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Abstract. A posteriori error estimates in the maximum norm are studied for various time-semidiscretisations
applied to a class of linear parabolic equations. We summarise results from the literature and present some new
improved error bounds. Crucial ingredients are certain bounds in the L1-norm for the Green’s function associated
with the parabolic operator and its derivatives.
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1. Introduction. Consider the linear parabolic equation:

Ku := ∂tu+ Lu = f , in Q := Ω× (0, T ],(1.1a)

with a second-order linear elliptic operator L in a spatial domain Ω ⊂ Rn with Lipschitz
boundary and some function f ∈ C

(
0, T ;L∞(Ω)

)
, subject to the initial condition

u(x, 0) = u0(x) , for x ∈ Ω̄,(1.1b)

and the Dirichlet boundary condition

u(x, t) = 0 , for (x, t) ∈ ∂Ω× [0, T ].(1.1c)

The initial datum u0 is assumed to be compatible with the boundary conditions, i.e., u0|∂Ω = 0.
Following [7] and [5], the authors of the present study have published a number of

results on residual-type a posteriori error estimates in the maximum norm for parabolic
equations utilising and merging various approaches and considering various classes of temporal
discretisation [5, 6, 11, 12, 15, 17]. In this survey, we review these results in a unified manner.
Revisiting those results and their proofs, we are able to present some improvements — namely
sharper error bounds — for the implicit Euler method, the Crank–Nicolson method, and the
dG(1)-method. These improvements are made possible by using local bounds for the Green’s
function rather than global stability results. Details will be highlighted in the course of the
paper. We also present some new results (most notably Theorems 4.5 and 5.2). Furthermore,
numerical results are given to compare the various approaches.

The general idea is to set up a parabolic PDE for the error with the residual on the
right-hand side. Then the error (at final time T ) can be represented by means of the Green’s
function associated with K and that residual. To this end, the time-discrete approximations
need to be extended to a function defined on [0, T ]. Furthermore, bounds in the L1-norm for
the Green’s function and its time-derivatives are required; see Section 2 for details.
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In the present paper we study semidiscretisations in time only. However, these are essential
building blocks in deriving error estimates for full (space-and-time) discretisations. Using
elliptic reconstructions, a concept introduced by Makridakis and Nochetto [16], they can be
combined with error estimators for discretisations of elliptic problems to give error bounds for
parabolic problems; see, e.g., [2, 14] in the context of L2-norm and H1-norm error estimation.

The paper is organised as follows. In Section 2 we specify our general assumptions
for the a posteriori error analysis, in particular we stipulate the validity of certain bounds
for the Green’s function of the parabolic problem. Thereafter, we present result for various
discretisations:

• the simple first-order implicit Euler method (Section 4),
• the second-order Crank–Nicolson method (Section 5),
• an extrapolated Euler method of second order (Section 6),
• the third-order discontinuous Galerkin method with polynomials of degree 1 (dG(1)

for short), which is equivalent to the Runge–Kutta–Radau-IIA method (Section 7),
and finally

• the backward-differentiation formula of order 2 (Section 8).
We complement the theoretical finds with results of numerical experiments. The test problem
is introduced in Section 3.

Notation: For functions w : Ω × [0, T ] → R we shall use the shortend notation
w(t) := w(·, t), which for each time t is a function mapping from Ω to R.

2. The Green’s function. In this section we consider the Green’s function G associated
with the operatorK in (1.1). It will be used to express the error of a numerical approximation in
terms of its residual in the differential equation. For definitions and properties of fundamental
solutions and Green’s functions of parabolic operators, we refer the reader to the survey by
Friedman [9], in particular Chapter 1.

For fixed x ∈ Ω, the Green’s function associated with K and x solves

∂tG + L∗G = 0, in Ω× R+,

G
∣∣
∂Ω

= 0,

G(0) = δx = δ(· − x) ,

with δ denoting the Dirac δ-distribution. Let 〈·, ·〉 denote both the duality pairing on
H−1(Ω)×H1

0 (Ω) and the L2(Ω)-scalar product. Then for all w ∈W 1,1
(
[0, T ], H1

0 (Ω)
)

and t ∈ (0, T ], we have

w(x, t) = 〈G(t), w(0)〉+

∫ t

0

〈
G(t− s),

(
Kw
)
(s)
〉

ds.(2.1)

We will make frequent use of this representation of a function w in terms of Kw.
Throughout the paper we shall assume there exist non-negative constants κ0, κ1, κ2, κ′1,

κ′2, and γ such that (with formally setting κ′0 = 0)

‖∂pt G(t)‖1,Ω ≤
(κp
tp

+ κ′p

)
e−γt =: ϕp(t),

for all x ∈ Ω, t ∈ [0, T ],

and p = 0, 1, 2.
(2.2)

Here ‖·‖p,Ω, p ∈ [1,∞], denotes the standard norm in Lp(Ω).

2.1. Problems that satisfy (2.2). A number of problems that satisfies these assumptions
are gathered in [13, §2.1]. Let us mention some of those.
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(i). For the heat equation

ut −∆u = ϕ(x, t) in Ω ⊂ Rn, n ∈ N,

we have (2.2) with κ0 = 1, κ′p = 0, and κp = p! 18p−13n 2−(n/2+1).
(ii). For the singularly perturbed reaction-diffusion equation

ut − ε2uxx + r(x)u = ϕ(x, t) in Ω = (0, 1),

with 0 < ε� 1, r ∈ C0,1[0, 1], r ≥ %2, % > 0, the bounds of (2.2) hold true with γ = %,
κ0 = 1, κ1 =

√
2/(πe), and κ′1 = κ0‖r‖∞,[0,1] +O (ε), ε→ 0; see [11, §2]. Furthermore,

κ2 =
4√
π

∫
R

∣∣4s4 − 12s2 + 3
∣∣ e−s2ds+ c0 ≈ 0.70015 + c0,

with an arbitrary c0 > 0, and κ′2 = ‖r‖2∞,[0,1] (1 + κ2
1c
−1
0 ) +O (ε).

(iii). For the reaction-diffusion equation

ut − ε2∆u+ r(x)u = ϕ(x, t) in Ω ⊂ Rn, n > 1,

with ε ∈ (0, 1], r ∈ C0,1(Ω̄), r ≥ %2 ≥ 0, one has the estimate (2.2) with γ2 = %2/2, κ0 = 1,
κp = p! 18p−13n 2−(n/2+1), and κ′p = 0; see [12, §12] for p = 1. Then the bound for p = 2
can be obtained employing [4, Corollary 5].

REMARK 2.1. In the context of our investigations, the bounds above are exemplary.
The constants κp and γ reappear in our a posteriori error bounds later. This means that any
improvement in these bounds, i.e., smaller κ’s or larger γ, will yield sharper error bounds.

2.2. Auxiliary calculations. The rest of this section is rather technical as we will pre-
compute some coefficients that feature in our error bounds later. They appear after Hölder’s
inequality and (2.2) have been applied to integrals involving (derivatives of) the Green’s
function. The calculations are elementary, albeit tedious. The results may be verified using
MAPLE. Those integrals are of the form∫ tj

tj−1

ξ(s)ϕp(T − s)ds,
with 0 ≤ tj−1 < tj ≤ T, p = 0, 1, 2,

and a function ξ ∈ C0[tj−1, tj ].

In a first step, these are bounded as follows∣∣∣∣∣
∫ tj

tj−1

ξ(s)ϕp(T − s)ds

∣∣∣∣∣ ≤ e−γ(T−tj)
∫ tj

tj−1

|ξ(s)|
(

κp
(T − s)p

+ κ′p

)
ds .(2.3)

Sharper bounds are obtained for particular p and for functions ξ that are polynomials in s
(with τj := tj − tj−1):∣∣∣∣∣

∫ tj

tj−1

ξ(s)ϕ0(T − s)ds

∣∣∣∣∣ ≤ κ0e−γ(T−tj)
∫ tj

tj−1

|ξ(s)|ds ,(2.4)

0 ≤
∫ tj

tj−1

ϕ1(T − s)ds = e−γ(T−tj)ϑj , ϑj :=

{
κ1 ln

(
1 +

τj
T − tj

)
+ κ′1τj

}
(2.5)
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and

0 ≤
∫ tj

tj−1

(tj − s)ϕ1(T − s)ds = e−γ(T−tj)%j ,

%j :=

{
κ1

[
τj − (T − tj) ln

(
1 +

τj
T − tj

)]
+ κ′1

τ2
j

2

}
.

(2.6)

Another example that appears frequently is, for k = 0, 1, . . . ,∣∣∣∣∣
∫ tj

tj−1

(
tj − s

)k(
s− tj−1

)
∂tG(T − s)ds

∣∣∣∣∣ ≤ e−γ(T−tj)Φk,j ,(2.7)

where

Φk,j := κ1µk,j + κ′1
τk+2
j

(k + 1)(k + 2)
and µk,j :=

∫ tj

tj−1

(
tj − s

)k(
s− tj−1

)
T − s

ds .

The last integral can be computed recursively:

µ0,j = −τj + (T − tj−1) ln

(
1 +

τj
T − tj

)
,

µk,j =
τk+1
j

k(k + 1)
+ (tj − T )µk−1,j , k = 1, 2, . . .

However, when tj is close to 0, destructive cancellation occurs because the two summands are
of like magnitude but of different sign. In this case an alternative is to compute µk,j using a
suitable truncation of the series expansion

µk,j = τk+1
j

∞∑
`=1

(−1)`+1

(`+ k)(`+ k + 1)

(
τj

T − tj

)`
.

In our numerical experiments we used the first 5 terms of this expansion.
Furthermore, for k > 0,∫ tj

tj−1

(
tj − s

)k(
s− tj−1

)
∂tG(T − s)ds =

∫ tj

tj−1

d

ds

[(
tj − s

)k(
s− tj−1

)]
G(T − s)ds.

Application of (2.2), gives the alternative bound∣∣∣∣∣
∫ tj

tj−1

(
tj − s

)k(
s− tj−1

)
∂tG(T − s)ds

∣∣∣∣∣ ≤ e−γ(T−tj)Φ∗k,j ,

Φ∗k,j := κ0

∫ tj

tj−1

∣∣∣∣ d

ds

[(
tj − s

)k(
s− tj−1

)]∣∣∣∣ds .
(2.8)

Combining (2.7) and (2.8) gives∣∣∣∣∣
∫ tj

tj−1

(
tj − s

)k(
s− tj−1

)
∂tG(T − s)ds

∣∣∣∣∣ ≤ e−γ(T−tj) min
{

Φk,j ,Φ
∗
k,j

}
=: Ψk,j .(2.9)
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3. Test problem. Throughout the paper we shall give numerical results for the linear
reaction-diffusion equation

∂tu− uxx + (5x+ 6)u = e−4t − cos
(
π(x+ t)3

)
in (−1, 1)× (0, 1],(3.1a)

subject to the initial condition

u(x, 0) = u0(x) = sin
π(1 + x)

2
for x ∈ [−1, 1],(3.1b)

and the Dirichlet boundary condition

u(x, t) = 0 for (x, t) ∈ {−1, 1} × [0, 1].(3.1c)

The Green’s function for this problem satisfies [4, Corollary 5]

‖G(t)‖1,Ω ≤ e−t/2, ‖∂pt G(t)‖1,Ω ≤
3

23/2

p!18p−1

tp
e−t/2, p ∈ {1, 2}.

The elliptic problems obtained after semi-discretisation in time are solved using a spectral
collocation method with polynomials of degree 31. This allows to solve those problems almost
to machine accuracy. We are interested in the errors and error estimates at final time T . A
reference solution is computed using dG(2) in time. This is a method of order 5; cf. [8, 10].

4. The implicit Euler method. We consider the first-order backward Euler discretisa-
tions in time applied to problem (1.1). Let an arbitrary mesh in time be given by

TM :=
{
tj
}M
j=0

, 0 = t0 < t1 < · · · < tM = T.

For j = 1, . . . ,M , we set

Ij :=
(
tj−1, tj

)
, τj := tj − tj−1, and τ := max

j=1,...,M
τj .

Furthermore, for ς ∈ [0, 1], let tj−ς := tj − ςτj and vj−ς := v(tj−ς).
We discretise the abstract parabolic problem (1.1) in time on the mesh TM using the first-

order backward Euler method as follows. We associate an approximate solution U j ∈ H1
0 (Ω)

with the time level tj and require it to satisfy

δtU
j + LU j = f j in Ω, j = 1, . . . ,M ; U0 = u0,(4.1)

where

δtU
j :=

U j − U j−1

τj
and f j := f(·, tj).

§4.1. The central idea is to extend U j to a piecewise linear function Û that is defined on
all of the interval [0, T ] and then invoke (2.1) with w = u− Û . To this end, for any function v
defined on TM , tj 7→ vj , we denote by v̂ its piecewise linear interpolant, i.e.,

v̂(s) := vj −
(
tj − s

)
δtv

j = vj−1 +
(
s− tj−1

)
δtv

j

= vj−1/2 +
(
s− tj−1/2

)
δtv

j , s ∈ Īj , j = 1, . . . ,M.
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Note that ∂tv̂(s) = δtv
j , for s ∈ Ij , j = 1, . . . ,M . Hence,

∂tÛ = δtU
j = f j − LU j in Ij , by (4.1).

Recalling (1.1), the residual of Û in the differential equation admits the representation(
K
(
u− Û

))
(s) = f(s)− ∂tÛ(s)− L

(
U j −

(
tj − s

)
δtU

j
)

= f(s)− f j +
(
tj − s

)
δt (LU)

j
, s ∈ Ij .

(4.2)

Invoking (2.1), we obtain for the error at final time T = tM

u(x, T )− UM (x) =
(
u− Û

)
(x, T )

=

M∑
j=1

{∫
Ij

〈
G(T − s), f(s)− f j

〉
ds+

∫
Ij

(
tj − s

) 〈
G(T − s), δt (LU)

j
〉

ds

}

=

M∑
j=1

{∫
Ij

〈
G(T − s), f(s)− f j

〉
ds+

∫
Ij

(
tj − s

) 〈
∂tG(T − s), δtU j

〉
ds

}
,(4.3)

because (∂t + L∗)G = 0. Using the Hölder inequality and (2.2), we obtain two bounds:

∥∥u(T )− UM
∥∥
∞,Ω ≤

M∑
j=1

{∫
Ij

ϕ0(T − s)
∥∥f(s)− f j

∥∥
∞,Ω ds

+

∫
Ij

(
tj − s

)
ϕ0(T − s)ds

∥∥∥δt (LU)
j
∥∥∥
∞,Ω

}(4.4a)

and

∥∥u(T )− UM
∥∥
∞,Ω ≤

M∑
j=1

{∫
Ij

ϕ0(T − s)
∥∥f(s)− f j

∥∥
∞,Ω ds

+

∫
Ij

ϕ1(T − s)
(
tj − s

)
ds
∥∥δtU j∥∥∞,Ω}.

(4.4b)

Upon noting that the ϕi, i = 0, 1, are non-increasing, we obtain the following theorems.
The first resembles the result given in [5, §4.3, Theorem 4.2] while the second was derived
in [12, §4, Theorem 4.1]. A version of the latter is also given in [7, §1, Theorem 1.3] but
without providing a proof and without fixing the constants.

THEOREM 4.1. The maximum-norm error of the backward Euler time discretisation (4.1)
satisfies the a posteriori bound

∥∥u(T )− UM
∥∥
∞,Ω ≤

M∑
j=1

e−γ(T−tj)
(
ηj
f̄

+ ηjδLU

)
with

ηj
f̄

:= κ0

∫
Ij

∥∥f(s)− f j
∥∥
∞,Ω ds and ηjδLU :=

κ0τ
2
j

2

∥∥∥δt (LU)
j
∥∥∥
∞,Ω

.
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TABLE 4.1
Error estimators of Theorems 4.1–4.3 for the Euler method applied to the test problem (3.1). Simpson’s rule is

used to estimate the ηj
f̄

.

Theorem 4.1 Theorem 4.2 Theorem 4.3
M err est eff est eff est eff

256 1.045 · 10−4 7.333 · 10−2 1/702 3.970 · 10−2 1/380 3.872 · 10−2 1/370
512 5.175 · 10−5 3.664 · 10−2 1/708 2.003 · 10−2 1/387 1.934 · 10−2 1/374

1024 2.575 · 10−5 1.831 · 10−2 1/711 1.011 · 10−2 1/393 9.662 · 10−3 1/375
2048 1.284 · 10−5 9.155 · 10−3 1/713 5.106 · 10−3 1/398 4.829 · 10−3 1/376
4096 6.412 · 10−6 4.577 · 10−3 1/714 2.578 · 10−3 1/402 2.414 · 10−3 1/377
8192 3.204 · 10−6 2.288 · 10−3 1/714 1.302 · 10−3 1/406 1.207 · 10−3 1/377

16384 1.601 · 10−6 1.144 · 10−3 1/715 6.576 · 10−4 1/411 6.035 · 10−4 1/377
32768 8.006 · 10−7 5.721 · 10−4 1/715 3.320 · 10−4 1/415 3.017 · 10−4 1/377
65536 4.002 · 10−7 2.860 · 10−4 1/715 1.676 · 10−4 1/419 1.509 · 10−4 1/377

THEOREM 4.2. The maximum-norm error of the backward Euler time discretisation (4.1)
satisfies the a posteriori bound

∥∥u(T )− UM
∥∥
∞,Ω ≤

M∑
j=1

e−γ(T−tj)
(
ηj
f̄

+ ηjδU

)
,

with ηj
f̄

as in Theorem 4.1, ηjδU := %j
∥∥δtU j∥∥∞,Ω, and %j from (2.6).

The derivation of Theorem 4.2 in [12] uses a different, global argument employing a
piecewise constant and discontinuous interpolant of the U j . In doing so, it passed unnoticed
that these bounds can be combined by locally taking, for each j = 1, . . . ,M , the smaller of
the two bounds in (4.4). We arrive at the following novel result.

THEOREM 4.3. The maximum-norm error of the backward Euler time discretisation (4.1)
satisfies the a posteriori bound

∥∥u(T )− UM
∥∥
∞,Ω ≤

M∑
j=1

e−γ(T−tj)
(
ηj
f̄

+ ηjmin

)
, with ηjmin := min

{
ηjδU , η

j
δLU

}
and the notation from Theorems 4.1 and 4.2.

REMARK 4.4. The integral defining ηj
f̄

can (in general) not been evaluated exactly but
needs to be approximated. Possible options are∫
Ij

∥∥f(s)− f j
∥∥
∞,Ω ds ≈ τj

2

∥∥f j−1 − f j
∥∥
∞,Ω trapezoidal rule,∫

Ij

∥∥f(s)− f j
∥∥
∞,Ω ds ≈ τj

6

{∥∥f j−1 − f j
∥∥
∞,Ω + 4

∥∥∥f j−1/2 − f j
∥∥∥
∞,Ω

}
Simpson’s rule.

Application of quadrature introduces additional error terms. They are associated with oscilla-
tions of the RHS f and of higher order in τ . In the language of a posteriori error for elliptic
equations they are referred to as “higher-order terms” and are typically ignored [3].

Numerical results. Table 4.1 displays the results of our test computations for (3.1). The
first column contains the number of mesh intervals used on the spatial domain [0, 1]. To avoid
special effects from uniform meshes, we have chosen the mesh sizes to satisfy τj = 2τj−1 for
j = 2, 4, 6, . . . ,M . The second column of the table displays the actual errors of the backward
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Euler semidisretisation (4.1). We observe convergence of order 1—each time the number of
mesh intervals is doubled, the error is divided by (approximately) two.

Columns 3 and 4 contain the a posteriori error bounds provided by Theorem 4.1 and its
efficiency, i.e., the actual error divided by the error estimator. There is a strong correlation
between the two. However, the errors are overestimated by a factor of about 700.

In columns 5 and 6 we have the corresponding numbers for Theorem 4.2. It gives sharper
bounds than Theorem 4.1, but the efficiency is slightly deteriorating with the logarithm of the
mesh size. (Our test problem somewhat favours Theorem 4.2. There are other equations where
Theorem 4.1 gives sharper bounds.)

Finally, in the last two columns of Table 4.1 we present our results for Theorem 4.3. It
gives sharper bounds than both Theorems 4.1 and 4.2, which had to be expected from its
derivation. Moreover, we do not witness any deterioration of the efficiency with a refinement
of the mesh. Since the error bound of Theorem 4.3 contains the minimum of two terms, ηjδU
and ηjδLU , it is interesting to study when which term is active. We will do this in a broader
context later.

§4.2. The preceding error bounds all contain a piecewise constant approximation of the
RHS f of the PDE. Now we shall involve its piecewise linear interpolation f̂ . To this end we
use f̂(t) = f j −

(
tj − t

)
δtf

j and rewrite the residuum in (4.2) as(
K
(
u− Û

))
(t) =

(
f − f̂

)
(t) +

(
tj − t

)
δt (LU − f)

j
t ∈ Ij .

In view of (4.1) we set δtU0 := f0 − LU0, introduce

δ2
t v
j :=

δtv
j − δtvj−1

τj
, j = 1, . . . ,M,

and obtain(
K
(
u− Û

))
(t) =

(
f − f̂

)
(t)−

(
tj − t

)
δ2
tU

j , t ∈ Ij , j = 1, . . . ,M.

Proceeding as before, we get the following theorem:
THEOREM 4.5. The maximum-norm error of the backward Euler time discretisation (4.1)

satisfies the a posteriori bound

∥∥u(T )− UM
∥∥
∞,Ω ≤

M∑
j=1

e−γ(T−tj)
(
ηj
f̂

+ ηjδ2U

)
with

ηj
f̂

:= κ0

∫
Ij

∥∥∥(f − f̂)(s)∥∥∥
∞,Ω

ds , ηjδ2U :=
κ0τ

2
j

2

∥∥δ2
tU

j
∥∥
∞,Ω .

REMARK 4.6. Again, the integrals composing ηf̂ need to be approximated. This time the
trapezoidal rule would always give zero. One possibility is Simpson’s rule which gives∫
Ij

∥∥∥(f − f̂)(s)∥∥∥
∞,Ω

ds ≈ 2τj
3

∥∥∥(f̂ − f)j−1/2
∥∥∥
∞,Ω

=
τj
3

∥∥∥f j − 2f j−1/2 + f j−1
∥∥∥
∞,Ω

.

Taking minima locally for each time level j = 1, . . . ,M , Theorem 4.3 and Theorem 4.5
can be combined to give the following sharpened result.
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TABLE 4.2
Error estimators of Theorems 4.5 and 4.7 for the Euler method applied to (3.1). Simpson’s rule is used to

approximate ηj
f̂

, ηj
f̄

.

Theorem 4.5 Theorem 4.7
M err est eff est eff

256 1.045 · 10−4 9.900 · 10−3 1/95 6.498 · 10−3 1/62
512 5.175 · 10−5 4.796 · 10−3 1/93 3.079 · 10−3 1/59

1024 2.575 · 10−5 2.360 · 10−3 1/92 1.498 · 10−3 1/58
2048 1.284 · 10−5 1.171 · 10−3 1/91 7.389 · 10−4 1/58
4096 6.412 · 10−6 5.834 · 10−4 1/91 3.670 · 10−4 1/57
8192 3.204 · 10−6 2.911 · 10−4 1/91 1.829 · 10−4 1/57

16384 1.601 · 10−6 1.454 · 10−4 1/91 9.130 · 10−5 1/57
32768 8.006 · 10−7 7.269 · 10−5 1/91 4.561 · 10−5 1/57
65536 4.002 · 10−7 3.634 · 10−5 1/91 2.280 · 10−5 1/57

THEOREM 4.7. The maximum-norm error of the backward Euler time discretisation (4.1)
satisfies the a posteriori bound

∥∥u(T )− UM
∥∥
∞,Ω ≤

M∑
j=1

e−γ(T−tj) min
{
ηj
f̄

+ ηjmin, η
j

f̂
+ ηjδ2U

}
,

with the notation from Theorems 4.1–4.5.
Numerical results and discussions. Table 4.2 contains our results for Theorems 4.5 and 4.7.

Both give sharper bounds than Theorems 4.1–4.3. This was expected for Theorem 4.7.
How do the various components of the error estimators behave? Figure 4.1 depicts plots

of the four terms ηf̄ , ηδLU , ηδU , and ηδ2U . We have chosen a uniform mesh as otherwise
there would be oscillations because the components are correlated with powers of the local
mesh step size. Also the term ηf̂ is omitted because it is of higher order and close to zero. For
the same reason graphs of ηδ2U and ηδ2U + ηf̂ would be virtually indistinguishable.
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0

0.2

0.4

0.6

0.8

1

1.2
10

-3

FIG. 4.1. The various parts of the error estimators in Theorems 4.1–4.7, uniform time stepping, M = 256 steps.
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First, we notice that ηδLU and ηδ2U attain large values near initial time. Second, ηδU
becomes large towards the final time. This can be explained by the behaviour of the %j in
Theorem 4.2. At final time tM = T , we have %M = τM . But further back in time, they become
second order: %j ∼ τ2

j .

Theorems 4.1 and 4.2 differ in the use of ηδLU (solid red line) and ηδU (dashed yellow
line). On most of the domain we have ηjδLU > ηjδU , only for the last few steps the relation is
reversed. This illustrates how Theorem 4.3 takes advantage by picking the minimum of the
two at each time step.

Finally, one notices that for times t ≥ 0.3 the terms ηf̄ and ηδLU take very similar values.
This suggests that in deriving Theorem 4.1 a triangle inequality might have been applied
inadequately. To illustrate this we look at the two representations of the residuum used above:

f(s)− f j︸ ︷︷ ︸
→ ηj

f̄

+
(
tj − s

)
δt (LU)

j︸ ︷︷ ︸
→ ηjδLU

=
(
f − f̂

)
(s)︸ ︷︷ ︸

→ ηj
f̂

+
(
tj − s

)
δt
(
LU − f

)j︸ ︷︷ ︸
→ ηj

δ2U

.

Generically, the term ηj
f̂

is of order 3 (in τj), while the other three terms are of order 2 only.
Therefore, asymptotically we have

ηjδ2U ≤
(
1 +O

(
τj
)) (

ηj
f̄

+ ηjδLU

) (
τj → 0

)
.

Thus, in general Theorem 4.5 will give sharper bounds than Theorem 4.1. In practice Theo-
rem 4.7 should be given preference as it gives the sharpest error bound.

§4.3 . Concluding our study of the backward-Euler scheme, we like to review an idea
presented in [13]. The primary intention of the authors was to eliminate the logarithmic
dependence on the time step size observed in Theorem 4.2.

Let

W j :=
1

2

[
τjδtU

j − τMδtUM
]
, j = 1, . . . ,M.

The expectation in [13] was that as j approaches M , the W j behave similar to T − tj and
therefore compensate for the term T − s in the denominator of the bound ϕ1 for Gt. Then,

(
tj − s

)
δtU

j =
τM
2
δtU

M +W j +
(
tj−1/2 − s

)
δtU

j , s ∈
(
tj−1, tj

]
, j = 1, . . . ,M.

Define

ω(s) :=

(
tj − s

)(
s− tj−1

)
2

, s ∈ Īj , j = 1, . . . ,M,

and note that

tj−1/2 − s = ω′(s), s ∈ Ij .
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Fix J ∈ {1, . . . ,M}. Integration by parts for the interval [tJ−1, tM−1] applied to the second
term on the RHS of (4.3) gives

u(x, T )− UM (x)

=

M∑
j=1

∫
Ij

〈
G(T − s), f(s)− f j

〉
ds

+
∑

j∈{1,...,J,M}

∫
Ij

(
tj − s

) 〈
∂tG(T − s), δtU j

〉
ds

−
M−1∑
j=J

{∫
Ij

ω(s)
〈
∂2
t G(T − s), δtU j

〉
ds−

∫
Ij

〈
∂tG(T − s),W j

〉
ds

}
− τM

2

〈
G(T − tM−1)− G(T − tJ−1), δtU

M
〉
.

The first and second integral are estimated as in the derivation of Theorem 4.3. To the third
and fourth integral we apply (2.3). The last one is bounded using Hölder’s inequality again
and (2.2).

THEOREM 4.8. For any J ∈ {1, . . . ,M}, the maximum-norm error of the backward
Euler time discretisation (4.1) satisfies the a posteriori bound

∥∥u(T )− UM
∥∥
∞,Ω ≤

M∑
j=1

e−γ(T−tj)ηj
f̄

+
∑

j∈{1,...,J,M}

e−γ(T−tj) min
{
ηjδU , η

j
δLU

}

+

M−1∑
j=J

e−γ(T−tj)
{
ηjδU,∗ + ηjW

}
+
κ0τM

2

(
e−γ(T−tM−1) + e−γ(T−tJ−1)

)∥∥δtUM∥∥∞,Ω .

with ηj
f̄

and ηjδLU from Theorem 4.1 and ηjδU from Theorem 4.2 and the new terms

ηjδU,∗ :=

(
κ2µ

∗
j +

κ′2τ
3
j

6

)∥∥δtU j∥∥∞,Ω , ηjW := ϑj
∥∥W j

∥∥
∞,Ω , µ∗j :=

∫
Ij

ω(s)

(T − s)2
ds,

and ϑj defined in (2.5).
REMARK 4.9. In [13] the result is derived for J = 1 and with only ηjδU in the second

sum instead of min
{
ηjδU , η

j
δLU

}
.

The drawback of this approach is that in order to compute the W j , one has to know UM

and UM−1. Hence, one either has to perform two runs for j = J, . . . ,M , the first to determine
δtU

M and the second to compute the W j , or one needs to store the approximations at those
time levels.

Numerical results. Table 4.3 displays our numerical results for Theorem 4.8. We witness
a slight improvement over the error bounds of Theorems 4.3 but not over Theorem 4.7.

5. The Crank–Nicolson method. We discretise the abstract parabolic problem (1.1) in
time on the mesh TM using the second-order Crank–Nicolson method as follows. We associate
an approximate solution U j ∈ H1

0 (Ω) with the time level tj and require it to satisfy

δtU
j + LÛ j−1/2 = f̂ j−1/2 in Ω, j = 1, . . . ,M ; U0 = u0 ,(5.1)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

110 T. LINSS, N. KOPTEVA, G. RADOJEV, AND M. OSSADNIK

TABLE 4.3
Error estimator of Theorem 4.8, J = 1, for the Euler method applied to the test problem (3.1). Simpson’s rule

is used again to estimate the ηj
f̄

.

Theorem 4.8
M err est eff

256 1.045 · 10−4 3.596 · 10−2 1/344
512 5.175 · 10−5 1.778 · 10−2 1/344

1024 2.575 · 10−5 8.833 · 10−3 1/343
2048 1.284 · 10−5 4.396 · 10−3 1/342
4096 6.412 · 10−6 2.190 · 10−3 1/342
8192 3.204 · 10−6 1.092 · 10−3 1/341

16384 1.601 · 10−6 5.446 · 10−4 1/340
32768 8.006 · 10−7 2.716 · 10−4 1/339
65536 4.002 · 10−7 1.355 · 10−4 1/338

i.e.,

U j − U j−1

τj
+
LU j + LU j−1

2
=
f j + f j−1

2
in Ω, j = 1, . . . ,M ; U0 = u0 .

§5.1. We extend the U j to a globally defined function using piecewise linear interpolation:

Û(s) = U j −
(
tj − s

)
δtU

j = Û j−1/2 +
(
s− tj−1/2

)
δtU

j , s ∈ Îj , j = 1, . . . ,M.

The residuum of Û in the PDE admits the representation(
K
(
u− Û

))
(s) = f(s)− ∂tÛ(s)− L

(
Û j−1/2 +

(
s− tj−1/2

)
δtU

j
)
, s ∈ Ij .

Let ψj :=
(
LU − f

)j
. Then by (5.1), we have

∂tÛ(s) = δtU
j = f̂ j−1/2 − LÛ j−1/2 = −ψ̂j−1/2

for s ∈ Ij . This gives(
K
(
u− Û

))
(s) = f(s)− f̂ j−1/2 +

(
tj−1/2 − s

)
δt
(
LU
)j

= f(s)− f̂(s) +
(
tj−1/2 − s

)
δtψ

j , s ∈ Ij .

We substitute into (2.1) and obtain

u(x, T )− UM (x) =

M∑
j=1

{∫
Ij

〈
G(T − s),

(
f − f̂

)
(s)
〉

ds

+

∫
Ij

(
tj−1/2 − s

) 〈
G(T − s), δtψj

〉
ds

}
.

(5.2)

To the first integral we apply (2.4). When bounding the second one, note that
(
tj−1/2 − s

)
=

1
2

d
ds

(
tj − s

)(
s− tj−1

)
. Therefore, we can avail of (2.9) for k = 1. We arrive at the following

theorem which is a slight modification of the result given in [12, §5, Theorem 5.1].
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THEOREM 5.1. The maximum-norm error of the Crank–Nicolson method (5.1) satisfies
the a posteriori error bound

∥∥u(T )− UM
∥∥
∞,Ω ≤

M∑
j=1

e−γ(T−tj)
(
ηj
f̂

+ ηjδψ

)

with ηj
f̂

as in Theorem 4.5,

ηjδψ :=
Ψ1,j

2

∥∥δtψj∥∥∞,Ω , ψj :=
(
LU − f

)j
,

and Ψ1,j from (2.9).
§5.2. When studying the backward Euler semidiscretisation, the use of a higher order

interpolant of the RHS f turned out to be useful. This time, we define a piecewise quadratic
interpolant f̃ by

f̃(s) := f̂(s) + βjω(s), s ∈ Īj , with βj := −4
f j − 2f j−1/2 + f j−1

τ2
j

≈ −
(
f ′′
)j−1/2

.

It interpolates f at the mesh points of TM and at the midpoint of its mesh intervals. Let
L−1βj := qj ∈ H1

0 (Ω) be the unique solution of Lqj = βj . Then,∫
Ij

ω(s)
〈
G(T − s), βj

〉
ds =

∫
Ij

ω(s)
〈
G(T − s),Lqj

〉
ds

= −
∫
Ij

ω(s)
〈
∂tG(T − s), qj

〉
ds = −

∫
Ij

ω′(s)
〈
G(T − s), qj

〉
ds

because L∗G = −∂tG and by integration by parts. Then, from (5.2),

u(x, T )− UM (x) =

M∑
j=1

{∫
Ij

〈
G(T − s),

(
f − f̃

)
(s)
〉

ds

+

∫
Ij

ω′(s)
〈
G(T − s), δtψj − qj

〉
ds

}
.

Using the Hölder inequality, (2.4) and (2.9), we obtain our next result.
THEOREM 5.2. The maximum-norm error of the Crank–Nicolson method (5.1) satisfies

the a posteriori bound

∥∥u(T )− UM
∥∥
∞,Ω ≤

M∑
j=1

e−γ(T−tj)
(
ηj
f̃

+ ηjδψq

)
with qj ∈ H1

0 (Ω) solving Lqj = βj ,

ηj
f̃

:= κ0

∫
Ij

∥∥∥(f − f̃)(s)∥∥∥
∞,Ω

ds , ηjδψq :=
Ψ1,j

2

∥∥δtψj − qj∥∥∞,Ω ,

ψj :=
(
LU − f

)j
, and Ψ1,j from (2.9).
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TABLE 5.1
Error estimators of Theorems 5.1–5.5 for the Crank–Nicolson method applied to test problem (3.1); Simpson’s

rule used to estimate ηf̂ .

Theorem 5.1 Theorem 5.2 Theorem 5.5
M err est eff est eff est eff

256 4.284 · 10−7 7.221 · 10−4 1/1686 1.102 · 10−4 1/257 1.102 · 10−4 1/257
512 1.048 · 10−7 1.806 · 10−4 1/1724 2.134 · 10−5 1/204 2.033 · 10−5 1/194

1024 2.592 · 10−8 4.529 · 10−5 1/1747 4.744 · 10−6 1/183 4.253 · 10−6 1/164
2048 6.445 · 10−9 1.145 · 10−5 1/1776 1.245 · 10−6 1/193 1.087 · 10−6 1/169
4096 1.607 · 10−9 2.875 · 10−6 1/1789 3.239 · 10−7 1/202 2.750 · 10−7 1/171
8192 4.011 · 10−10 7.221 · 10−7 1/1800 8.631 · 10−8 1/215 7.192 · 10−8 1/179

16384 1.002 · 10−10 1.814 · 10−7 1/1810 2.318 · 10−8 1/231 1.904 · 10−8 1/190
32768 2.503 · 10−11 4.557 · 10−8 1/1821 6.222 · 10−9 1/249 5.053 · 10−9 1/202
65536 6.224 · 10−12 1.145 · 10−8 1/1839 1.666 · 10−9 1/268 1.340 · 10−9 1/215

REMARK 5.3. The integral defining ηj
f̃

can (in general) not be evaluated exactly but
needs to be approximated. For example, Simpson’s rule can be applied on the two subintervals
[tj−1, tj−1/2] and [tj−1/2, tj ] to give∫

Ij

∥∥∥(f − f̃)(s)∥∥∥
∞,Ω

ds ≈ τj
3

{∥∥∥(f − f̃)j−3/4
∥∥∥
∞,Ω

+
∥∥∥(f − f̃)j−1/4

∥∥∥
∞,Ω

}
.

REMARK 5.4. The above choice of a piecewise quadratic interpolation of f corresponds
to a piecewise quadratic reconstruction Ũ(s) = Û(s) + L−1βjω(s) of the approximations
U j .

In [1] the authors also used a special piecewise quadratic reconstruction of the U j in an
a posteriori error analysis but in the context of error estimation in L2-type norms.

Again, taking minima locally for each time level j = 1, . . . ,M , the bounds of the previous
two theorems can be combined to give the sharpened result:

THEOREM 5.5. The maximum-norm error of the Crank–Nicolson method (5.1) satisfies
the a posteriori bound

∥∥u(T )− UM
∥∥
∞,Ω ≤

M∑
j=1

e−γ(T−tj) min
{
ηj
f̂

+ ηjδψ, η
j

f̃
+ ηjδψq

}
,

with ηj
f̂

as in Theorem 4.5, ηjδψ in Theorem 5.1, and ηj
f̃

and ηjδψq from Theorem 5.2.

Numerical results. Numerical results for the Crank–Nicolson method are given in Ta-
ble 5.1. For our test problem, the estimator of Theorem 5.1 overestimates the errors by a factor
of almost 2000. In contrast, Theorems 5.2 and 5.5 yield sharper error bounds. Of course with
Theorem 5.5 giving the best. However, for all three, the efficiency slightly deteriorates as the
mesh is refined.

§5.3. Concluding our study of the Crank–Nicolson method, we review an idea presented
in [13]. Let

W j
ψ :=

1

12

[
τ2
j δtψ

j − τ2
Mδtψ

M
]

and ω̃(s) := ω(s)−
τ2
j

12
, s ∈ Ij , j = 1, . . . ,M.
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The expectation in [13] was that for j →M , the W j
ψ behave similar to T − tj and therefore

compensate for the term T − s in the denominator of the bound ϕ1 for Gt; see (2.2). Then,

ω(s)δtψ
j =

τ2
M

12
δtψ

M +W j
ψ + ω̃(s) δtψ

j , s ∈ Īj , j = 1, . . . ,M.

Define

π(s) :=

∫ s

tj−1

ω̃(σ) dσ =
1

6

(
tj − s

)(
tj−1/2 − s

)(
tj−1 − s

)
, s ∈ Īj , j = 1, . . . ,M.

Fix J ∈ {1, . . . ,M}. Integration by parts applied to parts of the RHS of (5.2) gives

u(x, T )− UM (x)

=

M∑
j=1

∫
Ij

〈
G(T − s),

(
f − f̂

)
(s)
〉

ds

+
∑

j∈{1,...,J,M}

∫
Ij

ω(s)
〈
∂tG(T − s), δtψj

〉
ds

+

M−1∑
j=J

{∫
Ij

π(s)
〈
∂2
t G(T − s), δtψj

〉
ds+

∫
Ij

〈
∂tG(T − s),W j

ψ

〉
ds

}

+
τ2
M

12

〈
G(T − tM−1)− G(T − tJ−1), δtψ

M
〉
.

We employ our standard machinery and arrive at the next theorem:
THEOREM 5.6. For any J ∈ {1, . . . ,M} the maximum-norm error of the Crank–Nicolson

method (5.1) satisfies the a posteriori bound

∥∥u(T )− UM
∥∥
∞,Ω ≤

M∑
j=1

e−γ(T−tj)ηj
f̂

+
∑

j∈{1,...,J,M}

e−γ(T−tj)ηjδψ

+

M−1∑
j=J

e−γ(T−tj)
{
ηjδψ,∗ + ηjWψ

}
+
κ0τ

2
M

12

(
e−γ(T−tM−1) + e−γ(T−tJ−1)

)∥∥δtψM∥∥∞,Ω ,
with ηj

f̂
and ηjδψ from Theorems 4.5 and 5.1 and the new terms

ηjδψ,∗ :=

(
κ2σ

∗
j +

κ′2τ
4
j

144

)∥∥δtψj∥∥∞,Ω , ηjWψ
:= ϑj

∥∥∥W j
ψ

∥∥∥
∞,Ω

, σ∗j :=

∫
Ij

|π(s)|
(T − s)2

ds.

Note, that Remark 4.9 holds accordingly. Numerical results are presented in Table 5.2. They
are very similar to those of Theorem 5.1 but worse than Theorems 5.2 and 5.5. Hence, those
should be preferred.

6. Extrapolated Euler method. This extrapolation method combines two approxima-
tions by the backward Euler-method on the mesh TM and on a mesh that is twice as fine. They
are defined by
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TABLE 5.2
Error estimator of Theorem 5.6, J = 1, for the Crank–Nicolson method applied to the test problem (3.1);

Simpson’s rule to estimate the ηj
f̄

.

Theorem 5.6
M err est eff

256 4.284 · 10−7 7.432 · 10−4 1/1735
512 1.048 · 10−7 1.858 · 10−4 1/1773

1024 2.592 · 10−8 4.649 · 10−5 1/1794
2048 6.445 · 10−9 1.163 · 10−5 1/1805
4096 1.607 · 10−9 2.910 · 10−6 1/1811
8192 4.011 · 10−10 7.283 · 10−7 1/1815

16384 1.002 · 10−10 1.822 · 10−7 1/1818
32768 2.503 · 10−11 4.560 · 10−8 1/1822
65536 6.225 · 10−12 1.141 · 10−8 1/1833

One-step Euler: V 0 = u0,

δtV
j + LV j = f j , j = 1, 2, . . . ,M,(6.1a)

Two-step Euler: W 0 = u0,

W j−1/2 −W j−1

τj/2
+ LW j−1/2 = f j−1/2,

W j −W j−1/2

τj/2
+ LW j = f j ,

j = 1, . . . ,M.(6.1b)

Extrapolation:

U j := 2W j − V j , j = 1, . . . ,M.(6.1c)

We follow [15] and consider a piecewise linear reconstruction Û of the approximations U j ,
j = 0, 1, . . . ,M . First, adding the two equations in (6.1b) and subtracting (6.1a) yields

∂tÛ = δtU
j = 2δtW

j − δtV j = f j−1/2 − L
(
W j−1/2 +W j − V j

)
.

This implies for the residuum(
K(u− Û)

)
(s) = f(s)− ∂tÛ(s)− LÛ(s)

= f(s)− f j−1/2 + L
(
W j−1/2 −W j

)
+ L

(
U j − Û(s)

)
.

(6.2)

Next,

U j − Û(s) = −(s− tj)δtU j = −(s− tj−1/2)δtU
j +

τj
2
δtU

j ,

which implies

L
(
U j − Û(s)

)
= −(s− tj−1/2)LδtU j +

1

2
L
(
U j − U j−1

)
.
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This is substituted into (6.2) to give(
K(u− Û)

)
(s) =

(
f − f̂

)
(s) + f̂ j−1/2 − f j−1/2 + (tj−1/2 − s) δt

(
LU − f

)j
+ L

(
W j−1/2 −W j−1 − V j − V j−1

2

)
.

Setting

Zj := W j−1/2 −W j−1 − V j − V j−1

2
,(6.3)

F (s) := f(s)− f j−1/2 , s ∈ (tj−1, tj), j = 1, . . . ,M,

and

ψj :=
(
LU − f

)j
, j = 0, . . . ,M,

the residuum takes the form(
K(u− Û)

)
(s) =

(
F − F̂

)
(s) + (tj−1/2 − s) δtψj + LZj .

Then (2.1) yields

u(x, T )− UM (x) =

M∑
j=1

{∫
Ij

〈
G(T − s),

(
F − F̂

)
(s) + LZj

〉
ds

+

∫
Ij

(
tj−1/2 − s

) 〈
G(T − s), δtψj

〉
ds

}
.

Using (2.4) and (2.9), we obtain∣∣∣∣∣
∫
Ij

〈
G(T − s),

(
F − F̂

)
(s)
〉

ds

∣∣∣∣∣ ≤ κ0e−γ(T−tj)
∫
Ij

∥∥∥(F − F̂ )(s)∥∥∥
∞,Ω

ds ,∣∣∣∣∣
∫
Ij

(
tj−1/2 − s

) 〈
G(T − s), δtψj

〉
ds

∣∣∣∣∣ ≤ Ψ1,j

2
e−γ(T−tj)

∥∥δtψj∥∥∞,Ω ,
and ∣∣∣∣∣

∫
Ij

〈
G(T − s),LZj

〉
ds

∣∣∣∣∣ ≤ κ0τje
−γ(T−tj)

∥∥LZj∥∥∞,Ω .(6.4)

Furthermore,∫
Ij

〈
G(T − s),LZj

〉
ds =

∫
Ij

〈
L∗G(T − s), Zj

〉
ds = −

∫
Ij

〈
∂tG(T − s), Zj

〉
ds

gives an alternative bound for (6.4):∣∣∣∣∣
∫
Ij

〈
G(T − s),LZj

〉
ds

∣∣∣∣∣ ≤
∫
Ij

ϕ1(T − s)ds e−γ(T−tj)
∥∥Zj(s)∥∥∞,Ω .
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TABLE 6.1
Error estimators of Theorem 6.1 for the extrapolated Euler method applied to test problem (3.1); Simpson’s rule

used to estimate ηF̂ .

M err est eff

256 8.780 · 10−7 4.302 · 10−4 1/490
512 2.214 · 10−7 1.058 · 10−4 1/478

1024 5.536 · 10−8 2.644 · 10−5 1/478
2048 1.382 · 10−8 6.742 · 10−6 1/488
4096 3.448 · 10−9 1.699 · 10−6 1/493
8192 8.611 · 10−10 4.281 · 10−7 1/497

16384 2.151 · 10−10 1.079 · 10−7 1/502
32768 5.369 · 10−11 2.721 · 10−8 1/507
65536 1.330 · 10−11 6.859 · 10−9 1/516

We arrive at the following theorem.
THEOREM 6.1. The maximum-norm error of the extrapolated Euler method (6.1) satisfies

the a posteriori error bound

∥∥u(T )− UM
∥∥
∞,Ω ≤ η

M
eE :=

M∑
j=1

e−γ(T−tj)
(
ηj
F̂

+ ηjδψ + ηjZ

)
,

with the Zj defined in (6.3),

ηj
F̂

:= κ0

∫
Ij

∥∥∥(F − F̂ )(s)∥∥∥
∞,Ω

ds , ηjδψ :=
Ψ1,j

2

∥∥δtψj∥∥∞,Ω ,

ηjZ := min

{
κ0τj

∥∥LZj∥∥∞,Ω , ϑj ∥∥Zj∥∥∞,Ω
}
.

REMARK 6.2. The integrals composing ηF̂ need to be approximated. One possibility is
Simpson’s rule which gives∫

Ij

∥∥∥(F − F̂ )(s)∥∥∥
∞,Ω

ds ≈ ηj
F̂ ,simp

:=
τj
6

∥∥∥f j − 2f j−1/2 + f j−1
∥∥∥
∞,Ω

≈
τ3
j

24

∥∥∂2
t f(tj−1/2)

∥∥
∞,Ω .

REMARK 6.3. Theorem 6.1 can be used to establish an asymptotically exact error
estimator for the underlying backward-Euler discretisation:

u(tj)− V j = u(tj)− V j + U j − U j = 2 (W − V )
j

+ u(tj)− U j , j = 0, . . . ,M.

Application of the triangle inequality gives∥∥u(T )− VM
∥∥
∞,Ω ≤ 2

∥∥WM − VM
∥∥
∞,Ω + ηMeE .

Similarly, ∥∥u(T )−WM
∥∥
∞,Ω ≤

∥∥WM − VM
∥∥
∞,Ω + ηMeE .
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TABLE 6.2
Asymptotically exact error estimation for the backward Euler method according to Remark 6.3.

M
∥∥u(T )−WM

∥∥
∞,Ω est eff

∥∥WM − VM
∥∥
∞,Ω ηMeE

256 5.203 · 10−5 4.827 · 10−4 1/9 5.249 · 10−5 4.302 · 10−4

512 2.582 · 10−5 1.317 · 10−4 1/5 2.593 · 10−5 1.058 · 10−4

1024 1.286 · 10−5 3.933 · 10−5 1/3 1.289 · 10−5 2.644 · 10−5

2048 6.417 · 10−6 1.317 · 10−5 1/2 6.424 · 10−6 6.742 · 10−6

4096 3.205 · 10−6 4.905 · 10−6 1/2 3.207 · 10−6 1.699 · 10−6

8192 1.602 · 10−6 2.030 · 10−6 1/1 1.602 · 10−6 4.281 · 10−7

16384 8.006 · 10−7 9.087 · 10−7 1/1 8.007 · 10−7 1.079 · 10−7

32768 4.003 · 10−7 4.275 · 10−7 1/1 4.003 · 10−7 2.721 · 10−8

65536 2.001 · 10−7 2.070 · 10−7 1/1 2.001 · 10−7 6.859 · 10−9

Numerical results. Numerical results for the extrapolated Euler method are given in
Table 6.1. They are clear illustrations for the bounds given in Theorem 6.1. The efficiency is
around 500 but slowly decreasing (with lnM ) as the mesh is refined.

Table 6.2 illustrates Remark 6.3. Using extrapolation, an asymptotically exact error
estimator for the underlying Euler method is obtained. This kind of error control for initial-
value problems is well established (see, e.g., [10, II.4]): A higher-order method is used
to estimate the error of a lower-order method. However, this approach does not guarantee
upper bounds for the discretisation error because the error of the higher-order method is not
controlled. Additional bounds like Theorem 6.1 cure this defect.

7. Discontinuous Galerkin method, dG(1). Given U0 = u0, we seek approximations
U j−2/3, U j ∈ H1

0 (Ω), of u(tj−2/3) and u(tj) as solutions of

U j−2/3 − U j−1 +
τj
12

(
5LU j−2/3 − LU j

)
=
τj
12

(
5f j−2/3 − f j

)
,

U j − U j−1 +
τj
4

(
3LU j−2/3 + LU j

)
=
τj
4

(
3f j−2/3 + f j

)
,
j = 1, . . . ,M.(7.1a)

Let ψ := f − LU . Then (7.1) can be rewritten as

U j−2/3 − U j−1 =
τj
12

(
5ψj−2/3 − ψj

)
,

U j − U j−1 =
τj
4

(
3ψj−2/3 + ψj

)
,

j = 1, . . . ,M.(7.2)

We summarise the analysis from [12, §6] and set

ζ(s) := 3(s− 1)(s− 1/3) and Z(s) :=

∫ s

0

ζ (σ) dσ = s(s− 1)2 ,

and note that ζ ′(s) = 6(s− 2/3).
Given a function v, we define a piecewise linear (possibly discontinuous) interpolant v̄ by

v̄(t) := vj − 3

2

tj − t
τj

(
vj − vj−2/3

)
, t ∈ (tj−1, tj ],

and a continuous piecewise quadratic interpolant v̆ by

v̆(t) := vj − 3

2

tj − t
τj

(
vj − vj−2/3

)
+
vj − 3vj−2/3 + 2vj−1

2
ζ

(
t− tj−1

τj

)
, t ∈ Īj ,
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Then, by (7.2)

Ŭ ′(t) =
3
(
U j − U j−2/3

)
2τj

+ 3
U j − 3U j−2/3 + 2U j−1

τj

t− tj−2/3

τj
= ψ̄(t).

This yields for the residuum

K
(
u− Ŭ

)
(t) = f(t)−

(
Ŭ ′ + LŬ

)
(t) =

(
f − f̆

)
(t)− Ŭ ′(t) + ψ̆(t)

=
(
f − f̆

)
(t) +

(
ψ̆ − ψ̄

)
(t)

=
(
f − f̆

)
(t) +

ψj − 3ψj−2/3 + 2ψj−1

2
ζ

(
t− tj−1

τj

)
, t ∈ Īj .

Set

χj :=
ψj − 3ψj−2/3 + 2ψj−1

2τ2
j

, j = 1, . . . ,M.(7.3)

Then the residuum can be rewritten into(
K
(
u− Ŭ

))
(t) =

(
f − f̆

)
(t) + 3χj

(
t− tj

)(
t− tj−2/3

)
=
(
f − f̆

)
(t) + χj

d

dt

[(
t− tj

)2(
t− tj−1

)]
, t ∈ Īj ,

where we have used integration by parts. Next, we multiply by the Green’s function and
integrate over (0, T ) to obtain the following a posteriori error bound:

THEOREM 7.1. The error of the dG(1) method (7.1) satisfies

∥∥u(T )− UM
∥∥
∞,Ω ≤

M∑
j=1

e−γ(T−tj)
(
ηj
f̆

+ ηjχ

)
,

with χj from (7.3),

ηj
f̆

:= κ0

∫
Ij

∥∥∥(f − f̆)(s)∥∥∥
∞,Ω

ds and ηjχ := Ψ2,j

∥∥χj∥∥∞,Ω .

This result is a slight improvement over Theorem 6.1 in [12] as it employs local bounds
for the Green’s function rather then a global argument. An a posteriori error bound for the
dG(1)-method is also given in [7, §1, Theorem 1.3] but without a proof and without fixing
the constants. Furthermore, a remark in [7] suggests this bound is only second-order time
accurate, while Theorem 7.1 provides a bound of order 3.

REMARK 7.2. Again, the integral defining ηj
f̆

needs to be approximated. Simpson’s rule
can be applied to give∫

Ij

∥∥∥(f − f̆)(s)∥∥∥
∞,Ω

ds ≈ 2τj
3

∥∥∥(f̆ − f)(tj−1/2)
∥∥∥
∞,Ω

=
2τj
3

∥∥∥∥f j + 9f j−2/3 − 2f j−1

8
− f j−1/2

∥∥∥∥
∞,Ω

=: f j
f̆ ,simp

.

Numerical results. Numerical results for the dG(1)-method are presented in Table 7.1.
The results are in agreement with Theorem 7.1. Again, looking at M = 210, . . . , 214, we
witness a slight deterioration (with lnM ) when the mesh is refined. For larger M we are
operating close to machine accuracy and the results get erratic.
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TABLE 7.1
Error estimator of Theorem 7.1 for dG(1) applied to the test problem (3.1).

M err est eff

256 6.799 · 10−8 5.739 · 10−6 1/84
512 9.859 · 10−9 7.270 · 10−7 1/74

1024 1.296 · 10−9 9.225 · 10−8 1/71
2048 1.631 · 10−10 1.170 · 10−8 1/72
4096 2.032 · 10−11 1.481 · 10−9 1/73
8192 2.531 · 10−12 1.872 · 10−10 1/74

16384 3.169 · 10−13 2.364 · 10−11 1/75
32768 4.178 · 10−14 2.984 · 10−12 1/71
65536 2.645 · 10−14 3.771 · 10−13 1/145

8. BDF-2. The backward differentiation formulae (BDF-k) are a family of multistep
methods for the approximation of initial-(boundary) value problems and commonly used
for stiff problems. Here we restrict ourselves to the simplest BDF-2 version; higher-order
BDF-methods are studied in [17], too.

Given U0 = u0, we seek approximations U j ∈ H1
0 (Ω) of u(tj) as solutions of

δtU
1 + LU1 = f1(8.1a)

DtU
j + LU j = f j , j = 2, 3, . . . ,M,(8.1b)

where

Dtv
n := δtv

n + τnδ
2
t v
n, δ2

t v
n :=

δtv
n − δtvn−1

τn + τn−1
and δtv

n :=
vn − vn−1

τn
.

Again, we extend the U j to a piecewise linear function Û defined on [0, T ].
On the first interval, the discretisation (8.1a) consists of a single step of the implicit Euler

method (4.1). In view of our discussions following Theorem 4.7, we use the argument that led
to Theorem 4.3.

For s ∈ (tj−1, tj), j = 2, 3, . . . ,M , the residuum satisfies

K
(
u− Û

)
(s) = f(s)− ∂tÛ(s)− LÛ(s)

=
(
f − f̂

)
(s)− δtU j+

(
f − LU

)j
+

(
f − LU

)j − (f − LU)j−1

τj
(s− tj) .

By (8.1b) we have

(
f − LU

)j
=

{
δtU

j , j = 1,

δtU
j + τjδ

2
tU

j , j = 2, . . . ,M.

Thus,

K
(
u− Û

)
(s) =

(
f − f̂

)
(s) + 2

(
s− tj−1/2

)
δ2
tU

j

+ (s− tj)
τj−1

τj

(
δ2
tU

j − δ2
tU

j−1
)
,

{
s ∈ (tj−1, tj),

j = 3, . . . ,M,

and

K
(
u− Û

)
(s) =

(
f − f̂

)
(s) + 2

(
s− tj−1/2

)
δ2
tU

j + (s− tj)
τj−1

τj
δ2
tU

j , s ∈ (t1, t2)
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TABLE 8.1
Error estimator of Theorem 8.1 for BDF-2 applied to the test problem (3.1).

M err est eff

256 1.1943 · 10−6 1.4205 · 10−3 1/1189
512 2.9418 · 10−7 4.0910 · 10−4 1/1391

1024 7.2959 · 10−8 1.0916 · 10−4 1/1496
2048 1.8164 · 10−8 1.7075 · 10−5 1/940
4096 4.5315 · 10−9 4.3742 · 10−6 1/965
8192 1.1317 · 10−9 1.1241 · 10−6 1/993

16384 2.8277 · 10−10 2.9030 · 10−7 1/1027
32768 7.0673 · 10−11 7.4963 · 10−8 1/1061
65536 1.7642 · 10−11 1.9242 · 10−8 1/1091

Multiplying with G(T − s) and using both (2.4) and (2.9), we obtain the following result:
THEOREM 8.1. The maximum-norm error of the BDF-2 discretisation (8.1) satisfies the

a posteriori bound∥∥u(T )− UM
∥∥
∞,Ω ≤ e−γ(T−t1)

(
η1
f̄ + min

{
η1
δU , η

1
δLU

})
+ e−γ(T−t2)

(
η2
f̂

+
(

Ψ1,2 + κ0
τ1τ2

2

)∥∥δ2
tU

2
∥∥
∞,Ω

)
+

M∑
j=3

e−γ(T−tj)
(
ηj
f̂

+ Ψ1,j

∥∥δ2
tU

j
∥∥
∞,Ω

+ κ0
τj−1τj

2

∥∥δ2
tU

j − δ2
tU

j−1
∥∥
∞,Ω

)
,

with ηj
f̄

and ηjδLU from Theorem 4.1 and ηjδU from Theorem 4.2.

REMARK 8.2. The term δ2
tU

j − δ2
tU

j−1 is a difference quotient of order 3. For a BDF-k
method the technique developed in [17] involves difference quotients of order 2k − 1. Also
note that in the above analysis we had to consider the first two time steps separately. For the
BDF-k method different arguments will be required for the first 2(k − 1) steps.

Numerical results. Numerical results for the BDF-2 method are given in Table 8.1. There
is a jump in the efficiency when going from M = 210 to M = 211 that we do not have an
explanation for. Apart from this, a slight deterioration (with lnM ) is observed again when the
mesh is refined.

9. Summary and open questions. In this paper we have reexamined (and improved)
a posteriori error bounds for semidiscretisations of parabolic PDEs. In particular we have
considered

• the backward Euler method,
• the Crank–Nicolson method,
• the extrapolated Euler method,
• the discontinuous Galerkin method with polynomial degree 1, dG(1),
• the BDF-2 method.

Numerical experiments have been conducted for those methods. They showed that the error
are overestimated by a factor ranging from 50 to 1000. A natural question that arises is: Can
these estimates be improved to give sharper error bounds. Ideally, one likes the efficiency of
the estimators to be close to 1.
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In the framework of a posteriori error estimation and adaptivity for elliptic equations,
lower bounds for the error turned out to be useful; see [3]. Typically, error estimation for
elliptic problems is presented in Sobolev spaces. In contrast, we are considering the errors
in L∞, a Banach space with less structure! We are not aware of any lower a posteriori error
bounds in L∞. To the best of our knowledge this is still an important open problem. Also, the
design and convergence in L∞ of adaptive strategies remains open.

But there are further questions that may be of interest:

• Richardson extrapolation: Is there an elegant way to derive error bounds for extrapo-
lation of arbitrary order in a common framework?

• Discontinuous Galerkin: The technique derived in [12, §6] for the dG(r) method gives
a posteriori bounds with time accuracy of order r + 2, while the method converges
with order 2r + 1. Thus for r ≥ 2 there is a discrepancy, and the efficiency of the
estimator decays with the number of time steps (to the power of r − 1). Is there an
alternative analysis that gives efficient a posteriori estimators for the dG(r) methods?

• The backward differentiation formulae (BDF-k): As noted in Remark 8.2, the estima-
tors derived in [17] involve difference quotients of order 2k− 1 while k+ 1 seems to
be the natural order. Further complications arise from the necessity to have k starting
values. Again: Is there an elegant way to derive error bounds for BDF methods of
arbitrary order in a common framework?

• Continuous Galerkin: Except for the special case of the Crank–Nicolson method no
results are available yet.

• Finally, error estimation for operator splitting methods and ADI methods might be
interesting as these are particularly efficient methods for parabolic equations.
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