RTMAPSSRMAPSS) = α2m+
1

α2
tr
(
CBBTCT

)
+ β2l.

For convenience, we let β be a constant and only analyze the parameter α. By minimizing the
function f(α, β) with respect to α, we obtain the quasi-optimal parameter α in the MAPSS
preconditioner as follows:

(4.1) αMAPSS =
4

√
tr
(
CBBTCT

)
m

=
4

√
tr
(
BBTCTC

)
m

.

We use a similar idea to estimate the parameter α in the APSS preconditioner. Since

RAPSS = PAPSS −A =

αI 0 − 1

α
BTCT

0 αI 0
0 0 αI

 ,
we define

g(α) = ‖RAPSS‖2F = tr(RTAPSSRAPSS).

Then, we see that

g(α) = α2(m+ n+ l) +
1

α2
tr
(
BBTCTC

)
.

By minimizing the function g(α), we obtain the quasi-optimal value αAPSS in the APSS
preconditioner as follows:

(4.2) αAPSS =
4

√
tr
(
BBTCTC

)
m+ n+ l

.
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5. Numerical experiments. In this section, we use several examples to investigate the
feasibility and effectiveness of the MAPSS preconditioner for solving the block three-by-three
saddle point problem (1.1).

The numerical experiments were performed using MATLAB (version R2020a) on a
personal computer with a 2.40 GHz central processing unit (Intel(R) Core(TM) i5-1135G7
CPU), 16GB memory, and the Windows 10 operating system. The number of iteration
steps (IT) and the elapsed CPU time in seconds (CPU) are measured for the GMRES and
preconditioned GMRES iteration methods. All experiments are run five times, and CPU and
IT denotes the corresponding averaged quantities, with the value of IT being rounded to the
nearest integer.

When preconditioners are used to accelerate the convergence rate of the GMRES method,
we solve several linear subsystems at each iteration step using direct methods, such as the
Cholesky factorization in combination with an approximate minimum degree (AMD) reorder-
ing.

In actual computations, the initial vector is chosen to be u(0) = 0 ∈ Rn+m+l, and the
iteration process is terminated if the current iterate u(t) satisfies

RES :=
‖Au(t) − b‖2
‖b‖2

< 10−6

or if the number of iteration steps satisfies IT > 3000. We use the symbol “-” to denote that
the value of IT of the corresponding iteration method exceeds the value 3000, and we set the
right-hand side vector b ∈ Rn+m+l according to the following two cases:

Case I: the vector b ∈ Rn+m+l is such that the exact solution of the linear system (1.1) is
u∗ = [1, 1, . . . , 1]T ∈ Rn+m+l.

Case II: the vector b ∈ Rn+m+l is such that the exact solution of the linear system (1.1)
is u∗ = rand(n + m + l, 1) ∈ Rn+m+l, where rand(·, 1) denotes a column vector whose
components are generated randomly.

For the MAPSS preconditioner, the theoretical quasi-optimal value αMAPSS of the parame-
ter α is computed according to formula (4.1), and the parameter β is chosen to be 10−4 for
both Cases I and II. For the APSS preconditioner, the theoretical quasi-optimal value αAPSS
of the parameter α is computed according to the formula (4.2). Furthermore, we obtain the
experimentally optimal parameter αexp of the APSS preconditioner and the experimentally
optimal parameters αexp and βexp of the MAPSS preconditioner according to the minimum
number of iteration steps.

EXAMPLE 5.1 ([4]). Consider the block three-by-three saddle point problem (1.1), whose
coefficient matrix has the following block structure:

A = Diag(2WTW +D1, D2, D3) ∈ Rn×n

is a block-diagonal matrix,

B = [E,−I2p2 , I2p2 ] ∈ Rm×n and C = ET ∈ Rl×m

are both full row-rank matrices, where W = [wij ] ∈ Rp(p+1)×p(p+1) has entries
wij = e−2((i/3)2+(j/3)2). D1 = Ip(p+1) is the identity matrix, and the diagonal matrices
Di = diag(d

(i)
1 , . . . , d

(i)
2p2) ∈ R2p2×2p2 (i = 2, 3) are defined by

d
(2)
j =

{
1, for 1 ≤ j ≤ p2,
10−5(j − p2)2 for p2 + 1 ≤ j ≤ 2p2,

d
(3)
j = 10−5(j + p2)2, for 1 ≤ j ≤ 2p2.
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TABLE 5.1
Numerical results for Example 5.1 (Case I).

p 16 32 64 128 256

GMRES IT 207 452 1272 - -
CPU 0.0690 2.0124 44.3523 - -

APSS-GMRES(αAPSS) IT 43 34 23 13 5
CPU 0.0246 0.0628 0.1773 0.5120 1.7554

APSS-GMRES(αexp) IT 36 29 18 8 3
CPU 0.0163 0.0528 0.1633 0.4113 1.3186

MAPSS-GMRES(αMAPSS) IT 15 13 8 4 3
CPU 0.0085 0.0255 0.0812 0.2547 1.4031

MAPSS-GMRES(αexp, βexp) IT 14 13 8 4 2
CPU 0.0053 0.0256 0.0755 0.2763 1.1983

Finally

E =

[
Ĕ ⊗ Ip
Ip ⊗ Ĕ

]
, Ĕ =


2 −1

2 −1
. . . . . .

2 −1

 ∈ Rp×(p+1),

where ⊗ denotes the Kronecker product.

TABLE 5.2
Numerical results for Example 5.1 (Case II).

p 16 32 64 128 256

GMRES IT 265 530 1517 - -
CPU 0.1165 2.7710 67.5061 - -

APSS-GMRES(αAPSS) IT 57 41 29 18 6
CPU 0.0307 0.0787 0.2063 0.7427 1.7077

APSS-GMRES(αexp) IT 44 35 25 15 5
CPU 0.0227 0.0991 0.2247 0.6427 1.5768

MAPSS-GMRES(αMAPSS) IT 18 18 15 7 3
CPU 0.0093 0.0339 0.1183 0.3703 1.2305

MAPSS-GMRES(αexp, βexp) IT 17 16 13 7 3
CPU 0.0064 0.0313 0.1078 0.3143 1.2020

From Tables 5.1 and 5.2, we see that GMRES converges very slowly in both cases.
However, for the APSS-preconditioned and MAPSS-preconditioned GMRES methods, the
value of IT becomes very small and that of CPU is also not large when the problem size
becomes very large. Whether using experimentally optimal values or quasi-optimal values,
the MAPSS preconditioner is more efficient than the APSS preconditioner in accelerating the
convergence rate of the GMRES method in terms of both IT and CPU. Moreover, it can be
seen that the numerical results of the APSS and MAPSS preconditioners with quasi-optimal
parameters are almost the same as the results with optimal parameter values. It implies that
our strategy of parameter selection is effective.
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FIG. 5.1. Eigenvalue distribution of the preconditioned matrices with p = 16 for Example 5.1.

EXAMPLE 5.2. Consider the block three-by-three saddle point problem (1.1) whose
coefficient matrix has the following block structure:

A =
1

10
sprandsym(n, 0.01) +Wn,

B = [Wm, sprand(m,n−m, 0.05)] ,

C = [Wl, sprand(l,m− l, 0.05)] ,

where W` = diag(1, 2, . . . , `) (` = l,m, n) is a diagonal matrix, sprandsym(n, 0.01) ∈
Rn×n is a sparse symmetric random matrix with approximately 0.01n2 nonzeros and each en-
try is the sum of one or more normally distributed random samples, and sprand(m, l, 0.05) ∈
Rm×l is a sparse random matrix with approximately 0.05ml uniformly distributed nonzero
entries. In this example, we choose m = 0.8n and l = 0.6n.

For the two different right-hand sides b, the values of IT and CPU for the preconditioned
GMRES methods applied to Example 5.2 are presented in Tables 5.3 and 5.4, respectively.
Comparing these tables with the numerical results of Example 5.1, we see that for this example
there is a great difference in IT and CPU for all tested methods. We notice that both the GMRES
method and the APSS-preconditioned GMRES method with quasi-optimal parameter converge
very slowly for this example, while the values of IT and CPU of the MAPSS-preconditioned
GMRES method with quasi-optimal parameter are always small, even when the problem size
n becomes larger and larger. The results of the MAPSS-preconditioned GMRES method
with quasi-optimal parameter are almost the same as that with an experimentally optimal
parameter. So it is appropriate for the MAPSS preconditioner to use our formula for choosing
parameters. We can also observe that the numerical results of the MAPSS preconditioner with
quasi-optimal parameter are better than those produced by the APSS preconditioner with the
optimal parameter.
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TABLE 5.3
Numerical results for Example 5.2 (Case I).

n 500 1000 2000 3000 4000

GMRES IT 1029 2024 - - -
CPU 1.1499 9.4198 - - -

APSS-GMRES(αAPSS) IT 332 581 995 1360 1699
CPU 0.5570 4.2169 28.5816 83.6772 181.8035

APSS-GMRES(αexp) IT 56 71 89 103 113
CPU 0.0275 0.1238 0.7426 1.8593 3.7577

MAPSS-GMRES(αMAPSS) IT 14 14 14 16 17
CPU 0.0138 0.0544 0.2490 0.5997 1.1653

MAPSS-GMRES(αexp, βexp) IT 10 11 12 13 14
CPU 0.0153 0.0324 0.1833 0.4803 0.9341

TABLE 5.4
Numerical results for Example 5.2 (Case II).

n 500 1000 2000 3000 4000

GMRES IT 1023 2024 - - -
CPU 1.1639 9.6227 - - -

APSS-GMRES(αAPSS) IT 335 581 1011 1349 1703
CPU 0.6345 3.4261 30.6293 99.8449 184.3075

APSS-GMRES(αexp) IT 56 71 90 103 113
CPU 0.0204 0.1203 0.7519 1.8305 3.7833

MAPSS-GMRES(αMAPSS) IT 14 15 15 17 18
CPU 0.0114 0.0414 0.2493 0.7051 1.1741

MAPSS-GMRES(αexp, βexp) IT 10 10 12 13 14
CPU 0.0088 0.0583 0.1877 0.4553 0.9745

EXAMPLE 5.3 ([13]). Consider the block three-by-three saddle point problem (1.1)
whose coefficient matrix has the following block structure:

A =

[
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

]
∈ R2p2×2p2 ,

B = [I ⊗ F F ⊗ I] ∈ Rp
2×2p2 ,

C = E ⊗ F ∈ Rp
2×p2 ,

where

T =
1

h2
· tridiag(−1, 2,−1) ∈ Rp×p,

F =
1

h
· tridiag(0, 1,−1) ∈ Rp×p,

E = diag(1, p+ 1, 2p+ 1, 3p+ 1, . . . , (p− 1)p+ 1) ∈ Rp×p,

and h = 1
p+1 is the discretization mesh size.

We display the numerical results of Example 5.3 in Tables 5.5 and 5.6. We note that
these results are slightly different from those of Example 5.1. For this example, both the
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FIG. 5.2. Eigenvalue distribution of the preconditioned matrices with n = 1000 for Example 5.2.

GMRES and APSS-preconditioned GMRES method with quasi-optimal parameter converge
slowly, as in Example 5.2. In addition, it can be seen in Tables 5.5 and 5.6 that the APSS
preconditioner with optimal parameter performs good. However, all numerical results of the
MAPSS preconditioner are better than those of the APSS preconditioner in terms of both IT
and CPU, which implies that our proposed method is the best of all tested methods and that
our selection strategy of the parameter is appropriate.

In Figures 5.1, 5.2, and 5.3, we depict the eigenvalue distribution of the original coefficient
matrices of the three examples and of the same matrices preconditioned with the APSS and
MAPSS preconditioners. It is evident that the APSS preconditioner greatly improves the
eigenvalue distribution, while the MAPSS-preconditioned matrix has a tighter spectrum that
leads to a stronger stability and a better numerical performance.

Finally, numerical results show that our parameter selection strategy is not very good for
the APSS preconditioner in Example 5.1, but it is very effective for the MAPSS preconditioner
in all examples. Furthermore, the MAPSS preconditioner can achieve a higher computational
efficiency than the APSS preconditioner in accelerating the convergence rate of the GMRES
method.

6. Conclusion. When Krylov subspace iteration methods are used to solve block three-
by-three linear systems, the use of good preconditioners is very important [3, 5, 6, 7, 14].
In this paper, we have presented an MAPSS preconditioner for solving block three-by-three
saddle point problems and analyzed spectral properties of the MAPSS-preconditioned matrix.
Moreover, we have provided fast and effective formulas for computing the quasi-optimal
values of the parameters involved in the MAPSS preconditioner. Numerical experiments show
that the MAPSS preconditioner with quasi-optimal parameter is an efficient and robust solver
for the block three-by-three linear system (1.1).
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TABLE 5.5
Numerical results for Example 5.3 (Case I).

p 16 32 64 96 128

GMRES IT 994 - - - -
CPU 0.9550 - - - -

APSS-GMRES(αAPSS) IT 295 914 - - -
CPU 0.3759 15.5429 - - -

APSS-GMRES(αexp) IT 10 10 10 10 10
CPU 0.0026 0.0127 0.0569 0.1392 0.2833

MAPSS-GMRES(αMAPSS) IT 6 6 7 7 8
CPU 0.0028 0.0107 0.0466 0.1112 0.2175

MAPSS-GMRES(αexp, βexp) IT 5 5 4 4 4
CPU 0.0024 0.0082 0.0316 0.0831 0.1494

TABLE 5.6
Numerical results for Example 5.3 (Case II).

p 16 32 64 96 128

GMRES IT 986 - - - -
CPU 0.9373 - - - -

APSS-GMRES(αAPSS) IT 294 822 - - -
CPU 0.3725 12.7610 - - -

APSS-GMRES(αexp) IT 10 10 9 8 8
CPU 0.0044 0.0125 0.0505 0.1298 0.2338

MAPSS-GMRES(αMAPSS) IT 5 6 6 7 8
CPU 0.0027 0.0119 0.0462 0.1066 0.2092

MAPSS-GMRES(αexp, βexp) IT 5 4 4 3 3
CPU 0.0017 0.0073 0.0341 0.0599 0.1352
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