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DOMAIN TRUNCATION, ABSORBING BOUNDARY CONDITIONS, SCHUR
COMPLEMENTS, AND PADÉ APPROXIMATION∗

MARTIN J. GANDER†, LUKÁŠ JAKABČIN‡, AND MICHAL OUTRATA§

Abstract. We show for a model problem that the truncation of an unbounded domain by an artificial Dirichlet
boundary condition placed far away from the domain of interest is equivalent to a specific absorbing boundary
condition placed closer to the domain of interest. This specific absorbing boundary condition can be implemented as a
truncation layer terminated by a Dirichlet condition. We prove that the absorbing boundary condition thus obtained
is a spectral Padé approximation about infinity of the transparent boundary condition. We also study numerically
two improvements for this boundary condition, the truncation with an artificial Robin condition placed at the end
of the truncation layer and a Padé approximation about a different point than infinity. Both of these give new and
substantially better results compared to using the artificial Dirichlet boundary condition at the end of the truncation
layer. We prove our results in the context of linear algebra, using spectral analysis of finite and infinite Schur
complements, which we relate to continued fractions. We illustrate our results with numerical experiments.
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1. Introduction. The solution process of problems on unbounded domains usually
requires a domain truncation and, hence, artificial boundary conditions, leading to techniques
such as perfectly matched layers (PML) or absorbing boundary conditions (ABC); see [3,
5]. At the discrete level, these closely relate to the problem of approximating the Schur
complement in some sense, which inspired a number of iterative solvers; see, e.g., [14, 15]
and the references therein. Our approach builds upon the eigendecomposition of the Schur
complement, which for our model problem is very closely linked with the Fourier analysis of
the Schur complement or, equivalently, the frequency domain analysis.

Domain truncation is also important in domain decomposition where a given computa-
tional domain is decomposed into many smaller subdomains and then subdomain solutions
are computed independently in parallel; see [15]. The solutions on the smaller subdomains
can naturally be interpreted as solutions on truncated domains and, thus, it is of interest to use
ABC or PML techniques at the interfaces between the subdomains; see also [9, 10, 14]. The
classical Schwarz method [22] uses Dirichlet transmission conditions between subdomains
and an overlap to achieve convergence [25]. In what follows the goal is to interpret the overlap
as a specific ABC once the unknowns of the overlap are folded onto the interface (similarly
to [11, 20]). Although the Schwarz method is not explicitly mentioned in what follows, it is
one of the main applications for our results; see [15] for more information and corresponding
numerical experiments. Note also that the Patch Substructuring Method [11, 20] is precisely a
method where the overlap was folded in.

Notably, the question of the optimal PML for problems with finite difference grids has
been discussed in [1, 17] for the Laplace equation and then extended to the Helmholtz equation
in [8]. Our interest here is, however, different: we want to get a mathematical understanding of
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FIG. 2.1. The unbounded strip domain in R2 with Ω = (0,+∞)× (0, 1).

what object is obtained when one truncates an unbounded domain with a Dirichlet boundary
condition after a finite layer of given length where one still solves the partial differential
equation. Moreover, we wish to investigate how the quality of the computed solution depends
on this length. This is often done by people in applications for diffusive problems, e.g., finance,
and in the classical Schwarz method and all its variants like Additive and Multiplicative
Schwarz. We have, as a second goal, to try to improve this procedure, by optimizing a
Robin truncation at the end of the layer or by modifying the equation in the entire layer in a
simple way, linking this approach to PML. We present this in a way that is reasonably self-
contained and easy to follow for readers from different mathematical communities, where such
simple Dirichlet truncations are used for diffusive problems. This also includes introducing
terminology for continued fractions, their types, and properties in some detail. This will be
done for the Schur complement as well.

In Section 2 we present some notation and definitions. In Section 3 we show that there
exists a limit of the Schur complement as the width of the truncation layer goes to infinity
and that the Schur complement of a finite width truncation with a Dirichlet condition is a
spectral Padé approximation around infinity of the unbounded width limit. Next, we explore
numerically how the spectral approximation changes when the Dirichlet condition at the end
of the truncation layer is replaced by a Robin condition in Section 4. We present an optimized
choice for the Robin parameter and propose a new type of truncation layer in Section 5. We
end with concluding remarks and possible extensions in Section 6.

2. Model problem. We use as our model problem the partial differential equation (PDE)

(η −∆)u = f in Ω := (0,+∞)× (0, 1), η > 0,

u = 0 on ∂Ω.

We assume that the support of the right-hand side function f is localized in Ωa := (0, a)×(0, 1)
and, having b ≥ a, we set Ωb := (0, b) × (0, 1) ⊂ Ω as the artificially truncated region
containing Ωa; see Fig. 2.1.

Discretizing with a standard finite difference scheme, we denote by N the number of
interior grid columns, and obtain the mesh size h := 1/(N + 1). Assuming we have

a = (Na + 1)h and b = (N b + 1)h,

we obtain the discretized problems

(2.1) Au = f , Abub = f b, Aaua = fa,
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with the right-hand side vectors fa :=
[
fT1 , · · · , fTNa

]T
, f b :=

[
(fa)T ,0T , · · · ,0T

]T
, and

f :=
[
(f b)T ,0T , · · · ,0T , . . .

]T
, and the matrices

(2.2) A? :=
1

h2


D1 −I

−I
. . . . . .
. . . DN?−1 −I

−I DN?

 , A :=
1

h2


h2Ab −I

−I DNb+1

. . .
. . . . . .

 ,
where ? stands for either a or b (and thus changes the number of block rows and block columns)
and each block has dimension N (vectors) or N ×N (matrices) related to a particular set of
grid column variables. The matrix I is the N ×N identity and the diagonal blocks Dj are
given by

(2.3) Dj := D =

ηh
2 + 4 −1

−1
. . . −1
−1 ηh2 + 4

 ∈ RN×N .

Here, it is enough to understand the infinite-dimensional system in (2.1) as the limit of the
finite-dimensional one as b→ +∞; for more details on infinite matrices; see, e.g., the concise
review [23] or the historical overview [6].

Thanks to the localization of f we can formulate a problem only on Ωa such that its
solution coincides with ub

∣∣
Ωa

, simply by eliminating the unknowns from the truncation
domain Ωb\Ωa. This is of particular interest for the domain decomposition methods; see
Section 1 and also [15]. This solution is then an approximation of u

∣∣
Ωa

. The continuous
level formulation requires the Dirichlet-to-Neumann operator (see, e.g., [14] in the context
of domain decomposition) and its approximation on finite difference grids in this context
has been studied in [1, 17]. We carry out this elimination by “folding in” the variables
(ubNb , . . . ,u

b
Na+1), starting with ubNb and working our way from the right to the left on the

grid. Recalling (2.1), for b < +∞ these variables satisfy the equations

(2.4) −
ubNb−1−i

h2
+
DNb−iu

b
i

h2
−

ubNb+1−i
h2

= 0, −
ubNb−1

h2
+
DNbu

b
Nb

h2
= 0,

with i ∈ {1, . . . , N b − Na}, where the index i counts the progress “from right to left” in
the domain Ωb\Ωa. The elimination process corresponds to the block Gaussian elimination
(block size N ) that eventually calculates the Schur complement of the unknowns ub

∣∣
Ωa

in Ab;
see, [16, p. 103]. We summarize this in the definition below.

DEFINITION 2.1 (Schur complement). Having b <∞ we can reduce Abub = f b to

(2.5) Ãaub
∣∣
Ωa

= fa, with Ãa =
1

h2


D1 −I

−I
. . .

. . .
. . . DNa−1 −I

−I T bNa

 ,
where the block T bNa is called the Schur complement. It can be calculated recursively, for
i ∈ {1, . . . , N b −Na}, (see [21, Sections 1.3.2 and 1.4.3]) as

(2.6) T bNb := DNb = D and T bNb−i := Di −
(
T bNb−i+1

)−1
= D −

(
T bNb−i+1

)−1
.
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Comparing Ãa and Aa, the only change is in the last block where the Dirichlet boundary
condition block has been replaced by the Schur complement T bNa , representing the truncation
layer (or the “far-field” domain) unknowns in Ωb\Ωa. Hence ub

∣∣
Ωa

approaches u
∣∣
Ωa

in the
limit as b→∞, but increasing b makes the defining recurrence in (2.6) longer. If b goes to
infinity, the corresponding Schur complement matrix T∞Na is still governed by (2.6), namely

(2.7) T∞Na = D − (T∞Na)
−1
, i.e., (T∞)2 −DT∞ + I = 0.

Notably, this equation does not depend on Na, and hence also its solution T∞Na ≡ T∞. To
solve (2.7), we start the following section by changing the basis we work in to the eigenbasis
of D, effectively applying a discrete Fourier transform in the y variable.

3. Spectral analysis. Writing D from (2.3) as D = Dyy + 2I , where Dyy is the
3-point finite difference stencil discretization of η − ∂yy multiplied by h2, we recall that
Dyy = QTdiag(z1, . . . , zN )Q with

(3.1) zk := ηh2 + 4 sin2

(
kπ

2(N + 1)

)
and qk :=

[√
2

N+1 sin
(

kπ
N+1j

)]N
j=1
∈ RN ,

where Q is unitary and symmetric, with the eigenvectors qk in its columns. We can thus write
D = QTΛQ with Λ := diag(2 + z1, . . . , 2 + zN ) as the eigendecomposition of D.

REMARK 3.1. Calculating in the eigenbasis of D is a necessity for our Schur complement
analysis but in treating each eigenmode separately we would add yet another index to the
already loaded notation. That is why, instead of referring to the particular eigenvalues 2 + zk
of D or zk of Dyy, we introduce new variable z and treat all quantities depending on 2 + zk
or zk as functions of z. This way we avoid the index k whenever we can but in some places
the reference to a particular eigenvalue or eigenmode is unavoidable and we keep the index k
reserved for the eigenmode notation throughout the text.

3.1. Diagonalization and convergence of the Schur Complement. Changing the basis
for the Schur complement definition in (2.6) gives

T̂ bNb = QDQT = Λ and T̂ bNb−i = QDQT −Q(T bNb−i+1)−1QT = Λ− (T̂ bNb−i+1)−1,

where i = 1, . . . , N b − Na and all of the matrices T̂ bNb−i are diagonal. Working with the
diagonal entries only, each of them becomes a function of zk and also follows the recurrence.
Recalling Remark 3.1, we write

t̂bNb(z) = (2 + z) and t̂bNb−i(z) = (2 + z)− 1

t̂b
Nb−i+1

(z)
for i = 1, . . . , N b −Na,

but in order to further simplify the notation, we label these scalar functions only by i rather
than N b − i and without relabeling we obtain

(3.2) t̂b0(z) = (2 + z) and t̂bi (z) = (2 + z)− 1

t̂bi+1(z)
for i = 1, . . . , N b −Na.

This way, the scalar function labeling directly corresponds to the number of steps of the block
Gaussian elimination we have already carried out. This notation becomes the natural one for
the mathematical tools used later in this manuscript.
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We obtain an analogous recurrence for the solution ub in (2.4). Setting ûbNb−i := QubNb−i
we get

−
ûbNb−1

h2
+

ΛûbNb

h2
= −

ûbNb−1

h2
+
T̂ bNb

h2
ûbNb = 0,

−
ûbNb−1−i

h2
+

ΛûbNb−i
h2

−
ûbNb+1−i

h2
= −

ûbNb−1−i
h2

+
T̂ bNb−iû

b
Nb−i

h2
= 0,

(3.3)

with i = 1, . . . , N b −Na. Turning to the limit case b→ +∞ for T bNa , we can now treat each
mode separately, obtaining a scalar problem instead of (2.7). Setting

lim
b→+∞

t̂bNb−Na(z) =: t̂∞(z),

we observe that

(3.4) (t̂∞)2(z)− (2 + z)t̂∞(z) + 1 = 0,

with the two solutions τ̂∞,1(z) =
2+z+

√
(2+z)2−4

2 and τ̂∞,2(z) =
2+z−

√
(2+z)2−4

2 , with

(3.5)
(
τ̂∞,1(z)

) (
τ̂∞,2(z)

)
= 1 and 0 < τ̂∞,2(z) < 1 < τ̂∞,1(z).

Next, we show that one of the solutions τ̂∞,1(z), τ̂∞,2(z) acts as the limit Schur complement
for our solution vector ub

∣∣
Ωa

.
The key observation is that the characteristic polynomial of the recurrence relation in (3.3)

is preserved through the limit process and thus the solutions τ̂∞,1(z), τ̂∞,2(z) of the limit
equation (3.4) coincide with the roots of the characteristic polynomial of the recurrence relation
in (3.3) given by pz(r) = −r2 + (2 + z)r − 1. This together with the explicit formula for
the solution of the recurrence relation (3.3) is enough to solve the matrix equation defining
T∞ in (2.7). In order to do so, we will evaluate the functions of z at the particular points of
interest zk, i.e., at the eigenvalues of the matrix Dyy .

THEOREM 3.2. The Schur complement T bNa defined in (2.6) converges to T∞,1 solution
of the formal limit equation (2.7) as b → +∞, i.e., the eigenvectors of those matrices are
equal and the eigenvalues t̂bNb−Na(zk) of the Schur complement converge to τ̂∞,1(zk) for all
k = 1, . . . , N .

Proof. For any b large enough, we fix a particular grid-column index j ∈ {Na, . . . , N b}
and observe that the solution subvector ûbj = [ûbj,1, . . . , û

b
j,N ]T ∈ RN follows the recurrence

in (3.3). This recurrence has a closed form solution, namely there exist pairs of constants
(νb1, µ

b
1), . . . , (νbN , µ

b
N ) independent of j such that

ûbj =


µb1
(
τ̂∞,1(z1)

)j−Na
+ νb1

(
τ̂∞,2(z1)

)j−Na
...

µbN
(
τ̂∞,1(zN )

)j−Na
+ νbN

(
τ̂∞,2(zN )

)j−Na
 .

Furthermore, recalling (3.5), it follows that(
τ̂∞,1(zk)

)Nb−Na → +∞ as b→ +∞, for any k = 1, . . . , N.

As ûbNb = 0 for any b > a we have |ûbNb | 9 +∞ as b → +∞, showing that for each k
necessarily µbk → 0 as b→ +∞. Since ûbNa converges as b→ +∞ (see, e.g., [24, Sections 2
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and 3]) we obtain also the limits ν∞k := lim νbk as b→ +∞ and therefore

(3.6) û∞j ≡ lim
b→∞

ûbj =


ν∞1
(
τ̂∞,2(z1)

)j−Na
...

ν∞N
(
τ̂∞,2(zN )

)j−Na
 .

Taking j = Na + 1 we can solve the k-th entry of the recurrence in (3.3) for t̂bNb−Na−1(zk)
and using the finite difference stencil, we obtain

t̂bNb−Na−1(zk) =
(2 + zk)ûbNa+1,k − ûbNa+2,k

ûbNa+1,k

=
ûbNa,k
ûbNa+1,k

→ 1

τ̂∞,2k (zk)
= τ̂∞,1k (zk),

where we used (3.6) and (3.5) before and after taking the limit respectively. Using the defining
equation (3.4) we obtain

t̂bNb−Na(zk) =
1

(2 + zk)− t̂b
Nb−Na−1

→ 1

(2 + zk)− τ̂∞,1k

=
1

τ̂∞,2k

= τ̂∞,1k (zk).

Theorem 3.2 implies

(3.7) t̂∞(z) =
2+z+

√
(2+z)2−4

2 = 1 + z
2 +

√
z2+4z

2 =
(

1 + z
2

(
1 +

√
1 + 4

z

))
,

and for b <∞ we recall (3.2) and in the same fashion we obtain

t̂b0(z) = 2 + z, t̂b1(z) = 2 + z − 1

2 + z
,

t̂b2(z) = 2 + z − 1

t̂b
Nb−1

(z)
= 2 + z − 1

2 + z − 1
2+z

,

and by the recursive definition in (3.2), the i-th term is given by

(3.8) t̂bi (z) =
2 + z

h2
−

1
h2

2 + z −
1

2 + z −
. . .

2 + z − 1
2+z

,

having i “levels” of the fraction. After some elementary calculations t̂bi (z) can be written
as a rational function of degree i + 1. Notice that each level of t̂bi (z) in (3.8) corresponds
to elimination of unknowns from one grid column, i.e., to one step of the block Gaussian
elimination mentioned above. This is not surprising, but it gives perhaps a more pleasant way
of viewing and analyzing the matrix recurrence in Definition 3.5. We continue by a simple
observation regarding the functions t̂∞ and t̂bi .

REMARK 3.3. By subsequent re-insertion we obtain

t̂∞(z) = 2 + z − 1

t̂∞(z)
, t̂∞(z) = 2 + z − 1

2 + z − 1
t̂∞(z)

, . . .

and so on. This suggests that the function t̂∞(z) is equal to the infinite continued fraction

t̂∞(z) = 2 + z − 1

2 + z − 1
2+z−...

,
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and t̂bi (z) in (3.8) are approximations in the sense of a truncation after i levels, hence t̂bi (z) is
called a truncated continued fraction.

The theory of continued fractions links various areas of mathematics, e.g., Padé approxi-
mations, orthogonal polynomials, Vorobyev’s moment matching problem, Riemann-Stieltjes
integrals, Gauss quadrature and the method of conjugate gradients; see [7, 19, 26] and
also [18, Section 3.3.2 - 3.3.6] for further references. In this manuscript we restrict ourselves
to assume no knowledge of this field. As a result, the text is self-contained and easier to access
for a wider audience. But this comes with a price – using the full strength of the continued
fractions theory we could meaningfully refine the results as well as connect these with the
above mentioned areas. We postpone such presentation to an upcoming manuscript, which
will make a good use of the present one as a stepping stone. This also justifies the use of [2]
as our main reference, where the author uses continued fractions only as one of the possible
tools to arrive at Padé approximants – precisely the spirit in which we will use the continued
fractions. We refer the interested reader to [7, 18, 19, 26] for more detailed expositions of the
connected topics.

We continue in Section 3.2 with a concise summary of the continued fraction results
and the connected simple algebraic calculations. We formulate these in terms of an auxiliary
variable α, given by

(3.9) α :=
4

z
.

This change of variables is unavoidable as we will need to expand about +∞ and the standard
way of defining this is to expand the same function but of a reciprocal argument about 0 –
hence (3.9). This is why we do not consider (3.9) as a proper change of variables, which would
otherwise necessitate tedious calculations of the derivatives of the function composition. In
fact, the true change of variables consists only in multiplying by 4 and hence does not require
a re-computation of the derivatives. Hence we rewrite t̂∞(z), t̂bi (z) as functions of α instead
of z and for the sake of simplicity we do not relabel, i.e., we abuse the notation to have

(3.10) t̂(z) ≡ t̂(z(α)) := t̂(α), for t̂ = t̂∞ or t̂ = t̂bi .

3.2. Padé approximation and continued fractions. We follow the notation from [2],
i.e., the [M/L]-Padé approximant of f(z) is denoted by [M/L]f ≡ [M/L]f (z). We start with
Padé theory and proceed with continued fractions; see [2, Chapter 4].

THEOREM 3.4 ([2, Theorem 1.5.3, 1.5.4, 1.5.1]). Let f(z) be a real function of a real
variable. Then, the following statements hold, provided the Padé approximants exist,

1. Let α, β ∈ R. Then, α+ β[M/L]f = [M/L]α+βf .

2. Letm ≥ 1 and f(z) =
+∞∑
j=0

cjz
j be a formal power series. AssumingM−m ≥ L−1

and setting g(z) = 1
zm

(
f(z)−

m−1∑
j=0

cjz
j

)
we have

[M −m/L]g(z) =
1

zm

[M/L]f (z)−
m−1∑
j=0

cjz
j

 .

3. Let f(0) 6= 0 and set g(z) = 1/f(z). Then, [M/L]g(z) = 1/[L/M ]f (z).
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DEFINITION 3.5. A continued fraction is given by sequences of real numbers {aj}j , {bj}j ,
the numerator and the denominator sequence of the continued fraction, and has the general
form

b0 +
a1

b1 + a2
b2+

a3

. . .

=: b0 +

+∞∑
j=1

aj
bj+

≡ b0 +
a1

b1 +

a2

b2 +
. . . ,

where the sum is to be understood only formally. The continued fraction is called infinite as
long as aj , bj 6= 0 for all j. The n-th truncation (or convergent) of a continued fraction is
given by

An
Bn

= b0 +

n∑
j=1

aj
bj+

= b0 +
a1

b1 +
a2

bn−2 +

. . .

bn−1 + an
bn

,

where An and Bn are the n-th truncation (or convergent) numerator and denominator.
Replacing the scalars aj and/or bj by linear (or affine) functions of a real variable z, An

and Bn become polynomials in z and the n-th truncation of the continued fraction becomes a
rational function in z. Different settings of this framework lead to different types of continued
fractions. Most notably, a continued fraction is called regular C-fraction (short for regular
classical continued fraction), if it has the form

b0 +
a1z

1 +
a2z

1 + a3z

. . .

≡ b0 +
a1z

1 +

a2z

1 +
. . . ,

with aj 6= 0 for all j. If, moreover, aj > 0 for all j, then it is called S-fraction (short for
Stieltjes continued fraction). If the continued fraction takes the form

b0 +
r1

z + s1 −
r2

z + s2 − r3

. . .

≡ b0 +
r1

z + s1 −
r2

z + s2 −
. . . ,

with rj 6= 0 for all j, then it is called J-fraction (short for Jacobi continued fraction). For
more details on the introduced types of continued fractions as well as other types of continued
fractions, e.g., non-regular C-fraction, T-fraction, P-fraction,. . . , we refer also to [19, 26] and
references therein.

First, we note that we have ignored the questions of convergence of infinite continued
fractions and we refer the reader to [19] and [26]. Next, notice that one function can be
represented by two seemingly different continued fractions (different in type and/or in the
coefficient values) and one way to recognize their equality is via the three-term recurrence
relation; see [2, Theorem 4.1.1, pp.106]. We have that

A−1 = 1, A0 = b0, An = bnAn−1 + anAn−2,

B−1 = 0, B0 = 1, Bn = bnBn−1 + anBn−2,

and, assuming the n-th truncation (convergent) of two continued fractions are equal for any n,
the infinite continued fractions are equal as well. Last but not least, we note that some authors
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will call a continued fraction an S-fraction even though the fraction itself does not meet the
definition above, but can be transformed into a continued fraction that does. We next recall a
basic transformation rule of continued fractions.

LEMMA 3.6 ([2, Section 4.1, pp. 105–106]). Let {aj}j , {bj}j be two real sequences of
the numerators and denominators of a continued fraction as in Definition 3.5. Let {ej}j be a
sequence of real numbers different from zero. Then, we have

b0 +
a1

b1 +

a2

b2 +

a3

b3 +
· · · = b0 +

e1a1

e1b1 +

e1e2a2

e2b2 +

e2e3a3

e3b3 +
. . . ,

For the purposes of this text we present immediately the continued fraction result for the square
root function, which is of interest to us. We refer to the book of Baker but the original result is
due to Gauss, who showed a much more general result for the hypergeometric function 2F1;
see [26, Chapter XVIII] or [19, Chapter VI] for more details.

THEOREM 3.7 ([2, Section 4.6, Theorem 4.4.3 and formula (6.4) on pp. 139]). For any
α ∈ (−1,+∞) we have

√
1 + α = 1 +

α
2

1 +
α
2

2 +
α
2

1 +
α
2

bn−2 +

. . .

bn−1 +
an

bn + an+1

...

= 1 +
α
2

1 +

α
2

2 +

α
2

1 +
. . .

+

an
bn +

. . .

(3.11)

with b0 = 1, bj = 3+(−1)j

2 and aj = α
2 , j ≥ 1. Moreover, for any n the [n, n]-Padé

approximation of
√

1 + α expanded about α = 0 is given by the (2n)-th truncation of the
continued fraction in (3.11) and the [n+ 1, n]-Padé approximation of

√
1 + α expanded about

α = 0 is given by the (2n+ 1)-st truncation of the continued fraction in (3.11).
Note that there is a misprint in [2, equation (6.4), p. 139]. The authors state the conver-

gence “for all z except −∞ < z ≤ 1)" but the result also holds for z ∈ (−1, 1].
REMARK 3.8. By a direct computation we see that

√
1 + α = 1 +

α

2 +

α

2 +

α

2 +
. . . ,

i.e., the representation in (3.11) can be written as a cyclic S-fraction with aj = 1/2 for all j.
Infinite continued fractions with periodic sequences {aj}, {bj} are called cyclic continued
fractions.

The rest of this section is devoted to auxiliary results, the first of which links a truncation
of the S-fraction from Theorem 3.7 and a truncation of the J-fraction from Remark 3.3. Notice
that the continued fractions are not identical but rather differ in the absolute term.

LEMMA 3.9. Let α be real and consider the two continued fractions

τ(α) :=
α
2

2 +
α
2

1 +
α
2

2 +
α
2

1 + . . .

and σ(α) :=
1

1 + 4
α −

1

2 + 4
α −

1

2 + 4
α −

1

2 + 4
α − . . .

.
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Denote their n-th truncations by An(α)/Bn(α) and Cn(α)/Dn(α), respectively. For any
n = 1, 2, . . . we have

A2n(α)/B2n(α) = Cn(α)/Dn(α).

Proof. Using Lemma 3.6 we transform τ(α) and, without further relabeling, we obtain

(3.12) τ(α) :=
1

4
α +

1

1 +
1

4
α +

1

1 +
1

4
α +

1

1 + . . .

.

A direct computation confirms that equality holds for n = 1. Next, we notice that the continued
fraction (3.12) can be written in cyclic form with the core R given by

(3.13) R =
4

α
+

1

1 + 1
R

,

i.e., the continued fraction can be obtained by a successive re-insertion of the core equal-
ity (3.13) into itself, e.g.,

1
4
α + 1

1︸ ︷︷ ︸
=
A2(α)

B2(α)

,
1

4
α +

1

1 +
1

4
α + 1

1︸ ︷︷ ︸
=
A4(α)

B4(α)

,
1

4
α +

1

1 +
1

4
α +

1

1 +
1

4
α + 1

1︸ ︷︷ ︸
=
A6(α)

B6(α)

, . . . .

In this way every re-insertion adds two elements of the numerator and denominator sequences.
Using the algebraic identity

1

1 + 1
R

= 1− 1

1 +R
,

we reformulate the core equality (3.13) to obtain

(3.14) 1 +R = 2 +
4

α
− 1

1 +R
,

and notice that the core equality in (3.14) is the one that generates the J-fraction σ(α).
Hence, we have shown that, for n ≥ 2, the 2n re-insertions of the core R in the equal-

ity (3.13) is equal to n re-insertions of the core 1 +R in the equality (3.14), concluding the
proof.
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We now build upon Lemma 3.9 by contracting the S-fraction in (3.11) into a J-fraction.
PROPOSITION 3.10. Let α be real and set the continued fractions τ(α) and σ(α) as in

Lemma 3.9. Moreover, we define the continued fractions

τ̃(α) :=
1

1 + τ(α)
and φ(α) := 1−

1

2 + 4
α −

1

2 + 4
α −

1

2 + 4
α − . . .

with n-th truncations Ãn(α)/B̃n(α) and En(α)/Fn(α) with E0 = F0 = 1. Then, for n ≥ 0

A2n+1(α)/B2n+1(α) = En(α)/Fn(α).

Proof. The equality for n = 0 holds by inspection. Taking n ≥ 1, we use Lemma 3.9 for
the continued fraction τ̃(α) and obtain

Ã2n+1(α)/B̃2n+1(α) =
1

1 +A2n(α)/B2n(α)
=

1

1 + Cn(α)/Dn(α)
.

Having the truncations Cn(α), Dn(α) of σ(α) from Lemma 3.9 it remains to show that

(3.15)
1

1 + Cn(α)/Dn(α)
= 1− En(α)/Fn(α).

The cyclic parts of both σ(α) and φ(α) coincide and we denote them by σ̃(α),

σ̃(α) :=
1

2 + 4
α −

1

2 + 4
α − . . .

.

In turn, this gives

σ(α) =
1

1 +
1

1 + 4
α − σ̃(α)

and φ(α) = 1− 1

2 + 4
α − σ̃(α)

.

Thus to show (3.15) it is enough to prove

1

1 +
1

1 + 4
α − σ̃

= 1−
1

2 + 4
α − σ̃

,

as σ̃ contains the common part. By a direct computation we obtain

1

1 +
1

1 + 4
α − σ̃

=
1 + 4

α − σ̃(α)

2 + 4
α − σ̃(α)

and 1− 1

2 + 4
α − σ̃

=
1 + 4

α − σ̃(α)

2 + 4
α − σ̃(α)

,

finishing the proof.
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3.3. Approximation properties of the Schur complement. Recall the expressions of
t̂bi (z) and t̂∞(z) from (3.8) and (3.7) representing the Schur complements T bi and T∞,

t̂bi (z) = 2 + z − 1

2 + z −
1

2 + z −
. . .

2 + z − 1
2+z

, t̂∞(z) = 1 +
z

2
+
z

2

√
1 +

4

z
.

In Theorem 3.11 we show an important approximation property of these functions. We
use a similar technique as in [12] where the authors compute a Padé approximation of the
Dirichlet-to-Neumann operator. This is not a coincidence, the Schur complement and the
Dirichlet-to-Neumann map have a deep connection; see, e.g., [14, Section 5.2].

THEOREM 3.11. The function t̂bi (z) is the [i, i]-Padé approximation about the expansion
point z = +∞ of t̂∞(z).

Proof. First, we transpose the expansion point z = +∞ to α = 0 as in (3.9). Without
further relabeling we obtain

t̂bi (α) = 2 +
4

α
−

1

2 + 4
α −

1

2 + 4
α −

. . .

2 + 4
α −

1

2 + 4
α

, t̂∞(α) = 1 +
2

α
+

2

α

√
1 + α.

Recalling (3.5), we have{
t̂∞
}−1

(α) :=
1

t̂∞(α)
= 1 +

2

α
− 2

α

√
1 + α,

and, using point 3 of Theorem 3.4, we get

[i/i]t̂∞(α) =
1

[i+ 1/i]{t̂∞}−1(α)

for any i ≥ 1. By a direct computation we obtain{
t̂∞
}−1

(α) = 1 +
2

α
− 2

α

√
1 + α = 1− 2

1

α

(√
1 + α− 1

)
,

and hence by the Padé approximant calculus (see points 1 and 2 of Theorem 3.4) we obtain

[i/i]{t̂∞}−1(α) = 1− 2
1

α

(
[i+ 1/i]√1+α(α)− 1

)
.

Using the continued fraction representation from Theorem 3.7 we obtain

[i/i]{t̂∞}−1(α) = 1− 2
α

(
1 + 1 + A2i+1(α)

B2i+1(α) − 1
)

= 1− 2
α

α
2

1 +
α
2

2 +
α
2

1 +
α
2

b2i−1 +

. . .

b2i + a2i+1

b2i+1

,
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where the sequences {aj}j , {bj}j are given as in Theorem 3.7 and A2i+1(α)/B2i+1(α) is the
(2i+ 1)-st truncation of the continued fraction τ(α) from Lemma 3.9. Hence, we have

(3.16) [i/i]{t̂∞}−1(α) = 1−
1

1 +
α
2

2 +
α
2

1 +
α
2

b2i−1 +

. . .

b2i + a2i+1

b2i+1

,

and by a straight-forward manipulation (see Proposition 3.10) we observe that the continued
fraction on the right-hand side in (3.16) is the (2i+ 1)-st truncation of the continued fraction

τ̃(α) :=
1

1 + τ(α)
.

Finally, Proposition 3.10 gives a J-fraction representation of the continued fraction τ̃ and its
(2i+ 1)-st truncation denoted by C̃i(α)/D̃i(α), namely

[i/i]{t̂∞}−1(α) = 1−

(
1− C̃n(α)

D̃n(α)

)
=

1

2 + 4
α −

1

2 + 4
α −

1

2 + 4
α −

. . .

2 + 4
α −

1

2 + 4
α︸ ︷︷ ︸

i−1 “levels"

.

As a result, we get that for any i ≥ 1

[i/i]t̂∞(α) =
1

1

2 + 4
α −

1

2 + 4
α −

1

2 + 4
α −

. . .

2 + 4
α −

1

2 + 4
α

= 2 + 4
α −

1

2 + 4
α −

1

2 + 4
α −

1

2 + 4
α −

. . .

2 + 4
α −

1

2 + 4
α︸ ︷︷ ︸

i−1 “levels"

finishing the proof.
Defining the approximation error by

errD(z, i) :=
∣∣t̂∞(z)− t̂bi (z)

∣∣ ,
where i denotes the number of grid columns that were folded into the Schur complement and
the subscript D stands for the “Dirichlet” boundary condition at the end point x = b, we are
interested in the values for z = zk as in (3.1) for which

(3.17) zk ∈
[
ηh2 + 4 sin2

(
π

2

1

N + 1

)
, ηh2 + 4 sin2

(
π

2

N

N + 1

)]
≈
[
ηh2, ηh2 + 4

]
.
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This seems not to agree with Theorem 3.11 where we operate with the expansion point
z = +∞, which is far away from the domain of zk. We address this in the following remark.

REMARK 3.12. The gap between Theorem 3.11 and (3.17) can be bridged by considering
the definition of the matricesA? in (2.2) andD in (2.3), where the 1/h2 factor was intentionally
put in front of the matrix. Algebraically, this is sensible and made many calculations easier to
navigate. Including the 1/h2 factor in the blocks and defining D̃ := 1/h2D as the diagonal
blocks in (2.2) leads to the rescaling of (3.17) so that the expansion point +∞ asymptotically
becomes the right endpoint of the bounding interval of zk, i.e., 4/h2 → +∞ as h → 0;
see [21, Chapter 6 and Appendix B.6] for more details. We choose not to rescale now, but
all the following results should be viewed with this interpretation of Theorem 3.11 and the
interval (3.17) in mind.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
zk

10 11

10 9

10 7

10 5

10 3

10 1

er
r D

(z
,i)

i =  1 i =  2 i =  3 i =  4 i =  5 i =  6 i =  7

FIG. 3.1. Plots of the function errD(z, i) at the points zk with the parameters set to N = 20 and η = 2. The
value i corresponds to the number of grid columns in Ωb \Ωa.

We plot the error errD for small i and appropriate z in Fig. 3.1. We see that errD(z, i)
quickly decreases as z tends towards the right endpoint of the spectrum, which is to be
understood as the expansion point. This becomes more pronounced for larger i, i.e., for higher
order Padé approximations, namely when b increases. We see that the error is still large for
z far away from the right endpoint, i.e., the ABC struggles with the low frequency mode
approximation. We try improving this in the next section by considering a Robin boundary
condition at the end of the truncation layer, x = b. In practice, the low frequency modes can
be also solved by coupling our ABC with some effective low-frequency solver, e.g., some type
of multigrid or multilevel DD scheme. However the focus here is to efficiently improve the
ABC itself.

4. Robin boundary condition for truncation. We see that the Padé approximation error
is far from optimal. Replacing the Dirichlet boundary condition at x = b with a homogeneous
Robin boundary condition with the Robin parameter p ≥ 0 at b, i.e., with

∂u

∂n
+ pu = 0 at x = b,

we hope to improve this. We recall that a Robin boundary condition is a simple approximation
to the transparent boundary condition and works in general substantially better; see [9, 15]
for discussions on subdomain truncation in domain decomposition. Using a centered finite
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difference approximation as before the Robin condition can be discretized with the so-called
ghost point trick. We use a centered discretization of the Robin condition,

uNb+1 − uNb−1

2h
+ puNb = 0, i.e., uNb+1 = uNb−1 − 2phuNb ,

and then use the discretized equation at b, −uNb+1 + DNbuNb − uNb−1 = 0 to eliminate
the unknowns uNb+1, the ghost points, to get (DNb + 2hpI)uNb − 2uNb−1 = 0. Hence, the
new system matrix, denoted by Āb, becomes

Āb :=
1

h2



D1 −I

−I
. . . . . .
. . . DNa −I

−I DNa+1
. . .

. . . . . . −I
−I D̄Nb


,

with D̄Nb := 1
2 (DNb + (2ph)I). This also modifies the Schur complement, yielding

(4.1) T̄ bNb =
1

2
D̄Nb and T̄Nb−i = D −

(
T̄ bNb−i+1

)−1
, for i = 1, . . . , N b −Na.

After diagonalization we adopt the natural notation analogous to (3.2) and obtain

t̄b0(z) = 1 + ph+
z

2
, t̄b1(z) = 2 + z − 1

1 + ph+ z
2

,

t̄b2(z) = 2 + z − 1

2 + z −
1

1 + ph+ z
2

.

By the recursive definition in (4.1) it follows that

(4.2) t̃bi (z) = 2 + z −
1

2 + z −
1

. . .

2 + z −
1

1 + ph+ z
2

.

Note that, if p → +∞, we recover the original Dirichlet boundary condition with one
less level of the continued fraction corresponding to the physical domain (b, b+ h)× (0, 1).
With (4.2) we can numerically explore the effect of the Robin parameter p on the behavior of
the

errR(z, i) :=
∣∣t̂∞(z)− t̄bi (z)

∣∣ ,
where the subscript R stands for the “Robin” boundary condition at the end point x = b. We
illustrate this in Fig. 4.1.

We see that the behavior around the right endpoint of the interval is analogous to the one
in Fig. 3.1, but the Robin condition introduced a new point ζp around which the approximation
is accurate, e.g., in Fig. 4.1 we see that ζp ≈ 0.46. Assuming ζp is a solution of

(4.3) errR(z, i) = 0,
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FIG. 4.1. Left: plots of errR(z, i) at the points zk (see (3.1)) evaluated for different number of grid columns i
in Ωb \Ωa, with p = 50, N = 70 and η = 2. Right: plots of the same functions under the same settings but zoomed
in on the cusp (and thus plotted over artificial variables z rather then the eigenvalues zk). In addition we also show
the error errP from Section 5.

and that errR(z, i) is smooth except at a finite number of points, equation (4.3) defines ζp as
an implicit function of p and the other parameters of the problem. For i = 1 we get

errR(z, i) =

(
1 +

z

2

(
1 +

√
1 +

4

z

))
− 1 + ph+

z

2
=
z

2

√
1 +

4

z
− ph,

which gives ζp as the positive root of the quadratic equation

ζ2
p + 4ζp − 4p2h2 = 0 =⇒ ζp = −2 + 2

√
1 + p2h2.

Numerically, this formula worked for all different settings we have tried and, e.g., the numerical
independence of ζp on i is already visible on the example in Fig. 4.1.

Next, we try numerically to optimize p so that the infinity norm of errR(z) is minimized,
i.e., we search for p that equioscillates the maximum of errR(z) on the left and on the right of
ζp, and show the results in Fig. 4.2. The relative improvement in the infinity norm of replacing
the Dirichlet condition with the Robin one for that setting is roughly 5 fold.

Running the optimization while varying i, i.e., the number of grid columns from a to b,
we obtain Table 4.1, again for N = 200 and η = 2. We see that the improvement over the
Dirichlet truncation increases with increasing number of layers. The corresponding results
over a larger range of i are shown graphically in Fig. 4.3.

In Fig. 4.3 we varied i as powers of 2 from 21 = 2 to 28 = 256 on the left and then up to
215 on the right and observe a linear dependence in the log-log scale on the left, i.e., for values
i ≤ 256, and fitting the line gives the law

(4.4) p∗(i) ∼ C · iq, with C ≈ 11, q ≈ −1.

The range i ≤ 256 (and hence also the approximation (4.4)) in our eyes well covers the
practically interesting values of i, but it is clear that in general p∗(i) does not follow the
proposed relation (4.4).

Although the change and optimization of the Robin condition at x = b offers a con-
siderable improvement over the Dirichlet condition, we still observe for both of these the
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FIG. 4.2. Left: minimization over p of the infinity norm of the Robin condition error, clearly showing
the equioscillation. Right: optimized error compared with the corresponding Dirichlet condition error. We set
N = 200, i = 4 and η = 2 and note that instead of zk from (3.1) we take logarithmically equidistant z from the
interval (3.17).
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FIG. 4.3. Dependence of the optimized Robin parameter p∗(i) on the number of layers i added after a compared
with the predicted behavior. The value i corresponds to the number of grid columns in Ωb \Ωa.

qualitatively identical behavior for z around the right endpoint of the spectrum. Naturally,
we would like to shift this expansion, i.e., move the zero of the error from the right endpoint
of the spectrum inside, and analogously to find p∗ and ζp we would like to get the optimal
expansion point that minimizes the maximum of the approximation error. We explore this
direction further in the following section.

5. Shifting the Padé expansion point. Taking some α0 > 0 and introducing the new
variable

(5.1) α̃ :=
α− α0

1 + α0
and, hence, α(α̃) = α̃ · (1 + α0) + α0,

a direct computation gives
√

1 + α =
√

1 + α0

√
1 + α̃. Expanding the right-hand side of

the latter equality about 0 corresponds to expanding the left-hand side about α0. Using
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TABLE 4.1
Evolution of the optimized Robin parameter p∗(i)

depending on the number of layers i and the improve-
ment ratio from the Dirichlet condition error to the
Robin condition error in the infinity norm.

i p∗(i) ‖errD‖∞
‖errR‖∞

1 27.4013 2.569
2 13.7783 3.924
4 8.2295 5.167
8 5.6016 6.598
16 4.3271 8.940

TABLE 4.2
Evolution of the optimized expansion point z0 de-

pending on the number of layers i and the improvement
ratio from the Dirichlet and Robin boundary condition
error to the error of the approximation t̆iz0 .

i optimal z0
‖errD‖∞
‖errP ‖∞

‖errR‖∞
‖errP ‖∞

1 0.4356 3.691 1.441
2 0.2101 10.091 2.572
4 0.1409 18.446 3.569
8 0.0932 86.163 13.058
16 0.0680 3595.822 402.186

Theorem 3.7, Lemma 3.9, and Proposition 3.10 we get

√
1 + α =

√
1 + α0


1 +

α̃
2

1 +
α̃
2

2 +
α̃
2

1 +
α̃
2

2 + . . .


=
√

1 + α0

1 + α̃
2

1−
1

2 + 4
α̃ −

1

2 + 4
α̃ − . . .


 .

Note that the equality is valid only for the formal, infinite continued fraction and, once we
truncate, the correspondence follows from Proposition 3.10. Setting t̆∞α0

(α̃) := t̂∞ (z(α(α̃)))
we get

t̆∞α0
(α̃) = 1 +

2

α̃(1 + α0) + α0

(
1 +

(
1 +

α̃

2

)√
1 + α0

)
− 2

α̃(1 + α0) + α0
·
√

1 + α0 ·
α̃

2
· 1

2 + 4
α̃ −

1

2 + 4
α̃ − . . .

,

and, based on Theorem 3.11, the truncation after i levels of t̆∞α0
results in the [i+1, i+1]-Padé

approximant of t̂∞ about α0. We define t̆iα0
(α̃) as

t̆iα0
(α̃) := 1 +

2

α̃(1 + α0) + α0

(
1 +

(
1 +

α̃

2

)√
1 + α0

)
− α̃

α̃(1 + α0) + α0
·
√

1 + α0 ·
1

2 + 4
α̃ −

. . .
2+ 4

α̃︸ ︷︷ ︸
i “levels"

.

We now continue by focusing on the formulation of t̆iα0
as a function of z rather than α̃.

Recalling (5.1) we have

z =
4

α
=

4

α̃(1 + 4
z0

) + 4
z0

,
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FIG. 5.1. Plots of the function errP (z, i) at points equally spaced in the interval [0, 4] evaluated for different
values of i, for α0 = 4 (and thus z0 = 1), N = 70 and η = 2. The value i corresponds to the number of grid
columns in Ωb \Ωa.

which leads to

α̃ =
4 z0z − 4

4 + z0
and, hence,

4

α̃
=

4 + z0
z0
z − 1

.

Note that we used zk above as the points of interest for the variable z for k = 1, . . . , N . In
contrast, we use z0 := 4/α0 as the shifted expansion point of the Padé approximation, i.e.,
as the zero point of the corresponding approximation error of t̂∞. Thus the meaning of z0 is
qualitatively different compared to z1, . . . , zN .

Without relabeling the function, meant in the spirit of (3.10) (we signal the variable by
the expansion point in subscript from α0 to z0), we can write

(5.2)

t̆iz0(z) = 1 +
z

2

(
1 +

(
1 + 2

z0
z − 1

4 + z0

)√
1 +

4

z0

)
−

(
1

1+ 4
z0

− z
4

4
z0

1+ 4
z0

)√
1 + 4

z0

2 + 4+z0
z0
z −1

−
1

. . .

2 + 4+z0
z0
z −1

− 1

2+
4+z0
z0
z
−1︸ ︷︷ ︸

i “levels"

,

and thereby define the error function errP (z, i) (P for Padé) by

errP (z, i) :=
∣∣t̂∞(z)− t̆iz0(z)

∣∣ .
The expectation is that the error function errP (z, i) should have one root at z0 = 4/α0, which
should get numerically more pronounced as i increases, in contrast to errR(z, i), and indeed,
this is fully supported by the numerical results which we show in Fig. 5.1.

Again, we turn our attention to finding the optimal z0, i.e., such that the error equioscilates
on the left and on the right of z0 and we present the results first in Fig. 4.2, observing an
18-fold improvement over the Dirichlet case and hence roughly 3-fold improvement over the
Robin case. The improvements become even more pronounced when increasing i as we show
in Table 4.2. Finally, in Fig. 5.2 we plot the evolution of the optimal z0 as a function of i. We
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100 101

i

10 1

101 103

i

10 1

100
optimal z0

FIG. 5.2. Dependence of the optimal choice of z0 (and consequently α0 = 4/z0) on the number of layers i
added after a. We used again N = 70 and η = 2.

can see that for i ≤ 64 there seems to be a trajectory for the optimal choice of z0, possibly
convergent. But for i around 80 the error function becomes numerically equal to zero on the
entire interval (3.1) and thus the optimization routine converges very close to or exactly at the
initial guess, which was taken as 1.

We conclude this section by linking the above proposed approximation back to the
physical problem and its solution methods by introducing a new PML technique that stems
from the above approximation. Recalling the progress from (2.6) and (2.5) to (3.2), we need
to move now in the opposite direction, starting with (5.2) and working up to the new block
matrix we will call Ăb.

Note that t̆iz0(z) is structurally similar to t̄bi (z), containing structurally identical J-
fractions. The first difference is in the absolute term added to the J-fractions and the second is
the multiplicative factor in t̆iz0(z) in front of the J-fraction (which is not present in t̄bi (z)). By
construction these leads us to

(5.3) Ăb =
1

h2



D1 −I

−I
. . . . . .
. . . D̆Na −J

−I D̆Na+1
. . .

. . . . . . −I
−I D̆Nc


,

where we need to pay extra attention to the blocks D̆Na and J in the Na-th block row, the
blocks corresponding to the mentioned differences. Recalling (3.1), we denote the eigenvalues
of Dyy by µk,

zk := ηh2 + µk,

and the point z0 now translates to some µ0. The denominator of the cyclic part of the continued
fraction t̆iz0 in (5.2) evaluated at the points zk becomes

2 +
4 + z0
z0
zk
− 1

= 2 + zk
4 + z0

z0 − zk
= 2 +

(
ηh2 + µk

) 4 + ηh2 + µk
µ0 − µk

,
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and, thereby, for any i = 0, · · · , N b − (Na + 1), we have D̆Nb−i = D̆ 6= D̆Na with

D̆i = QT

2 + z1
4+z0
µ0−µ1

. . .
2 + zNr−1

4+z0
µ0−µNr−1

Q
= 2I + (4 + ηh2 + µ0)(D − 2I)(µ0I −Dyy)−1,

where Q is given in (3.1) and D is the diagonal block of the original problem; see (2.3).
Focusing on the Na-th block row, we obtain

1 +
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4 + z0

)√
1 +

4

z0

)
= 1 +

z

2
+ z

√
1

4
+

1

z0
+
z0 − z
4 + z0

√
1 +

4

z0

for the absolute term and the multiplicative terms reads(
1

1 + 4
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− z 1

z0 + 4

)√
1 +

4
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.

Hence, we set the diagonal block as

D̆Na := QT
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√
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and the off-diagonal block reads

J =

√
1 + 4

z0

1 + 4
z0

I − 1

z0 + 4
(D − 2I).

We finish this section with the following remark.
REMARK 5.1. The formula (5.3) contains an explicit inverse, which is clearly unpractical,

but can be easily avoided by multiplying the block-rows Na + 1, . . . , N b − 1, N b in (5.3)
with the matrix M := µ0I −Dyy, which leads to

1

h2



D1 −I

−I
. . . . . .
. . . D̆Na −J

−M D̆Na+1M
. . .

. . . . . . −M
−M D̆NbM


,

where no inverse of a matrix appears. An overall deeper understanding of Ăb and its continuous
counterpart are clearly of interest and will be discussed in future work.
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6. Conclusion and future work. In this paper we proved for a model problem that the
truncation of the unbounded computational domain by a Dirichlet boundary condition at a
certain distance from the domain of interest is a spectral Padé approximation about infinity
of the transparent boundary condition at the boundary of the domain of interest and that the
degree of the Padé approximation increases with the distance. We then replaced the Dirichlet
truncation condition by a Robin truncation condition at the end of the truncation layer and
showed that this improves the behavior around a different point in the spectrum, but ceases
to be a Padé approximant. We showed how to optimize the Robin parameter leading to
an equioscillation property. To obtain a Padé approximation about a different point in the
spectrum, we proposed a new approximant in the eigenspace, leading to a new PML/ABC
method for this problem, with much better truncation properties than the Robin truncation. To
keep the exposition self-contained and of reasonable length we postponed further results on
the value of the optimal Robin parameter as well as the approximation properties of the new
PML/ABC method (and the optimal choice of the expansion point) to an upcoming manuscript,
where we aim to lay out these in detail.

Recognizing we worked with a very particular problem, there are some direct general-
izations. First, none of the computations required the particular choice of D in (2.3). As
long as D is symmetric and positive-definite, all of the computations remain the same and
the only changes are in the interval for the minimization of the Robin parameter p and the
shifted expansion point z0 in Sections 4 and 5. This even holds if D is only symmetric,
non-singular, and with eigenvalues outside the interval (−∞,−1]. If the spectrum intersects
the interval (−∞,−1], the square root becomes complex and so do the calculations, in fact
this is true for any diagonalizable non-singular normal matrix D. The Helmholtz problem
is the canonical example and, in fact, a very similar technique was used to establish a result
related to Theorem 3.11 in [13]. If D is not normal, then the eigenvectors cannot be chosen
to form an orthonormal basis of RN (or CN ), but the formulas would follow (based on the
spectrum) one of the above mentioned cases in the same way, but one could not use the results
presented here directly. For example, the improvement factor would not be of immediate
interest as the condition number of the eigenbasis would play an important role in computing
the optimized Robin parameter p. Alternatively, we can use the technique from [4], where the
authors use integration over some contour enclosing the numerical range of the matrix. If the
matrix is diagonalizable and singular, then the modes corresponding to the zero eigenvalues
do not admit the formulation of the function t̂bi (z) as in (3.7), but the analysis would work for
the rest of the modes, based on the normality and spectrum of the matrix. In the case that the
matrix is not diagonalizable, it is not immediately clear how to generalize any of the results
based on the available Jordan form.
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