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DIMENSIONAL REDUCTION FOR MULTIVARIATE LAGRANGE
POLYNOMIAL INTERPOLATION PROBLEMS∗

M. ERRACHID†, A. ESSANHAJI†, AND A. MESSAOUDI‡

Abstract. In this work we propose a theoretical and practical method to transform the multivariate Lagrange
polynomial interpolation problem into a univariate problem. This transformation allows a wide exploitation of all
one-variable polynomial Lagrange interpolation schemes such as Newton’s scheme or split differences, etc. Numerical
comparison with other existing methods will be studied.
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1. Introduction. Multivariate polynomial interpolation is a very rich area of applied
mathematics. It is used to estimate unknown values in a multidimensional data set and finds
applications in various fields such as geostatistics [10] or cryptography [12].

In this work, N∗ is the set of non-null integers, and K is a commutative field, either infinite
or of large cardinality, and d, n ∈ N∗. By Πd = K [x1, . . . , xd] we denote the algebra of
polynomials in d variables, and Πd

k is the
(
k+d
d

)
-dimensional subspace of polynomials of total

degree less than or equal to k, where k ∈ N.
Given a finite interpolation set Z = {z1, . . . , zn} ⊂ Kd of n pairwise distinct nodes,

the Lagrange polynomial interpolation problem consists in finding, for a given data vector
R = (r1, . . . , rn) ∈ Kn, a polynomial P ∈ Πd such that

P (Z) = R, that is, P (zk) = rk, k = 1, . . . , n.(1.1)

We will then say that P is an interpolating polynomial for (Z,R). More precisely, Z is called
poised or correct or unisolvent [2, 8, 14] for a subspace P of Πd if the Lagrange interpolation
problem (1.1) has a unique interpolating polynomial in P for each given data vector R ∈ Kn.
Which means, in other words, that the function

P ∈ P 7→ (P (z1), . . . , P (zn)) ∈ Kn

is a linear isomorphism. It is then necessary that dimP = n. Such a subspace is called an
interpolation space with respect to the interpolation set Z.

It is well known that in the univariate case (d = 1) the Lagrange polynomial interpolation
problem with respect to n distinct points is always uniquely solvable if we take P the space
of polynomials of degree less than or equal to n − 1. In several variables, however, the
situation is much more difficult [1, 3, 5, 6, 8, 9, 11, 13, 15]. In this paper we show that by
using linear functionals, we can transform the multivariate Lagrange polynomial interpolation
problem (1.1) into a univariate one.

The rest of the paper is organized as follows. In Section 2 we theoretically justify
the existence of a linear functional that transforms the multivariate Lagrange polynomial
interpolation problem into a univariate problem. In Section 3 we present a deterministic
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numerical method valid in the real case, and in Section 4 we propose a probabilistic approach.
In Section 5 some algorithms are given. A comparison of our methods with other existing
ones is discussed in Section 6 before concluding.

2. Main theoretical results. We start this section with the following classical linear
algebra result.

LEMMA 2.1. Let m ∈ N∗, and suppose that Card(K) ≥ m. Let E be a K-vector space,
and let E1, . . . , Em be m strict subspaces, i.e., Ek 6= E, k = 1, . . . ,m. Then, it holds that
m⋃
k=1

Ek 6= E.

Proof. Let us reason by the absurd and assume the existence of m strict subspaces

E1, . . . , Em of E such that
m⋃
k=1

Ek = E. We can, in addition, suppose that Em 6⊂
m−1⋃
k=1

Ek,

because otherwise we reduce the number of considered subspaces. On the other hand, we have

also
m−1⋃
k=1

Ek 6⊂ Em. Therefore, there are two vectors x and y such that

x ∈ Em\
m−1⋃
k=1

Ek and y ∈
m−1⋃
k=1

Ek\ Em.

Then, for all λ ∈ K, λx + y ∈
m−1⋃
k=1

Ek. This means that for each λ ∈ K, there exists

iλ ∈ {1, . . . ,m − 1} such that λx + y ∈ Eiλ . As then Card(K) > m − 1, there exist two
distinct scalars λ, µ such that iλ = iµ.We deduce the existence of an index i ∈ {1, . . . ,m−1}
such that (λ− µ)x ∈ Ei, thus x ∈ Ei, which is absurd. Hence the result follows.

In the remainder of this section we assume that the field K is either infinite or of cardinality
greater than 1

2n(n− 1).
THEOREM 2.2. There exists a linear functional f on Kd satisfying the following condition

i 6= j =⇒ f(zi) 6= f(zj), ∀i, j = 1, . . . , n,

which means that f separates the nodes of the interpolation set Z, and therefore f(Z) is a
subset of K with n distinct elements.

Proof. We introduce the dual algebraic space of Kd and denote E =
(
Kd
)∗

:= L(Kd,K).
For each i, j = 1, . . . , n such that i < j, we take ai,j = zj − zi and consider the annihilator

Ai,j := {ϕ ∈ E : ϕ(ai,j) = 0}.

Since ai,j 6= 0, Ai,j is a hyperplane of E, and therefore it is a strict subspace of E. Thus,
taking into account the considered assumption on the cardinality of the field K, we can apply
the above lemma and deduce that

⋃
1≤i<j≤n

Ai,j 6= E. So, there exists a linear functional f

on Kd satisfying

∀i, j = 1, . . . , n, i < j : f(ai,j) 6= 0.

Hence the theorem follows.
REMARK 2.3. In the case where the field is the reals, K = R, the previous result can be

deduced from the Hahn-Banach theorem.
For the so determined functional f , we set

tk = f(zk), k = 1, . . . , n.
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We consider f a one-to-one mapping between the sets Z = {z1, . . . , zn} ⊂ Kd and
T = {t1, . . . , tn} ⊂ K. Thus, given the vector data

R = (r1, . . . , rn) ∈ Kn,

the resolution of the multivariate Lagrange polynomial interpolation problem (1.1) with respect
to (Z,R) can be reduced to the univariate Lagrange polynomial interpolation problem with
respect to (T,R) that consists in searching for polynomials q ∈ Π1 satisfying

q(tk) = rk, k = 1, . . . , n.(2.1)

It is well-known that the problem (2.1) has a unique solution of degree < n and that all other

solutions are obtained by the addition of a multiple of the polynomial
n∏
k=1

(x− tk).

PROPOSITION 2.4. Let

R = (r1, . . . , rn) ∈ Kn.

Let qR be the unique Lagrange interpolating polynomial of degree < n with respect to (T,R).
Then, the polynomial

pR = qR ◦ f ∈ Πd
n−1,

is an interpolating polynomial with respect to (Z,R).

Proof. f is a linear functional on Kd, so there exist n scalars α1, . . . , αd such that

f(x1, . . . , xd) =

d∑
k=1

αkxk, ∀(x1, . . . , xd) ∈ Kd.

On the other hand, qR ∈ Π1
n−1, hence, there exist n scalars λ0, . . . , λn−1 such that

qR(t) =

n−1∑
i=0

λit
i.

It follows that

pR(x1, . . . , xd) =

n−1∑
i=0

λi

(
d∑
k=1

αkxk

)i
.

Thus, we observe that pR is a d-variate polynomial of total degree less than or equal to n− 1.
In addition, it is easy to see that

pR(zk) = qR(f(zk)) = qR(tk) = rk, k = 1, . . . , n,

which shows that pR is an interpolating polynomial with respect to (Z,R).

To obtain an interpolation space with respect to Z, we just use the following obvious
result:

LEMMA 2.5. The functions (fs(x1, . . . , xd))0≤s≤n−1 span an n-dimensional subspace
of Πd

n−1.
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Proof. We need to show that the family is linearly independent in the vector space Πd
n−1.

We employ the same notation from the previous proof. Let λ0, . . . , λn−1 be n scalars such
that

n−1∑
s=0

λsf
s = 0.

Then,

n−1∑
s=0

λst
s
k =

n−1∑
s=0

λsf
s(zk) = 0, k = 1, . . . , n,

and, as the values tk = f(zk), k = 1, . . . , n, are n pairwise distinct scalars, the Vandermonde
matrix

(tsk) 1≤k≤n
0≤s≤n−1

=


1 t1 . . . tn−11

1 t2 . . . tn−12
...

...
...

...
1 tn . . . tn−1n


is invertible, and so the scalars λ0, . . . , λn−1 are all null, and the result follows.

We can now deduce the following main result of this section:
THEOREM 2.6. The subspace

Πd(f, n) = span(1, f, . . . , fn−1) of Πd
n−1

is an interpolating space with respect to Z.
REMARK 2.7.

1. If f is a linear functional which separates the nodes of Z, then, for every non-
zero scalar σ, the linear functional σf also separates the nodes of Z, and we have
Πd(f, n) = Πd(σf, n).

2. In general, the process described above allows us to construct several interpolation
spaces with respect to Z, considering linearly independent functionals separating the
nodes of Z.

In the following section, we give a numerical and efficient method to construct a linear
functional that separates the nodes of the interpolation set Z.

3. Node separation by a linear functional: a deterministic approach. In this section,
we consider the special case K = R. We consider the real coordinates of the nodes of Z,

zk = (x1,k, . . . , xd,k), k = 1, . . . , n.

We describe a numerical method to determine a linear functional separating the nodes of Z.
Let us start with the bivariate case, i.e., d = 2. Thus, we look for two reals α1 and α2 such
that the linear functional

f(x1, x2) = α1x1 + α2x2,

separates the nodes of Z. Let

X = {|x1,i − x1,j | : 1 ≤ i < j ≤ n | x1,i 6= x1,j} ,
X ′ = {|x2,i − x2,j | : 1 ≤ i < j ≤ n | x2,i 6= x2,j} .
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Since zk = (x1,k, x2,k), k = 1, . . . , n, are n pairwise distinct nodes, X or X ′ is not empty.
Thus, three cases arise.

The first case: X = ∅, so that x2,k, k = 1, . . . , n, are n pairwise distinct scalars. In this
case we take f(x1, x2) = x2, i.e., α1 = 0 and α2 = 1.

The second case: X ′ = ∅. We choose f(x1, x2) = x1, i.e., α1 = 1 and α2 = 0.
The last case: X 6= ∅ and X ′ 6= ∅. Let m = minX and M = maxX ′; these are

non-negative numbers. Then we take

α1 = 1 and α2 ∈
]
0,
m

M

[
.

Indeed, if i, j ∈ {1, . . . , n} such that f(zi) = f(zj), then

|x1,i − x1,j | = α2 |x2,i − x2,j | .

So, if x1,i 6= x1,j , then x2,i 6= x2,j and also |x1,i − x1,j | ∈ X and |x2,i − x2,j | ∈ X ′. We
obtain

m ≤ |x1,i − x1,j | = α2 |x2,i − x2,j | ≤ α2M < m,

which is absurd. Thus, x1,i = x1,j , and as α2 6= 0, it follows that x2,i = x2,j . We deduce that
zi = zj , which justifies our choice.

Now suppose that d ≥ 3. Let us reason by recurrence under the assumption that we can
separate each finite non-empty subset of Rd−1 by a linear functional on this space. We simply
set

z̃k = (x1,k, . . . , xd−1,k) ∈ Rd−1, k = 1, . . . , n,

and we consider

Z̃ = {z̃k : k = 1, . . . , n}.

We notice that 1 ≤ n′ = Card(Z̃) ≤ n. According to the induction hypothesis, there exists a
linear functional g on Rd−1 satisfying

z̃i 6= z̃j =⇒ g(z̃i) 6= g(z̃j), i, j = 1, . . . , n,

with the convention that g = 0 if n′ = 1. Now we show that there exists a real α such that the
linear functional f defined on Rd by

f(x1, . . . , xd) = g(x1, . . . , xd−1) + αxd

separates the nodes of Z. To show this, we proceed as in the bivariate case, and we will
distinguish three cases.

The first case: suppose that n′ = n, i.e., z̃k, for k = 1, . . . , n, are n pairwise distinct
points in Rd−1. In this case we take α = 0. Indeed, if f(zk) = g(z̃k), for all k = 1, . . . , n,
then

i 6= j =⇒ g(z̃i) 6= g(z̃j) =⇒ f(zi) 6= f(zj), i, j = 1, . . . , n.

The second case: n′ = 1, i.e., z̃1 = z̃2 = · · · = z̃n. Then, the n scalars xd,k, k = 1, . . . , n,
are distinct. In this case, with the convention g = 0, we can just choose α = 1, i.e.,

f(x1, . . . , xd) = xd.
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The last case: 1 < n′ < n. Let

X = {|g(z̃i)− g(z̃j)| : 1 ≤ i < j ≤ n and z̃i 6= z̃j} ,
X ′ = {|xd,i − xd,j | : 1 ≤ i < j ≤ n and xd,i 6= xd,i} .

X and X ′ are two finite non-empty subsets of R∗+. We set

m = minX, M = maxX ′,

which are two non-negative reals. We show that any choice of

α ∈
]
0,
m

M

[
is convenient. Indeed, if i, j ∈ {1, . . . , n} satisfy f(zi) = f(zj), i.e.,

g(z̃i)− g(z̃j) = α(xd,i − xd,j),

then, if z̃i 6= z̃j and according to the definition of g, we get g(z̃i) 6= g(z̃j), hence, xd,i 6= xd,j .
Therefore,

m ≤ |g(z̃i)− g(z̃j)| = α |xd,i − xd,j | ≤ αM < m,

which is absurd. Thus, z̃i = z̃j , and as α 6= 0, xd,i = xd,j , so it follows that zi = zj . Hence,
the linear functional f on Rd separates the nodes of Z.

By the following example we show that the previous study supports and generalizes the
idea developed by Dharm and Amit in their paper [4].

Let d = 2, n1 and n2 be two integers > 1, and let

Z = {1, . . . , n1} × {1, . . . , n2}

be the particular grid of R2 considered in [4]. Then, using the above notation, we obtain

m = min {|i− j| : 1 ≤ i < j ≤ n1} = 1,

and

M = max {|i− j| : 1 ≤ i < j ≤ n2} = n2 − 1.

We then take

α =
1

n2
∈
]
0,
m

M

[
=

]
0,

1

n2 − 1

[
.

So, using Remark 2.7, we deduce that the linear functional f(x1, x2) = n2x1 + x2 separates
the nodes of the grid Z. This allows us to find the same interpolation space determined in [4].

4. Node separation: a probabilistic approach. In this section, we present another
approach to construct an algorithm based on probabilistic aspects. As proved in Section 3,
in order to construct an interpolation space with respect to the set of nodes Z using the
interpolation algorithms available in the one-dimensional case, it is sufficient to find a linear
functional that separates the nodes of Z. Our new approach relies on the fact that hyperplanes
are subsets of Rd of Lebesgue measure zero.

THEOREM 4.1. A hyperplane of Rd (equipped with the Lebesgue measure) is of measure
zero. In particular if φ is a non-zero linear functional of Rd, then its kernel is of measure zero.
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This result allows us to state that if we arbitrarily choose a linear functional φ on Rd, then
it is almost certain that the nodes satisfy

zj − zi /∈ kerφ, 1 ≤ i < j ≤ n,

which means that φ separates the nodes of Z.
In fact, and in order to optimize the calculations, we can choose the linear functional φ in

the form

φ(x1, . . . , xd) = α1x1 + . . .+ αdxd,

where the coefficients α1, . . . , αd are randomly chosen integers.
In the concrete construction of the algorithm, the only change to be made to the previous

algorithms consists in writing an algorithm that randomly chooses a linear functional by
imposing that the choice of the coefficients be made with integers. Then we make sure that
this yields a correct choice by verifying that the images of

zj − zi, 1 ≤ i < j ≤ n,

are not null. If this is not the case, then we repeat the process until we find such a linear
functional. In general, one try is enough to find a good linear functional.

5. Some algorithms. In this section, we provide some algorithms to construct a linear
functional separating the nodes of the interpolation set Z in both deterministic and probabilistic
forms. Then we adopt Newton’s scheme with divided differences in the implementation of our
multivariate Lagrange polynomial interpolation algorithm.

5.1. Construction of a linear functional of separation: a deterministic method. We
follow the scheme of the theoretical construction; we start by treating the case d = 2 and using
python notation; cf. Algorithm 1.

Algorithm 1 Separation nodes in the case d = 2.
Compute

X = {|x1,i − x1,j | : 1 ≤ i < j ≤ n | x1,i 6= x1,j}
X ′ = {|x2,i − x2,j | : 1 ≤ i < j ≤ n | x2,i 6= x2,j}

if X = ∅ then
Return f : (x, y) :→ y

else if X
′

= ∅ then
Return f : (x, y) :→ x

else
Compute
m = minX, M = maxX ′

α = m
2M (such that α ∈

]
0, mM

[
)

end if
Return f : (x, y)→ x+ αy

Now we employ the recursive construction presented in Section 3 for the case d > 2. The
algorithm presented below, Algorithm 2, is recursive; the terminal case is the case d = 2.

5.2. Linear functional of separation with random approach. In Algorithm 3, we
present a way to construct the linear functional that separates the nodes of Z, based on
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Algorithm 2 Separation nodes for general case d > 2

n = length(Z)
if d = 2 then

Return separation case d = 2
end if
Compute

Z̃ = {z̃k : k = 1, . . . , n}, where z̃k = (x1,k, . . . , xd−1,k) ∈ Rd−1,
p = length(Z̃)

if n = 1 then
Return f : (x1, . . . , xd)→ xd

else
g = separation general case d− 1 (with Z̃)

if n = p then
Return g

else
Compute
X = {|g(z̃i)− g(z̃j)| : 1 ≤ i < j ≤ n and z̃i 6= z̃j}
X ′ = {|xd,i − xd,j | : 1 ≤ i < j ≤ n and xd,i 6= xd,j}
m = minX, M = maxX ′

α = m
2M (such that α ∈

]
0, mM

[
)

end if
end if
Return f : (x1, . . . , xd)→ g(x1, . . . , xd−1) + αxd

Algorithm 3 Random separation linear functional.
Input: Z: data vectors of nodes
Output: f : linear functional, f(Z)
d = length(Z[0])
Choose d integers in a random way: a1, . . . , ad
Define f : (x1, . . . , xd)→ a1x1 + · · ·+ adxd
Check that f is a separation linear functional, otherwise repeat the process.
Return f , f(Z)

Theorem 4.1, and we impose, in addition, that the coefficients of the chosen linear functional
are natural numbers.

REMARK 5.1. In Algorithm 3, in order to gain computational performance in the sequel,
when testing the separation constraint, we also store f(Z) since we will need this set during
the one-variable interpolation phase.

5.3. The DRMVLPIA. Once we have a linear functional separation, as illustrated in
Theorem 2.6, we are able to provide an interpolation space where Z is well-poised. In this sec-
tion, we give concrete constructions of interpolation polynomials, using both the deterministic
and the random approaches for node separations. To do this, we couple Horner’s algorithm
with a divided differences algorithm to compute an interpolating polynomial for (Z,R).

Firstly, we present the divided differences algorithm in Algorithm 4. Next, Algorithm 5
represents Newton’s one-dimensional algorithm for computing interpolation polynomials
using the Horner scheme.
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Algorithm 4 Divided differences.
Input:: x, y: two data vectors
Output: Polynomial interpolation in Newton Basis
d = copy of y data
n = length of x
for j = 1 to n− 1: do

for i = n− 1 to j: do
d[i] = (d[i]− d[i− 1])/(x[i]− x[i− j])

end for
end for
Return d

Algorithm 5 Newton interpolation.
Input: t, y: two data vectors.
Output: Polynomial interpolation in Newton Basis.
d = divided difference algorithm (t, y)
P = 0
for i = n− 1 to 0: do

P = d[i] + (x− t[i]) ∗ P
end for
Return P

Algorithm 6 DRMVLPIA deterministic.
input Z,R
Output Interpolation polynomial associated with (Z,R)
f = Separation linear functional of Z determined by Algorithm 2
T = f(Z)
P = Newton interpolation algorithm (T,R)
Return P ◦ f

Algorithm 7 DRMVLPIA probabilistic.
input Z,R
Output Interpolation polynomial associated with (Z,R)
(f, T ) = (Separation linear functional of Z, f(Z)) determined by Algorithm 3
P = Newton interpolation algorithm (T,R)
Return P ◦ f

Finally, we give the Dimensional Reduction for MultiVariate Lagrange Polynomial Inter-
polation Algorithm (DRMVLPIA), which computes the multivariate interpolation polynomial
associated with (Z,R), both in its deterministic and probabilistic form. The first one, Algo-
rithm 6, uses Algorithm 2 to determine a linear functional f that separates the nodes of Z. The
second one, Algorithm 7, employs Algorithm 3, which randomly returns the linear functional
f as well as the new real nodes t = f(Z). In both versions, we use the same scheme. The
only difference is that in the probabilistic form, we will not need to recompute f(Z).

REMARK 5.2. Let us note here that the main benefit of this algorithm is that it takes
advantage of all the algorithms developed in the context of one-variable interpolation. At this
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level, it would be advantageous not to expand the expression P ◦ f , in order to take advantage
of Horner’s scheme during eventual evaluations and also to minimize the cost of operations.

6. Examples. In this section, we will give examples to test our algorithms.
Example 1. Here, we consider examples taken from [4]. These examples illustrate the

special case where the interpolation set Z is an R2-grid of the form {1, . . . , n1}×{1, . . . , n2},
where (n1, n2) ∈ N∗2.

If we choose Z = {(1, 1), (1, 2), (1, 3)} and R = (1,−1,−2), then using the determinis-
tic Algorithm 6, we obtain the separation linear functional

f : (x, y) 7−→ y,

and the corresponding interpolating polynomial

P =
1

2
y2 − 7

2
y + 4.

We also applied, two times, the probabilistic Algorithm 7, which gave us the following two
solutions

P1 =

(
9x

8
− y

4
+

3

8

)
(9x− 2y − 7) + 1 =

81x2

8
− 9xy

2
− 9x

2
+
y2

2
+ y − 13

8
,

P2 = (−8x+ y + 7)
(
−4x+

y

2
+ 1
)

+ 1 = 32x2 − 8xy − 36x+
y2

2
+

9y

2
+ 8.

In [4], the authors have used f1 : (x, y) 7−→ 3x+ y and f2 : (x, y) 7−→ x+ y as possible
separation linear functionals. Then the corresponding interpolating polynomials stated there
are, respectively,

P3 =
1

2
(3x+ y)2 − 13

2
(3x+ y) + 19 =

9

2
x2 + 3xy − 39

2
x+

1

2
y2 − 13

2
y + 19,

P4 =
1

2
(x+ y)2 − 9

2
(x+ y) + 8 =

1

2
x2 + xy − 9

2
x+

1

2
y2 − 9

2
y + 8.

We can notice that in this particular case (the nodes have the same abscissa), the solution
provided by the deterministic algorithm is better.

If we choose Z = {(1, 1), (1, 2), (2, 1), (2, 2)} and R = (−15, 36,−1, 96), then using
Algorithm 6, we get the interpolating polynomial

P =

(
(296x+ 148y − 916)

(
x+

1

2
y − 2

)
+ 102

)(
x+

1

2
y − 3

2

)
− 15.

Applying the Algorithm 7 two times, we obtain the following other solutions:

P1 =

((
407x

40
− 407y

24
− 23

15

)
(3x− 5y + 7)− 51

5

)
(3x− 5y + 2)− 15,

P2 =

((
−222x

5
+

111y

10
+

443

5

)
(−4x+ y + 2) + 51

)
(−4x+ y + 3)− 15.

In [4], the authors have used f1 : (x, y) 7−→ x + 2y and f2 : (x, y) 7−→ 2x + y as
possible separation functionals. Then the corresponding interpolating polynomials stated there
are, respectively,

P3 =
23

2
x2 + 46xy − 133

2
x+ 46y2 − 133y + 81,

P4 = 296x3 + 444x2y − 1952x2 + 222xy2 − 1952xy + 4196x

+ 37y3 − 488y2 + 2098y − 2916.
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Example 2. For this example we take d = 3, and we choose

Z = {(0, 0, 0), (0,−1, 1), (0, 3, 2), (2, 0, 3)} and R =

(
0, 4,

1

3
, 1

)
.

Using the deterministic Algorithm 6 we obtain

P =

((
−3707712

461125
x− 926928

461125
y − 154488

461125
z +

11766288

461125

)
×

(
x+

1

4
y +

1

24
z +

5

24

)
− 96

5

)(
x+

1

4
y +

1

24
z

)
,

or after expansion,

P =− 3707712

461125
x3 − 2780784

461125
x2y − 463464

461125
x2z +

10993848

461125
x2 − 695196

461125
xy2

− 231732

461125
xyz +

5496924

461125
xy − 19311

461125
xz2 +

916154

461125
xz − 1280458

92225
x

− 57933

461125
y3 − 57933

922250
y2z +

1374231

922250
y2 − 19311

1844500
yz2 +

458077

922250
yz

− 640229

184450
y − 6437

11067000
z3 +

458077

11067000
z2 − 640229

1106700
z.

There are two solutions given by Algorithm 7. We just provide the factorized expression that
follows from the Horner scheme.

P1 =

((
− 7x− 7y + 5z − 12

)(
203

4554
x+

203

4554
y − 145

4554
z − 247

4554

)
+

1

3

)
×(

− 7x− 7y + 5z

)
,

P2 =

((
− 184

33495
x+

46

11165
y +

92

6699
z − 4373

66990

)(
4x− 3y − 10z + 7

)
− 4

7

)
×(

4x− 3y − 10z

)
.

Example 3. For this example we consider d = 3, and for Z we take the full grid of R3

considered in [6, 7]

Z =

{
(0, 2, 1), (1, 2, 1), (0, 0, 1), (1, 0, 1), (0, 2,−1

2
),

(1, 2,−1

2
), (0, 0,−1

2
), (1, 0,−1

2
),

(0, 2,
7

3
), (1, 2,

7

3
), (0, 0,

7

3
), (1, 0,

7

3
)

}
and the interpolation values

R =

(
1, 0,−2,−1, 1,

1

2
,−1, 1,

22

7
, 0,

9

2
,−3

)
.
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We just give the factorized form that follows from the Horner scheme:

P =

[({[({[({(
− 8x+ 8y + 9z − 29

)
×[

− 1386508920647

1650192633998660505600
x+

1386508920647

1650192633998660505600
y+

1386508920647

1466837896887698227200
z − 10529416653769

4400513690663094681600

]
+

1414713997

904710873902774400

}
×

(
− 8x+ 8y + 9z − 37

)
− 5767739129

180942174780554880

)
×

(
− 8x+ 8y + z +

25

2

)
+

28103

30380676480

]
×

(
− 8x+ 8y + 9z +

9

2

)
+

15709

843907680

}
×

(
− 8x+ 8y + 9z − 7

2

)
+

6733

28607040

)
×

(
− 8x+ 8y + 9z − 23

2

)
+

571

443520

]
×

(
− 8x+ 8y + 9z − 1

)
− 1

768

}
)×

(
− 8x+ 8y + 9z − 9

)
− 1

128

)
×

(
− 8x+ 8y + 9z − 17

)
+

1

8

]
×(

− 8x+ 8y + 9z − 25
)

+ 1 .

REMARK 6.1. As illustrated in the theoretical section, the interpolation polynomial
associated to a set of nodes of size n is of total degree less than or equal to n−1. However, the
algorithm DRMVPIA, deterministic or probabilistic, has the advantage that its construction is
based on one-dimensional interpolation algorithms, and in order to optimize the computation
it is better to keep the form that follows from the Horner scheme.

7. Conclusion. In the present work, a theoretical and practical method has been proposed
to transform the multivariate polynomial interpolation problem into a univariate problem. This
transformation will allow a judicious exploitation of all univariate Lagrange interpolation
schemes such as Newton’s scheme or divided differences, and also to take advantage of
Horner’s scheme in the evaluation outside the interpolation nodes, which presents advantages
in terms of numerical complexity and stability. On the other hand, the fact that the deterministic
method is also applicable in the context of finite fields will eventually allow applications
particularly in cryptography.
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