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INEXACT NEWTON PRECONDITIONING TECHNIQUES FOR
LARGE SYMMETRIC EIGENVALUE PROBLEMS *

KESHENG WU!, YOUSEF SAAD, AND ANDREAS STATHOPOULO$

Abstract. This paper studies a number of Newton methods and use them to define new secondary linear systems
of equations for the Davidson eigenvalue method. The new secondary equations avoid some common pitfalls of the
existing ones such as the correction equation and the Jacobi-Davidson preconditioning. We will also demonstrate
that the new schemes can be used efficiently in test problems.
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1. Introduction. This paper is concerned about improving the efficiency of computing
a small number of eigenvalues of a large mattixThe most common solution scheme is to
first generate a basis for some subspace, and then apply the Rayleigh-Ritz projection on this
basis to compute approximate solutions [6, 11, 27, 31]. The Lanczos method [21], the Arnoldi
method [1] and the Davidson method [35] are examples of this type of procedures. In their
simplest forms, e.g., using no preconditioning in the Davidson method, they generate Krylov
subspace bases by repeatedly multiplyihgvith a vector. They are effective in computing
the extreme and well separated eigenvalues. If the desired eigenvalues are not extreme or
well separated, these methods may need to build very large Krylov subspaces to generate
good approximate solutions.

Some of the most robust schemes used to reduce the basis of the Krylov subspace size
are the spectrum transformation schemes [14, 18, 23, 29], for example, the shift-and-invert
scheme. To compute eigenvalues neathe shift-and-invert scheme computes the extreme
eigenvalues of A — o)~ ! instead. If the wanted eigenvalues are close tthe extreme
eigenvalues of A —oI)~! are well separated and can be easily found by the Lanczos method
or the Arnoldi method. When using the shift-and-invert scheme, we need to multiply a se-
quence of vectors byyd — o I)~!. This operation is usually implemented as solving a series
of linear systems involving the matrpd — o). The shift-and-invert scheme requires accu-
rate solutions to these linear systems. Since accurate solutions are often hard to compute, it
is natural to consider a modified scheme which uses approximate solutions.

There are many ways of using such approximate solutions. When the solutions are fairly
accurate, one can simply use them as if they are accurate. Golub et al.[17] have studied this
case for symmetric matrices. When the solutions are less accurate or the accuracy cannot be
easily controlled, one must explicitly cope with the arbitrariness in the solutions. The David-
son method deals with this by allowing any approximate solution to be used [8]. For conve-
nience of discussion, we call the linear systems to be solved in the eigenvalue caldhlation
secondary equationsgnd the matrices of the secondary equatibiessecondary matrices
Typically, the secondary equations are approximately solved using one of the precondition-
ing techniques for solving large linear system, such as incomplete LU (ILU) factorizations
[24], approximate inverse schemes [5, 7, 20], and others preconditioners [4, 2, 32]. For this

*Received January 29, 1998. Accepted for publication August 24, 1998. Recommended by R. Lehoucq. Work
supported by National Science Foundation under contract No. NSF/DMR-95 25885, NSF/ASC-95 04038, by the
Minnesota Supercomputer Institute, and in part by the Director, Office of Energy Research, Office of Laboratory
Policy and Infrastructure Management, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

fLawrence Berkeley National Laboratory, Berkeley, Ciw(@Ibl.gov)

fComputer Science Department, University of Minnesota, Minneapolis, Bh&d@cs.umn.edu)

§Computer Science Department, College of William and Mary, Williamsburg, ¥d(eas@cs.wm.edu)

202



ETNA

Kent State University
etna@mcs.kent.edu

K. Wu, Y. Saad and A. Stathopoulos 203

reason, utilizing a secondary equation while solving an eigenvalue problem is sometimes
called preconditioning. In many tests, the Davidson method is found to be very effective in
taking advantage of the approximate solutions [40]. Other eigenvalue methods that utilize
secondary equations include the approximate rational Krylov method [22] and the Jacobi-
Davidson method [33]. Many of these methods can be viewed as the Davidson method with
different matrices or right-hand sides in the secondary equations. For this reason, we only
consider the new secondary equations for the Davidson method.

When Davidson first proposed his method, he proposed diagA\l)z = r as the sec-
ondary equation [9], wherkis the current Ritz value; is the corresponding Ritz vector, and
r is the residual vector = (A — AI)z. This equation is the result of applying the diagonal
preconditioning technique on the correction equation,

(1.1) (A=ADz=r,

This correction equation was designed for enhancing the accuracy of eigenvalue solutions
[12]. It is known to have a number of pitfalls [12]. For example, whea close to an exact
eigenvalue, the matrid — AI is ill-conditioned and possibly indefinite. For such matrices,
most of the inexact solution techniques, e.g., ILU, are not reliable. Another pitfall is that

if the correction equation (1.1) is solved exactly, the solution.isSincez is contained in

the current basis, the Davidson method stagnates. Many variations of the Davidson method
can mitigate some of these pitfalls. For example, both Olsen’s preconditioning scheme [26]
and the Jacobi-Davidson method [33] avoid stagnation by generatirthat is orthogonal

to z. However, there is no analysis indicating the linear systems involved in these schemes
are easier to solve than the correction equation. When computing extreme eigenvalues of
symmetric matrices, a biased shiftcan be used instead af[36]. Using this biased shift,

the secondary matrix is more likely to be definite. However, this biased shift is only defined
for symmetric matrices, and the mateix— AI may still be ill-conditioned near convergence.

The objective of this paper is to seek well-conditioned secondary equations that can avoid
stagnation. Since the correction equation is a Newton method for eigenvalue problems, we
seek other forms of Newton methods and study their suitability as secondary equations. A
number of different Newton schemes are reported in Section 2. Most of them give rise to
linear systems with desired properties. To demonstrate how the new schemes may be used,
a small set of tests is presented in Section 3. The tests also demonstrate the effectiveness of
various secondary equations. We conclude with a summary that recounts the advantages and
disadvantages of the various methods.

2. Newton methods for eigenvalue problemsin this section we describe a number
of Newton methods for eigenvalue problems. We show that these Newton methods are well
defined. Since well defined Newton methods will converge quadratically, if the Davidson
method solves the linear systems for these Newton methods accurately, it will also converge
quadratically. Naturally, there is no stagnation problem. We will also study under what
conditions the Jacobian matrices of these Newton methods become singular. This will help
us identify when not to use them. We start by discussing how Equation (1.1) can be viewed as
a Newton method for eigenvalue problem in subsection (2.1). The main body of this section
(2.2, 2.3) concentrates on a set of constrained Newton methods. We close this section by
showing a concrete example of how various Newton methods work.

To simplify the discussion, we only consider real symmetric matrices. It is straightfor-
ward to extend the results to the nonsymmetric case.

2.1. A second look at the existing schemed.he Davidson method was proposed as
a combination of the Lanczos method and the Newton method for minimizing the Rayleigh
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quotient [9]. In fact, the first two derivatives of the Rayleigh quotient; 7 Az /2T z, aré

d\ 24z 227 Az
dz 2Tz (2Tx)2
X 24 2(2Aza” + 2T Azl + 222" A) 82T Aw za”

de? 2Tz (xTx)? (xTx)3

The linear system defined by the Newton method is

d*\ dX

Had Davidson not made any further simplification, this equation would be used in his eigen-
value method. Since the Jacobian matrix is singular and fairly complicated, Davidson pro-
posed to use the diagonal partdf- A1, i.e.,2diag A — A\I), instead. For the quantum chem-

istry problems that he was interested in, this simple scheme works well because the matrices
are diagonally dominant. Many researchers consider the Jacobian matritel be A7)

[8, 10, 25], because the resulting linear system is the correction equation (1.1), [12].

The correction equation is regarded as the linear system from the Newton method that
computes an eigenvector when the eigenvalue is known. For symmetric matrices the eigen-
value usually converges faster than the eigenvector, it is reasonable to conasléaccu-
rate”. The Newton method to solve equatioh— AI)z = 0 with an initial guess: is

(2.2) Tiy1 =x; — (A=)~ 'ry,

wherer; = (A — \l)z;. Itis clear that this is not a well defined Newton method. However,
it can be corrected if\ is the exact eigenvalug* and we replace the usual inverse with
pseudoinverse [16],

(23) Ti41 = Ty — (A — )\*I)+7“i.
By definition,AA*T A = A, and thus the change in still satisfies the correction equation:

(A= NI)(zi — zis1) = (A — XI)(A — XI)*r;
— (A= NI)(A = ND)F(A = Nz
= (A - )\*I)Jfl =T

If the initial guessz, is not orthogonal to the exact eigenvecidr, thenz; computed by
Equation (2.3) is a non-trivial solution of= 0. In other wordsg; is the desired eigenvector.

The Jacobi-Davidson method uses the following secondary equation to replace the cor-
rection equation,

(2.4) (I —zzT) (A=A —z2T)z =r.

Since the matrix is singular, we would need to use the pseudoinverse as well. Usually, a
Krylov subspace based iterative method is used to solve the above equation. Since the solu-
tions generated by the the Krylov methods are in the range of the matrix, they are approxi-
mations to the pseudoinverse solutions. The Jacobi-Davidson method is related to a Newton
method as well [34].

1Davidson did not show these equations in his paper.
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In short, we have briefly described three Newton methods for eigenvalue problems, the
Newton method for minimizing Rayleigh quotient, the Newton method to compute an eigen-
vector when an eigenvalue is known, and the Newton method associated with the Jacobi-
Davidson method. Among the three Jacobian matrices, two are singular by construction,
and the other can become ill-conditioned near convergence. Krylov subspace methods can
be used to approximate pseudoinverse solutions for these problems. To effectively use other
preconditioning techniques such as ILU, a well-conditioned secondary equation is needed.
Next we present some Newton recurrences with well-conditioned linear systems.

2.2. Constrained Newton Recurrence The eigenvectors ofl are the solutions to the
following nonlinear equation with a norm constraint,

(2.5) Az — zz” Az = 0, ||| = 1.

In this form, Tapia’s algorithm for constrained optimization [38] can be directly applied after
the Jacobian matrix is evaluated. By denoting =7 Az, the Jacobian matrix can be written
as

(2.6) Jo=A—- X —zzT(A+ A7),
Given an initial guessg, the constrained Newton recurrence to solve Equation (2.5) is,
(27) JCZ = Ti, (T‘i = Al‘, - /\imi; )\z = l'ZTAl'Z),

Tr; — 2 T
(2.8) Tip1 = Ait1 = Tiy ATigr.

i — ]|
It is easy to show that the following is true.

LeEmmA 2.1. If A* is a nonzero simple eigenvalue of symmetric matriandz* is the
corresponding eigenvector, thelg = A — \*T — 2z*2*7 A is nonsingulaf.

The detailed proof of this lemma can be found elsewhere [40, Lemma 3.5]. The key is
to show that only a zero vectgrcan satisfyJ-y = 0. The proof is similar to that used by
Peters and Wilkinson on the augmented Newton recurrence [28].

Since J¢ is a polynomial ofz, Jo is nonsingular wher is sufficiently close to an
eigenvector. Based on a theorem of Tapia [38, Theorem 3.3], the above Newton recurrence
should converge quadratically near a nonzero simple eigenvalue. In addition, it is also easy
to show that this Newton recurrence is mathematically equivalent to the Rayleigh Quotient
iteration [40, Lemma 3.6],

(A - )\il)_lxi

- = 2T Ag.
Tiy1 A= D) Tz (Ai = z; Axy).

LEMMA 2.2. If at stepi the constrained Newton scheme and the Rayleigh quotient
iteration have the same solutiofis;, z;), A; is not zero or an exact eigenvalue aiid is not
singular, then the solutions at the next step will also be the same.

To prove this lemma we need to show that- 2z (see Equations (2.7) and (2.8)) is parallel
to (A—\;I)~1z;. Because these two vectors are scaled to unit length before assigneg,to
if they are nonzero and parallel to each other, then produced by the two methods must
be the same. The detailed proof can be found elsewhere [40, Lemma 3.6].

Although near convergenck: is well behaved, far away from convergence it is possible
that it may become singular. The following lemma states the condition under which this may
be true.

2If A is not symmetric, the real part af* must not be zero.



ETNA

Kent State University
etna@mcs.kent.edu

206 Inexact Newton preconditioning techniques

LEMMA 2.3. Given an arbitrary unit vector, let (A = 27 Az) be different from any

eigenvalue of4, the matrixJo = A — AI — 2z2” A is singular if and only if the following is
true’,

(2.9) eTA(A =Xl =1)2.

Proof. If J¢ is singular, there exists a nonzero vegia@uch that/cy = 0. This equation
can be rewritten as

(A= ADy =2z Ay.

The vectory satisfying this equation must be of the fogm= ((4 — A\I) "'z where( is
a nonzero constant. Substituting this expression oifto the above equation yields Equa-
tion (2.9).

If Equation (2.9) is satisfied, the vectgr= (A — A\I) "'z can satisfyJcy = 0. The
vectory is not zero because Equation (2.9) can be written’agy = 1/2. The matrixJ¢ is
singular.O

From these three lemmas, we see that the constrained Newton recurrence defined by
Equations (2.7) and (2.8) is well behaved for almost anyStarting with anyz that does
not satisfy Equation (2.9), Equation (2.7) will generate a solution that is not parallel to
When used to extend the basis, the Davidson method should make progress. The lemmas do
not give a formula for the condition number &f:. Later in this paper we give a numerical
example that is representative of the relative sizes of the condition numbers from the different
schemes.

2.3. Augmented Newton Recurrence Another formulation of the eigenvalue problem
is to treat it as afin+1)-dimensional unconstrained optimization problem. A Newton method
can be applied to solve this problem [28]. Similar formulations of the eigenvalue problem
have been givenin the past, using a variety of normalization schemes. We choose to normalize
the eigenvectors using the 2-norm. The eigenvalue problem can be restated as

(A—X)z = 0,
(2.10) { —1zTz+1 = 0.
This is an unconstrained quadratic problem. Given an initial g¢ess\,), the Newton

recurrence is

Tivr \ _ [ w1 (A=Nl)z;
(2.11) < Nt > = < A\ > n < “laTa 4L )0

(2.12) Ja= < A=Nl It ) .

—x;

LEMMA 2.4.1f \* is a simple eigenvalue of, andz* is the corresponding eigenvector,

_( A=XNT —z*\. inaul
Ja = ( ()T 0 > is nonsingular.

Although we have formulated this augmented Newton recurrence differently, the proof
of the above lemma follows closely what is used in an earlier formulation [28]. Because of
continuity, when); is close to a simple eigenvalué, is nonsingular as well.

3If the matrix is nonsymmetric, the condition changestb(A + AH)(A — XI)~1z = 1.
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In the Davidson method, whe(®;, z;) is a Ritz pair and;; is normalized, the secondary
equation derived from the augmented Newton recurrence is

e (A ) ()= ().

We usez to expand the basis and discatd

Based on this observation, we modify the augmented Newton recurrence into a con-
strained Newton recurrence; each time Equation (2.11) is solved, we scale the resuylting
to have norm one and replaag, ; with the Rayleigh quotient (see Equation (2.8)). We call
this modified scheme the normalized augmented Newton recurrence.

The matrices involved in Equations (2.11) and (2.13) are larger thatf we prefer
to work with a matrix that have size a§ we may factor Equation (2.13) symbolically and
rewrite z as

(2.14) c= (A=)~ <1_ xixm—m‘l) l.

JZ?(A — )\iI)_lxi

In the Olsen scheme [26]4 — \;I) ! of the above equation is replaced with an approxima-
tion. In fact, we can replaced — \;1)~! with any matrixM as long as! Mx; is nonzero,
the resulting: is orthogonal tac;. Using Equation (2.14), it can be shown that- z is par-
allel to (A —\;I)txz;; therefore, the normalized augmented Newton recurrence is equivalent
to the Rayleigh quotient iteration [40, Lemma 3.2]:

LEMMA 2.5. If the Rayleigh quotient iteration and the normalized augmented Newton
iteration produce the same solutions at sted — \; I is not singular ands? (A — \; 1) ~la;
is not zero, then the two methods produce the same solution at-stép

Using the secondary matrix of the Jacobi-Davidson method, we can also dedise
follows

(2.15) 2= ((I — 22T (A= NI —z2l)) " ri

It is easy to see that Equation (2.14) and Equation (2.15) produce the same results. The
recurrence formed from Equations (2.15) and (2.8) is equivalent to the Rayleigh quotient
iteration [40].

The normalized augmented Newton recurrence is well defined for almost any wector
except under the conditioned established in the following lemma.

LEMMA 2.6.If X is not an eigenvalue o, J4 is singular if and only if

(2.16) tT(A—= )"tz =0, (A = 2" Az).

Proof. If .J4 is singular, there is a nonzero vec(d) such that

(T ) ()=

Sincez is not an eigenvectord — AI is not singular. The above equation leads to
y = ((A—=XI)"tz andz”y = 0. In order fory to be a nonzero vector, Equation (2.16) must

be true. If Equation (2.16) is true, the null space/gfcontains vecto((A*Af)_l”“’); therefore
J 4 is singulard

By varying the augmented Newton recurrence, we have generated a normalized aug-
mented Newton recurrence and shown that the new variant is equivalent to the Rayleigh
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TABLE 2.1
The number of steps and the final Ritz values computed by different Newton recurrences.

Iterations A r
Rayleigh quotient iteration 9 0.2094224436 8.26e109
Constrained Newton recurrence 9 0.2094224436 2.97g-09
Normalized Augmented Newton 9 0.2094224435 3.16€-09
Inflated Newton recurrence 9 0.2094224435 2.28¢-08
Augmented Newton recurrence 14 0.0680435715 4.58e-09

guotient iteration. In addition, the normalized augmented Newton recurrence is also equiv-
alent to the “exact” form of the Olsen preconditioning scheme and the Newton recurrence
in Jacobi-Davidson method. If we compute the accurate solutifsom Equations (2.13),
(2.14) and (2.15), it should not cause the Davidson method to stagnate. All above variations
of the Newton method are derived with rigorous mathematical reasoning. On the other hand,
the next scheme is generated based on a heuristic.

We observe that the matrix in front of in Equation (2.14) closely resembles the Sher-
man-Morrison-Woodbury formula for the inverse4f- \;I + az;z! wherea is an arbitrary
constant [16, Equation (2.1.4)],

T —_\.7)\1
(A— /\iI‘f‘Oé-’L’il'ZT)il — (A _ )\iI)il <I— QT;T; (A )\zI) > )

1+ azl(A—NI) 1y

Based on this observation, we can define yet another recurrence by combining the following
equation and Equation (2.8),

(2.17) z = Jl_lri, Jr=A—- NI+ axix;f.

The same iteration matri{; has been used before in a so-called Inflated Inverse lteration
[15]. Thus we refer to this new recurrence as the Inflated Newton Recurrence. This recurrence
is well defined since it is always possible to choose a valueftir make.J; nonsingular. It

is easy to verify that the eigenpairs are the stationary points of the recurrence.

2.4. An example. We will end this section by giving one example. Among the various
Newton schemes, only the Inflated Newton Recurrence is defined procedurally and does not
optimize a known quantity. This example will show that it actually behaves like a Newton
method. During the Newton recurrences, we also computed the condition numbers since the
theoretical analysis does not show exactly how large they are.

The test matrix we choose is called EX2. It is generated from solving a fully coupled
Navier-Stokes equation using the FIDAP package and is available from MatrixMaltksta
symmetrici41 x 441 matrix with only simple eigenvalues ranging fron? x 108 to 3 x 10°.

There are 28 well-separated negative eigenvalues and 160 eigenvalues between zero and one.
The condition number of the matrix is roughlg'®. The initial guesses used in all tests are
[1,1,...,1]T. The tests are carried out using Matlab and the linear systems are solved with
the matlab operaton\”.

The Newton recurrences was run until the residual norms do not further decrease. The
numbers of iterations taken, the final Ritz values and the residual norms are recorded in
Table 2.1. The Ritz values from the first four methods listed in the table agree with each other
to better accuracy thai| A|| ~ 7 x 10~8. The augmented Newton recurrence converges to a

4MatrixMarket URL:http://math.nist.gov/MatrixMarket/
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condition number

10° I I I I I I I
1 2 3 4 5 6 7 8 9

iteration

FiG. 2.1.Condition numbers of the Jacobian matrices from different Newton recurrences.

different eigenvalue. The final residual norms from all methods can be regarded as negligible
because they are less thdfy||.

In theory, the Rayleigh quotient iteration, the constrained Newton method and the nor-
malized augmented Newton method are equivalent to each other. Indeed they produce the
same results at every step. Surprisingly, the inflated Newton method generates almost the
same results as well. This is another reason we regard it as a Newton method.

Figure 2.1 shows the condition numbers of the Jacobian matrices used in the four re-
currences, namely, the Rayleigh quotient iteration (RQI), the normalized augmented Newton
recurrence (NANR), the inflated Newton recurrence (INR), and the constrained Newton re-
currence (CNR). The condition numbers become large in two cases: near convergence for the
Rayleigh quotient iteration and at the start of the normalized augmented Newton recurrence.
In most other cases, the condition numbers of the iteration matrices are led9thavhich
is 100 times the condition number of EX2.

The motivation of this paper is to find well conditioned secondary matrices for the David-
son method. The matriX; seems to be well conditioned in both theory and in this example.

In theory, bothJ~ and.J4 are nonsingular near convergence, this example provides a refer-
ence point as how large their condition numbers actually are. It is possible forZpadind

J4 to become singular when the solutions are far away from any eigenpair. The example
shows that the vectdt, 1, . .., 1] can makeJ4 very close to singular.

3. Suitability as secondary equations.In the previous section, we have identified a
number of well-behaved Newton methods for eigenvalue problems. In this section we will
explain and show how the linear systems from these Newton methods may be used as sec-
ondary equations for the Davidson method. Equations (1.1), (2.7), (2.13), (2.14), (2.15)
and (2.17) each describe a scheme to compukat can be used to extend the basis in the
Davidson method. Among the six, Equations (2.7), (2.13) and (2.17) have not been studied
in this context before. Typically, the secondary equations are approximately solved using
preconditioning techniques developed for solving linear systems. Our attempt to find well-
conditioned secondary equations can be regarded as an attempt to find more efficient ways of
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TABLE 3.1
The test matrices from HB collection.

NAME N NNZ Description
BCSSTK09 1083 9760 stiffness matrix, square plate clamped
1138BUS 1138 2596 admittance matrix, power system
BCSSTM13 2003 11973 mass matrix, fluid flow
ZENIOS 2873 15032 air-traffic control model

utilizing these techniques for computing eigenvalues. Here are some possible choices.

¢ Incomplete factorizations of J4. It is not hard to see how one might modify an
ILU routine for A to compute an ILU factorization fof 4. One caveat is that the
last row and the last column of; probably need special attention.

e Approximate inverses Approximate inverses of 4, Jo and.J; may be computed
relatively easily [7, 19, 20], especially if the approximate inverse can be computed
using only matrix-vector multiplications with the original matrix [7].

¢ lterative solvers. An iterative method can be used to solve the secondary equations
as is usually done in the Jacobi-Davidson method. In the context of linear system
solution, there are many schemes of using inner-outer iterations [3, 30, 39]. These
studies show many schemes to control the accuracy and the maximum number of
iterations of the inner iterations. Generally, this is a robust methodology. If there is
only a matrix-vector multiplication routine available, the Davidson method with an
iterative linear system solver can usually find the desired solutions in less time than
the one without the iterative solver.

In our numerical tests we use iterative solvers because this scheme is fairly easy to imple-
ment, yet it is quite effective. We only implemented a very simple version of inner-outer iter-
ation scheme. Each time the solver is invoked it iterates until the residual norm is decreased
by a factor of10~%, or until a maximum of 200 matrix-vector multiplications is reached.
The tests attempt to compute five smallest eigenvalues of a selected set of symmetric ma-
trices from the Harwell-Boeing collection [13] (see Table 3.1). The Davidson method with
thick-restart [37] is used for the tests. The solutions are declared converged if the residual
norms are less thar)—12|| A|| . The total number of matrix-vector multiplications allowed
to both the Davidson method itself and the iterative linear system solvers is 300,000. Like
many inner-outer iteration schemes, this limit is fairly high. However, if the matrix-vector
multiplication is indeed the only way to access the matrix, this limit may be reasonable.

We want to use the best available variations of the Davidson method so that the compar-
isons are relevant to the actual use. For this reason, we used the biasad38jfinstead
of X in the secondary matrices. With this modification, the correction equation behaves like
the Rayleigh quotient iteration in the Davidson method [36]. In this case, if the secondary
equations are solved accurately, the four schemes to be tested, the correction equation, the
inflated Newton method, the constrained Newton method and the Jacobi-Davidson method,
should generate the same solutions. Since we are compute the smallest eigenvalue, the biased
shift also make the matrid — I almost always positive definite. This makes the iterative
linear system solvers more effective.

We have applied CG, BiCG and GMRES(10) to solve four different secondary equations,
Equations (1.1), (2.4), (2.7) and (2.17). The results reported here only contain those from
using CG, because it minimizes the time used on the test problems. Part of the reason why
CG uses less time is that it uses less arithmetic operations per step. The Jnaisixiot
symmetric; however, this did not cause CG to break-down. In most cases, the solutions
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TABLE 3.2
The total number of matrix-vector multiplications used by the Davidson method with CG preconditioner.

BCSSTKO9 1138BUS BCSSTM13  ZENIOB
A— T 209514 12685 9180 9396
A— N +zzT 123154 12683 8374 748D
A — X —2z(Ax)T 291153 13347 12000 2051
(I —z2xT)(A - M)(I — z27T) 35971 13000 10200 >324000
TABLE 3.3

Time (seconds on a SGI Challenge) used by the Davidson method with CG preconditioner.

BCSSTK09 1138BUS BCSSTM13 ZENIOS
A—- NI 163 5.2 10.0 14.7
A— N +zzT 99 5.6 9.9 12.5
A — X —2z(Az)T 236 6.0 14.1 3.6
(I —z2xT)(A - M)(I — z27T) 31 6.5 128 >575

computed by the iterative methods are not accurate. What appears to be important is that the
solutions contain significant new components outside of the space already explored by the
Davidson method. In this regard, CG appearsto be just as effective as BiCG and GMRES(10).

Table 3.2 and 3.3 summarizes matrix-vector multiplication and time used to compute
the five smallest eigenvalues of the four test problems. The matrix-vector multiplications
(MATVEC) reported include those used by the Davidson method itself and the iterative linear
system solvers. The timing results are obtained on a SGI Challenge. The four problems are
selected to accentuate each of the four schemes. In terms of reducing the total CPU time used
by the Davidson method, solving the correction equation in the Davidson method is most
effective for the 1138BUS test problem; solving the linear system from the inflated Newton
recurrence is most effective for BCSSTM13; solving the linear system from the constrained
Newton recurrence is most effective for ZENIOS and the Jacobi-Davidson method is most
effective for BCSSTKO09.

There are many different ways of controlling the inner-outer iteration schemes, we have
only tested a very simple scheme. The exact time used by different secondary equations may
change if a different inner-outer iteration scheme is used. However, there is no indication
that the relative performance of the four secondary equations tested here will change signif-
icantly when a different inner-outer iteration scheme. These four test cases can be regarded
as representative cases for our comparison. Overall, none of the secondary equations is con-
sistently better than others. As a rule of thumb, the first two secondary mattices,/ and
A—XI+z2T, use roughly about the same number of matrix-vector multiplications and time.
The other two secondary matrices,— Al — 2z(Az)T and(I — z2T)(A — XI)(I — zzT),
behave rather differently in some cases. For example, for BCSSTKO09, the Jacobi-Davidson
method is effective but the constrained Newton scheme used about 8 times the matrix-vector
multiplication and time. For ZENIOS, the constrained Newton method uses the least amount
of time and the Jacobi-Davidson scheme fails to compute five smallest eigenvalues with
300,000 matrix-vector multiplications.

Since none of the secondary equations tested is superior than others on all test problems,
it might be reasonable to choose the one that is least time-consuming to apply. In our imple-
mentation of the iterative methods, the matrix-vector multiplication routineg foxI +z2 7,

A — M —22(Ax)T and(I — z2T)(A — M)(I — zz™') are built on top of a matrix-vector
multiplication routine ford — AI. Multiplying with A — I + zz” andA — AT — 2z(Az)™
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each need one additional dot-product and one additional SAXPY operations. Multiplying
(I —2zT)(A — XI)(I — zz™) needs two additional dot-product and two additional SAXPY
operations. The extra arithmetic operations may not be significant. However, on distributed
computing environments, the extra synchronization caused by computing the dot-products
is usually not negligible. Under this circumstance using the Krylov methods to solve the
correction equation should be the first choice.

4. Summary. We have studied a number of Newton methods for eigenvalue problems
and tested some of them as secondary equations in the Davidson method. The theoretical
advantages of the new secondary equations are that they do not become singular near conver-
gence and solving these linear systems accurately will lead to quadratic convergence.

In theory, most of the Newton methods described here are equivalent to each other. If
we solve the corresponding secondary equations accurately, the Davidson method should
generate the same solution no matter which one is used. However, when used as secondary
equations, we do not solve them accurately. Because the secondary matrices are different, the
approximate solutions are different as well. When the secondary matrix has smaller condition
number, it is usually easier to generate more accurate solutions which in turn will cause the
Davidson method to converge faster. In most cases, the Ritz values computed by the David-
son method are not extremely close to any eigenvalue. For example, in many engineering
applications, 3 — 6 decimal poimiccuracy is sufficient. In Figure 2.1, this corresponds to
stopping the recurrences after 3 or 4 iterations. During the first few iterations, the condition
numbers ofd — AT andA — \I + zzT are relatively small. Most approximation schemes can
be used to solve the corresponding linear systems reasonably well. In short, the pitfall that
A — M becomes ill-conditioned near convergence is not a serious problem in practice. This
partly justifies why using CG to solve the correction equation with biased shift is competitive
against three other Newton schemes. Because the matriR ] is often cheaper to use, we
suggest that the correction equation should be the first choice as the secondary equation for
the Davidson method.

Though the theoretical advantages of the new schemes did not turn out to be the deter-
mining factor in the actual performance of the Davidson method, we did find some cases
where the Davidson method with the constrained Newton scheme and the inflated Newton
scheme use less time than with the correction equation and the Jacobi-Davidson precondi-
tioning. In fact, on one of test problems, the constrained Newton scheme was considerably
more effective than others schemes. For this reason, the new schemes are worth considering
if the existing schemes are not successful on some particular problems.
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