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AN IMPLICIT APPROXIMATE INVERSE PRECONDITIONER
FOR SADDLE POINT PROBLEMS *

SABINE LE BORNE AND CHE NGUFOR

Abstract. We present a preconditioner for saddle point problems whidbased on an approximation of an
implicit representation of the inverse of the saddle poisttnr. Whereas this preconditioner does not require an
approximation to the Schur complement, its theoreticalyaigyields some interesting relationship to some Schur-
complement-based preconditioners. Whereas the evatuafithis new preconditioner is slightly more expensive
than the evaluation of standard block preconditioners fthenliterature, it has the advantage that, similar to con-
straint preconditioners, the iterates of the precond@tbsystem satisfy the constraint equations exactly. We will
demonstrate the performance of the implicit approximaterise preconditioner in the iterative solution of the dis-
crete two- as well as three-dimensional Oseen equations.

Key words. saddle point problem, preconditioning

AMS subject classifications.65F05, 65F30, 65F50, 65N22, 65N30

1. Introduction. The ability to solve large, sparse systems arising fromlihedrized)
Navier-Stokes equations is critical to the simulation afampressible fluid flow. Linear
systems of equations are typically solved (approximateyyiterative methods that have lin-
ear storage and computational complexity (per iterati@p)sin the number of unknowns.
However, the rate of convergence may be unacceptably slosvoae needs to accelerate
the convergence by suitable preconditioning techniqués design of robust and efficient
preconditioners for linear systems arising in flow simwas is still a challenge.

Numerous solution techniques have been proposed in thatlite for saddle point prob-
lems of the type

w EXIIFEME

A comprehensive survel] reviews many of the most promising solution methods with an
emphasis on the iterative solution of these large, spardefinite problems. Several of these
preconditioners are based on block approaches which egpproximate solves for auxiliary
velocity as well as pressure Schur complement probleiis b, 12, 14, 18]. The constraint
preconditioner (and its variants) also employ the giverchlstructure and yield iterates that
satisfy the constraint of (discretely) divergence freeeél exactly p, 11, 13].

In this paper, we will develop a preconditioner thabat based on a block LU factoriza-
tion of the saddle point matrix but is a direct approximatioits inverse. The derivation will
start from a well-known representation of the exact invevhech requires a matri’ whose
columns form a basis for the kernel of constrairis;(B”). While such a matrix is typi-
cally unavailable, or only available at great expense, #he implicit inverse preconditioner
is based on some approximation and reformulation and wilbnger require such a matrix
7. Different from preconditioners based on an (approximhtéfactorization of the saddle
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point matrix, the new preconditioner will still be applidaelin the case of a singular matrix
block A in (1.7).

Similar to constraint preconditioners, the use of the igipipproximate inverse precon-
ditioner ensures that (in exact arithmetic) all of the itesasatisfy the constraints.

The remainder of this paper is structured as follows: In ®ac, we derive the new
implicit inverse preconditioner and present some of itotké&cal properties. We review
some related preconditioners from the literature and discimilarities, differences, and
implementation costs. In Secti@ we introduce the model problem, the Oseen equations,
and document numerical tests for problems in two as well gethpatial dimensions which
illustrate the performance of the preconditioner. We pdevcomparative results with the
related (BFBt-)Schur-complement preconditioner as wellih the direct solver PARDISO
[20, 21].

2. Implicit approximate inverse preconditioner. In this section, we will derive a new
block preconditioner for saddle point problems based onmtaicerepresentation of the inverse
of a saddle point matrix. In particular, we will develop a goaditioner for the saddle point
system (.1, whereA € R"*" B € R m < n. The preconditioner will exploit the
2 x 2 block structure but does not require any additional infaioreexcept for the matrix and
right hand side data. We will make the following two assumpsi which together guarantee
that the saddle point matrix i (1) is invertible.

ASSUMPTION2.1. B € R™*™ has full rankm.

ASSUMPTIONZ2.2. The symmetric parfl := %(AT + A) of A is positive semidefinite
andker(H) Nker(BT) = {0}.

Let Z € R™*(»=™) denote any matrix whose columns form a basisker(B”). Defin-
ing

W=2z(Z"Az)"1 77, V = BTB,

there holds the following representation for the invershifh does not requirgl to be in-
vertible but requires3 to have full rank),

2.1) A B w (I - WA)BV~!
' BT 0| T |V IBTUI-AW) -V IBT(A—AWA)BV~! |’

which can easily be proven using the fact tB{t3” B) "' B = I — ZZ™. In the past, this
representation of the inverse has been of limited praatise) but has primarily been used for
theoretical analyses. The reason lies in the need of congpat{well-conditioned) null space
matrix Z as well as the product” AZ and its inverséZ7 AZ)~! as part of the matrixV.
Here, we propose to avoid these disadvantages simultaydnuseplacing(Z7 AZ)~!
with Z7 A=1Z and making use of the identityZ” = I — B(BT B)~'BT. This leads to the

following approximatiorW of W,
(2.2) W:=22"A"'22" = (1 - BV 'BT)A ' (I - BV "'BT),
and the resulting representation of an approximate inyerse

@ | gr ﬂ

We will refer to P as theimplicit approximate inverspreconditioner.

W (I—WA)BV !
V-IBT(I — AW) —V-1BTA(I - WA)BV~!

~

THEOREM2.3. The evaluation of the matrix-vector prod th} } =P { Z } requires

the following matrix-vector multiplications: One multightion by A~!, four multiplications
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by V- = (BT B)~!, two multiplications with the sparse matrix and six multiplications
with the sparse matri® (or BT).
Proof. The number of matrix-vector multiplications can be codrfrem the following

implementation,

d:= BV ly;
e := Ad,;
fi=W(z—e);
vi=d+ f;

w:=V BT (z — Av).

Here, the multiplication bW (2.2 includes one multiplication byl =, two multiplications
by V—1, and four multiplications by3 (or B). O
In the remainder of this work, we will use the following natat.

DEFINITION 2.4. Given a saddle point matri% ;T jg ] , we define

Z : denotes a matrix whose columns form a basigior( BT );

V .= BTB;

X := BV~ !BT;
W:=(I-X)A"Y(I-X), (seel.2);
Y :=A1XA.

We user(C') to denote the spectrum of a matfi% and I}, to denote & x k identity matrix.

LEMMA 2.5.The matricesX andY are projections.
Proof. The proposition follows from

XX =BV 'B'Bv—'B" = Bv-'vv B! = X,
YY = A'XAAT'XA=A"'XXA=Y. O

The following Lemma will be used in the proofs of subsequbeabtems.

LEMMA 2.6.Let P € R™" denote a projection matrix, i.eR?r = Pz for all x € R".
Let 7 € R™™ denote the identity matrix, and let € R™™ denote an arbitrary matrix. Then
there holds

(2.4) o((I— A)P)U{0,1} = {1 — | p € o(AP)} U {0, 1}.

Proof. The following proof makes repeated use of the fact that
o(AB)U{0} = o(BA) U{0}

for any two matricesA, B € R™".
“C" LetAeo((I —A)P)\{0,1}. Since

o((I = A)P)u{0} = o(P(I — A)) U {0},
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it follows that A\ € o(P(I — A)), i.e., there exists a corresponding eigenvectoxith

P(I — A)v = M. Premultiplying this equation b¥ yields P(I — A)v = APv. A compari-
son of these two equations yiel®® = v (sinceX # 0). Thus,P(I — A)v = \v is equivalent
to PAv = (1 — Mv and impliesu := 1 — X € o(PA). It follows that

A=1-pe{l—pulucao(PA)}
C{1—p|pea(AP)U{0}}
={l-plpea(AP)} U{l}.

“O" Let p € o(AP) \ {0,1}. Sinces(AP) U {0} = o(PA) U {0} andy # 0, it follows
thaty € o(PA). Thus, there exists an associated eigenvectihat satisfies? Av = pv.
Premultiplication byP yields PAv = uPv which impliesv = Pv (sinceu # 0). Thus,
there holdsP(I — A)v = Pv — PAv=v — pv = (1 — p)v, SO

(1—p) €a(P(I—A))Co((I-A)P)U{0}. D

The following theorem lists some of the properties of the linipapproximate inverse
preconditioner.

THEOREM 2.7. Let P € R(»*+m)x(n+m) denote the implicit approximate inverse pre-
conditioner as defined ir2(3), and let

A B

(25) M = Iner _P|: BT 0 ]
denote the error propagation matrix. Then the followingetaents hold.
a) If A is symmetric, thei® is also symmetric, i.e4 = A7 impliesP = PT.
b) The error propagation matrix has the form

(I - WA)(I — BV-1BT) 0
—V-IBTA(I —WA)(I —BV-BT) 0 |’

i.e., the P-preconditioned iteration is u-dominant (oritg tvelocity error is relevant for the
error of the next iterate).
c)M [ jg ] =0andM [
eigenvectors.
d) rank(I — WA) <2m.
e)rank(M) < m,i.e.,M has at least zero eigenvalues.
f) Them possibly non-zero eigenvalues bf are given by = 1 — u, wherep are the
eigenvalues of ther x m matrix VBT A-'BV BT AB.
g) The approximate solutiofx, y)” := P(f,g)" satisfies the constraim”z = g in (1.1)
exactly.
h) If the nullspace of37 is an invariant subspace of, thenM = 0, i.e., the preconditioner
P yields an exact solver.

Proof. The proof uses the previously defined matriZe¥’, X, f/lv/, Y'; see Definitior2.4.
a) and b) are straightforward.
c) Follows from(I — BV~'BT)B = 0 and b).
d) There holds

0

I ] =0, i.e.,M has2m zero eigenvalues with explicitly known

I-WA=IT—-(I-X)A""(I-X)A
= X+Y-XY
(2.6) =X+ (I-X)Y.
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The statement now follows fromunk(X) < m (sincerank(B) = m) andrank(Y") < m.
e) In view of b), there holdsank(M) = rank((I — W A)(I — BV~1BT)). Since

(I-WA)I -BV 'BT)YB=(-WA)0=0
and, usingXZ = BV 'BTZ =0,
(I-WAI-BV 'BTZ=(I-WAZ
=(X+Y -XY)Z
= (I-X)YZ,
it follows that
rank(M) = rank(M - [B Z]) = rank((I — X)Y Z) < rank(Y) < m.

f) In view of part b), the nonzero eigenvaluesf are the eigenvalues of its first diagonal
(n x n) block M; 1 = (I — WA)(I — BV—*BT). There holds

o(My1)U{0,1} = o((I - WA - X))U{0,1}

= o((I - X)(I-WA))U{0,1}

25 - xyyufon

24 {1-plpea(XY)uU{0,1},

2.7)

where we used/ — X)X = 0and(I — X)(I — X) =1 — X. The proposition now follows
from

oc(V'BTAT'BV'BTAB)U {0} = o(BV 'BTAT'BV BT A) U {0}
(XA™'XA)u {0}
(XY)U{0}.
g) The matrix-vector multiplicatiofz, y)7 := P(f,¢)7 yieldsz = W f+(I—-W A)BV ~1g.
The statemenB”z = g now follows from BT W = 0.
h) Assume thaZ is an invariant subspace df, i.e, there exists a matrig such thatAZ =
ZS. Then there holds
(I-WA)I -BV'BTY=(1-WA)zz"
=272 —z727A7 ' 72" 78 7"
— =~
W AZ
=27" - 722TA7 17827
=277 - 72727A Az7" =277 - 727277 7"
—~—
I

g
=0

=0

which yieldsM = 0. O

REMARK 2.8. In the approximate inverse preconditioder(2.3), the exact inverses
A~ and(BT B)~! may be replaced by approximations (including inner iteras). Multi-
plication by A~! requires the solution of a (scalar) convection-diffusioalgem, whereas
the multiplication by(B” B)~! requires the solution of a symmetric, positive definite syst
that shows similarities to a Laplace system. For both tyggeablems there exist highly
efficient solution methods in the literature.



ETNA

Kent State University
http://etna.math.kent.edu

178 S. LE BORNE AND C. NGUFOR

2.1. Review of related preconditioners.In the last few years, much work has been
devoted to the development of efficient preconditionerssttdle point problems. In this
section, we will review some of these techniques. In paldicuve will restrict our attention
to blackboxtechniques that are in some sense related to the new imgghigioximate inverse
preconditioner. Byplackboxtechniques we mean techniques that only require the madti d
(and possibly information about i2&sx 2 block structure) and right hand side vector, but no
information on the underlying system of partial differehgquations.

Here, we will consider the following widely applicable ct&s of preconditioning tech-
nigues:

e Schur-complement-based preconditioners, in partichiBFBt preconditionerd
7,18,

e preconditioned nullspace solverd, 17],

e constraint preconditioner§[11, 13)].

2.1.1. Schur-complement-based preconditioners (BFBt)The Schur-complement-
based preconditioners are derived from a block LU factdioraof the saddle point matrix
and an approximation to the required Schur complement. atiefization

L o= e 15 5]

with the Schur complemeist = — B” A~! B leads to the block triangular preconditioner

-1 _ pA-1po-1
2.8) p-1 _ [ A B A A“ES
0 S

triang ‘= 0 5; ] ,1.e., Pt”'ang =

Wher~e§ denotes an approximation to the Schur complensefur which the auxiliary prob-
lem.Sv = h can be solved efficiently. The error propagation madt¥.iong := I — Piriang A
has the form

A-1BS-1BT _A-1B

(29) Mtriang = —gilBT I

In the case ob = S, Miriang has spectrura (Myyiqng) = {0} since

(8 2] ([ B n) e (e 8]) =00

Z A7'B

0o -1

(linearly independent) eigenvectorsf;, ., associated with the eigenvalde= 0.
Here, we will restrict our attention to the BFBt-precondiiter

Using a matrixZ as defined in Def2.4, the columns of the matri } aren

Sprp = —(B"B)'BTAB(B"B)!

[5, 7, 18]. The following theorem states a close relationship betwtees Schur-complement
preconditioner and the implicit approximate inverse pretitioner.

THEOREM 2.9. The error propagation matriced/ (2.5 of the implicit approximate
inverse preconditioner and/;,;qang (2.9 using the BFBt-Schur-complement preconditioner

Gg—1._ g-—1 i
S—h:= Sgrp, have the same set eigenvalues.
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Proof. There holds

[A B] - _{ I 0
BT 0 triang BT A1 SS;IIT'Bt ’

thuso(Miriang) = {0} U{l —p|p € a(S§§}Bt)}. The result now follows from Theo-
rem2.7) sinceV 'BTABV'BTA'B =S5 ,.5. 0O

The block LU factorization of the saddle point matrix yielde following block LU-
preconditioner.

A B! I 01"
A=l —A-1BS-! I 0
(2.11) - 0 51 [ BTA g }

whereS approximates the Schur complemeéht= — BT A~ B.
THEOREM2.10.The error propagation matriX/.; = I — Pry A has the form
0 —A'B(I-S519)
My = ~
L l 0 (I—S-18)

The iteration is p-dominant, and there hold&\/ ;) = {0}Uo(I—S~1S). Ifwe setS—! :=
S5 rps then the non-zero eigenvaluesid,;; are the same as the non-zero eigenvalues of
Mirigng and M.

2.1.2. Preconditioned nullspace solverThe (preconditioned) nullspace method to solve
the linear systemi(1) is based on the following additional assumptions.

ASSUMPTION2.11.A particular solutionz of BTz = g is available.

ASSUMPTION2.12.A null space basig € R"*(»~™) of BT is available, i.e.,

BY'Z =0 and rankKZ)=n—m.

The required particular solutiohmay be computed through= B(B” B)~!g. The solution
set of BTz = g is described by = Zv + & asv ranges inRR"~™. Substitutingr = Zv + &
into Az + By = f, we obtainA(Zv + &) + By = f. Premultiplying by the full-rank matrix
ZT yieldsZT A(Zv + &) + ZT By = ZT f, and usingB” Z = 0 as well as rearranging the
equation yields the reduced, non-singular problem

(2.12) ZTAZv = ZT(f — Az).

Once the solutiom, of the reduced problem has been computed, we compute treiiygl
solutionz, = Zv, + .

Finally, the (pressure) solution. can be found by solvingg” By = BT (f — Ax..) for
y, a reduced system of ordet with a sparse, symmetric positive definite coefficient nxatri
BT B. Itis easily verified thatx.., y.)T satisfies {.1).

Preconditioning the reduced systeth1(?) imposes difficulties similar to those for pre-
conditioning a Schur complement system: The matrix prodtfctl Z is typically not com-
puted explicitly since matrix-matrix multiplications at@ be avoided and the product would
result in a fully populated matrix. Here, we will consideethreconditionelV := Z7A~1Z
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that has previously been proposed 5[ 17], and we solve the preconditioned reduced
nullspace system

(ZTA 2V ZTAZ)e = (ZV A1 2)b.

THEOREM2.13.The error propagation matrid/,,ccnuu = I — (ZT A1 Z)(ZT AZ)
of the preconditioned nullspace method has the same segeafialues as the error propa-
gation matrixM (2.5) of the implicit approximate inverse preconditioner.

Proof. Using the notation introduced in D&?.4, there holds

2

o(ZTAT'2)(ZTAZ)u {0} = o((Z2ZT)A Y (ZZT)A)u {0}
= o((I - X)A™(I - X)A) U {0}
= o((I - X)(I—-A'XA)uU{0}
= o((l X)I -Y))u{0}

(

) o WA) u{0}. O
2.2. Constraint preconditioners. A (non-singular) constraint preconditioner is given
in the form
G B
BT 0 |’

whereG € R™" is some approximation td. The following Theorem is proven irLp] for
the case of symmetric blocké andG.
THEOREM 2.14. Assume tha¥ is a basis ofcer(B). The constraint-preconditioned

matrix
G Bl '[ A B
BT 0 BT 0
has the following spectrum:

1. An eigenvalue at with multiplicity 2m.
2. n—m eigenvalues which are defined by the generalized eigenpadibemZ” AZz =
TG Zzx.
COROLLARY 2.15. The spectrum of the constraint-preconditioned matrix gigin= 1
is equal to the spectrum of the reduced matrixdrl@) (except for the eigenvalug.
Proof. Follows fromZ7GZ = I whenG = I in Theoren?.14(part 2).0
LEMMA 2.16.The error propagation matrix of the constraint precondit& is given by
—1
J\/[constraint =1 - |: “ B :| |: 4 B :|

BT 0 BT 0
[ I-G'A+G'BS;'BT(I-G*A) 0
- —Sg'BT (I —G7tA) 0|’

whereS¢; := —BTG~!B.

REMARK 2.17. The constraint preconditioner requires the solutiba Schur comple-
ment problemSsy = b. Whereas using: = I allows for efficient solvers of this problem,
it typically leads to poor convergence of the iterative $olu of non-symmetric, strongly in-
definite saddle point systems. 18]]the authors suggest to use the symmetric pad @fs
G, i.e.,G = w(A+ AT) for some parameter. Preconditioning with the resulting constraint
preconditioner requires the solution of a Stokes-type fsgtnic) problem.
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3. Numerical results. In this section, we will provide numerical results to illcese
the performance of the approximate inverse preconditi¢@ed). We will use the tech-
nigue of (domain-decomposition basdd)matrices B, 10, 16] to compute an approximate
LU factorization A ~ LY*U?%t as well as an approximate Cholesky factorizat®hB ~
L, (L% 5)". An H-matrix provides an approximation to a (dense) matrix inchhter-
tain off-diagonal blocks are approximated by low-rank ritas. The accuracies of these
approximations are controlled by prescribing a maximuratre¢ errord within each block.
As this relative error approaches zero, i&.+ 0, the approximation becomes more accu-
rate at the expense of increased computation times andystogguirements, similar to ILU
methods in which a smaller threshhold parameter or incrblese! of fill leads to better but
more expensive approximations.

We replace the exact inverses™! and (B B)~! in W (2.2) by the approximations
LU and L7, o (L%, 5)T, resp. Alternative techniques such as multigrid or inccetepl
factorizations are also possible to solve these subprablem

As a model problem, we consider the Oseen equationsQLetR?, d € {2, 3}, denote
a bounded, connected domain with a piecewise smooth boyidaGiven a force field
f:Q — RY boundary datg : I' — R<, the kinematic viscosity coefficienat and a given,
divergence-free coefficient: 2 — R<, the problem is to find the velocity field : Q — R?
and the pressure: 2 — R such that the Oseen equations

(3.1 —eAu+ (b-Vu+Vp=f inQ,
(3.2) —divu =0 inQ,
3.3) Bu=g onT,

are satisfied. Herd&3 denotes some type of boundary operatostéblemixed finite element
discretization of the Oseen equations leads to a systemuaitieqs of the form1.1). Here,
we set up the discrete Oseen equatidn$)(using a Taylor-Hood finite element discretization
on a structured mesh dd = [—1,1]¢ (d = 2, 3) with Tabata’s upwind triangle schemgg
Chap. Ill, Sec. 3.1.1]. We perform tests using constant dlsaségre-)circulating convection
directions

bzline(xv Y, Z) = (L 0, O)Tv
T
brecirc(xayaz) = (_(‘T2 - 1)y7 (y2 - 1)(E, 0) .

Our choice of experiments has resulted from our interest in
e the set-up times and storage requirements of the impligt@pmate inverse pre-
conditioner for two and three spatial dimensions; see Eblg 3.2 (d = 2) and
Tables3.5, 3.6(d = 3),
o the dependence of iteration steps on the mesligitee convection directioh, and
the parameter, which determines the convection-dominance of the Oseeiigm
(3.1); see Table3.3(d = 2) and Table3.7 (d = 3),
e the dependence of the convergence rates on the accuraocy apgroximations to
(BTB)~! and A~! in the implicit approximate inverse preconditioner, irdilug
a comparison with the BFBt-preconditioner; see Tahke(d = 2) and Table3.8
(d=3).
All numerical tests have been performed on a Dell 690n watl®st (2.33GHz, 32GB mem-
ory) using the standart{-matrix library HLIB [2]. We chooser, = (0,0,0)7 as the initial
vector in the Bicgstab method. We iterate until either theimam number of 200 iterations
has been reached, or until the residual has been reducedioyoa 6f10~6. If the residual is
not reduced by a factor of at lealsi—® within 200 iteration steps, we denote this by “div”. A
breakdown in the bicgstab method is denoted by “br”.
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3.1. Two-dimensional Oseen problem.n Tables3.1 and 3.2, we report the set-up
times and storage requirements of the approximate imjtieéirse preconditioner. In particu-
lar, these numbers result from ti& LU factorization of A and theH-Cholesky factorization
of BT B. If these’H-factorizations are replaced by alternative methods (6.4l factoriza-
tion, multigrid, etc.), these numbers will change depegdin the chosen method. Therefore,
while the results in Table3.1and3.2illustrate thatH-factorizations are well-suited to solve
the required subproblems, they should not be interpretesgtagp costs intrinsic to the pre-
conditioner.

TABLE 3.1
Set-up time (in seconds);= 1072, by1ine

n/2 0 | 40,401 78,961 160,801| 321,489| 641,601
1071 1 2 6 10 26

H-LUof A | 1072 2 3 7 12 32
1073 2 3 8 14 36

m 10,404| 20,164 | 40,804 | 81,225 | 161,604
1072 1 2 6 14 27

H-Cholesky| 10~* 2 4 7 19 38

of BB 10~8 2 5 10 25 53

TABLE 3.2

Storage (in MB)¢ = 1072, byine

n/2 on | 40,401| 78,961 | 160,801| 321,489| 641,601
1071 58 106 254 449 1091

H-LUof A | 1072 63 114 273 477 1151
1073 66 122 286 507 1213

m 10,404| 20,164 | 40,804 | 81,225 | 161,604
1072 8 17 36 77 159

H-Cholesky| 10~4 10 23 48 107 222

of BB 1078 14 30 67 148 319

n+m 91,206| 178,086| 362,406| 724,203| 1,444,806

PARDISO 183 389 859 1,910 4,100

In Table 3.1, we show the set-up times to compuieLU factorizations ofA and H-
Cholesky factorizations aB”' B for varyingH-accuraciesy,. As é,, — 0, the factorizations
become more accurate but also more expensive to compute.fb@d accuracyy, the set-
up time is (almost) linear in the problem size for both faizations. We use higher accuracies
(i.e., smallen,;) for the H-Cholesky factorization since this will result in signifitdy faster
convergence in the subsequent iteration; see Taldle

Similar to the set-up time, the storage requirements aredsi) optimal in the problem
size and only increase moderately as we increasétfeecuracy. In Table.2, we also
provide a comparison with the storage required by the disebter PARDISO 3.370, 21]
which is more than twice the storage required by H&.U and H-Cholesky factorizations
with H-accuraciegy = 1072 anddy, = 1078, resp.

In Table3.3, we list the number of iteration steps and correspondirrgtiten times (in
seconds) for various problem sizest- m and varying convection dominance as determined
by the parameter in the Oseen problenB(1). In the case of constant convectidp;,.,
the convergence rate decreases as the problem becomesanueetion-dominated, i.e., as
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TABLE 3.3
Dependence on meshsizand convection dominance, table lists iteration steps @me (sec)y4 = 1073,
Sprp=10"8

e/n+m | 91,206] 178,086| 362,406| 724,203| 1,444,806
bzline
1.0 12/4 12/7 15/20 16/45 19/114
1071 12/4 15/9 16/22 19/53 20/119
1072 8/2 9/6 12/17 13/36 17/101
1073 4/1 4/3 4/6 5/14 5/30
PARDISO 7s 19s 46s 138s 417s
brecirc
1.0 10/3 12/7 15/21 16/44 19/114
1071 14/4 15/9 17/23 18/50 24/142
1072 13/4 20/12 19/26 21/58 24/142
1073 26/8 26/16 26/35 29/80 31/183
PARDISO 6s 17s 44s 123s 309s

e decreases. For recirculating convectigp.;..., however, the number of required steps in-
creases as decreases. For a fixegthe number of required steps increases only slightly as
the problem size increases, both in the case of constaneairdulating convection. We also
provide a comparison with the solution time required by tived solver PARDISO 3.3 for
the convection-dominated problems using 103, For a fair comparison, one needs to add
the respective set-up time for the approximate inversegm@itioner as reported in Tabg1

to the solution time. For instance, for problem size- m = 1,444,806, ¢ = 10~2 and

b = byiine, PARDISO required17s compared t®36s + 53s + 30s = 120s (H-LU of A +
H-Cholesky of B” B + iterative solver) for the approximate inverse precondiéo For this
example, PARDISO requiredil00M B of memory compared ta, 213M B + 319M B =
1,532M B for the H-LU and H-Cholesky factors required in the approximate inverse pre-
conditioner; see Tablg.2. For the same problem size and recirculating convedijon,..,
PARDISO requires309s compared td36s + 53s + 183s = 272s for set-up and iterative
solution with the approximate inverse preconditioner.

In Table3.4, we list the number of iteration steps and correspondirgtiien times (in
seconds) for various problem sizest m and varying accuracies for the approximations to
A~tand(BT B)~!. The parameters, andjzr 5 denote the adaptive accuracy chosen in the
H-LU andH-Cholesky factorizations ofl and BT B, resp. The results show that the number
of iteration steps increases significantly when a less ate@pproximation t&” B is used,
even leading to divergence in the case of recirculating eotionb,...;.... The accuracy of the
approximation toA~! shows the expected behaviour that fewer iteration stepsegrgred
asds — 0. Inview of the only moderate increase in the set-up times (&®ble3.1) as
04 — 0, we obtain the fastest overall solution time (set-up time itgration time combined)
for the recirculating convection by choosidgr; = 1078 andd 4 = 1073, For the largest
problem sizer+m = 1,444,806, we also list results for the BFBt-preconditioned BiCGStab
method. The BFBt-preconditioned iteration converges égeless accurate approximations
of (BT B)~! where the approximate inverse preconditioner fails. Divicthe iteration time
by the number of steps, one sees that a single iteration $tépe BFBt-method is faster
than a step of the approximate inverse method. For highlyrate approximations to the
subproblems, both methods show the expected very simitarezgence behaviour.
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TABLE 3.4
Dependence of{-accuraciess 4 andé g1 5, table lists iteration steps and time (se€)= 103

n+m o4 =1073 dgrp = 1078
5BTB=10_2 | 6BTB:10_4 5,4210_1 | (5,4210_2 | 5A=10_3
bmline
91,206 14/4 5/1 5/2 4/1 4/1
178,086 21/11 5/3 5/3 4/2 4/3
362,406 30/35 719 6/8 4/6 4/6
724,203 52/123 7/18 6/16 5/14 5/14
1,444,806 63/312 10/54 7/41 5/30 5/30
BFBt 58/226 12/49 20/84 7/30 6/27
brecirc
91,206 118/31 73/21 55/16 28/8 26/8
178,086 div 88/51 48/29 31/19 26/16
362,406 div 128/161 39/51 42/56 26/35
724,203 div 123/309 27172 39/106 29/80
1,444,806 div div 51/291 49/285 31/183
BFBt 197/756 145/584 br 72/306 43/186

3.2. Three-dimensional Oseen problemWe repeated the same set of experiments for
the Oseen problem in three spatial dimensions. In Taldewe record the set-up times for
the approximate inverse preconditioner which are conalalgrlarger compared to the two-
dimensional case. This is mainly due to the larger numbepafzero entries per matrix row
typical for three-dimensional problems. However, for adigé-accuracy, the work complex-
ity is still almost optimal with respect to the increase iolplem size.

TABLE 3.5
Set-up time (in seconds)= 102, by/ine

n/3 0 | 6,859 15,625| 29,791| 59,319| 132,651| 250,047
1071 1 3 8 33 62 139
H-LUof A | 1072 2 6 15 63 115 264
1073 2 9 22 94 190 441
m 1,331| 2,744 | 4913 | 9,261 | 19,683 | 35,937
1072 1 2 4 10 29 58
H-Cholesky| 10~4 1 3 8 20 60 131
of BTB 10-8 1 5 12 37 134 331

In Table 3.6, we record the storage requirements. Here, we see the sdmgiber as
observed for the work complexity, i.e., almost linear coexitly with respect to the problem
size. The direct solver PARDISO requires up to ten times theage of the approximate
‘H-LU and H-Cholesky factors and runs out of memory (“0.0.m.”) for- m = 786,078
unknowns.

In Table3.7, we show iteration steps and times for varying convectiamid@ance. As for
the two-dimensional case, fewer steps are required as tistartt convectioh,;;,,. becomes
more dominant. For non-constant convectipn;,., the number of steps only increases when
e decreases fromh0—2 to 10~3. A comparison with the direct solver PARDISO is provided
for the convection-dominated case- 10~3. Even after including the set-up time as reported
in Table3.5, the time required for the iterative solution is signifidgrgmaller than the time
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TABLE 3.6
Storage (in MB)e = 1072, byjine

n/3 on 6,859 | 15,625| 29,791| 59,319 | 132,651| 250,047
1071 18 45 103 232 549 1122
H-LUof A | 1072 22 57 130 297 708 1437
1073 25 64 147 342 830 1700
m 1,331 | 2,744 | 4913 | 9,261 | 19,683 | 35,937
1072 2 5 10 22 56 117
H-Cholesky| 10~4 3 8 17 39 104 219
of BTB 10-8 4 11 25 65 186 409
n+m 21,908| 49,618| 94,286| 187,218| 417,636| 786,078
PARDISO 150 493 1,292 | 3,344 | 10,583 | o0.0.m

for the direct solver.

TABLE 3.7
Dependence on meshsizand convection dominance, table lists iteration steps @me (sec)y4 = 1073,
6BTB = 1078

e/n+m | 21,908| 49,618| 94,286| 187,218| 417,636| 786,078
zline
1.0 10/1 11/3 12/8 15/23 18/73 | 22/190
10~1 8/1 10/3 11/7 13/21 16/64 20/173
102 8/1 9/3 10/7 11/17 12/49 13/112
1073 9/1 10/3 11/7 11/16 12/45 12/98
PARDISO| 11s 64s 287s | 1,311s| 8,597s | o.0.m.
brecirc
1.0 9/1 11/3 12/8 14/21 17/67 22/186
10~1 9/1 12/4 12/8 14/21 17/67 21/178
1072 8/1 11/3 13/9 14/21 17/67 23/195
1073 11/1 14/4 19/12 | 20/30 24/94 | 33/278
PARDISO 12s 63s 259s 1,371s | 8,769s | o0.0.m.

Finally, in Table3.8we show the dependence of the number of required iteratepssin
the accuracies chosen to solve the subproblémisand(B? B) !, resp. The fastest solution
is obtained whedzry = 1078 andds = 10~ both for the constant and recirculating
convection. The number of required iteration steps in@sasly moderately as the problem
size increases. However, except for the case in which a Oowak occurs for the BFBt-
preconditioner, the BFBt-preconditioner outperformsdpproximate inverse preconditioner.

Since the use of{-Cholesky and{-LU factorizations is somewhat uncommon, we also
performed tests for the three-dimensional Oseen probléng @asMATLAB implementation
of the approximate inverse preconditioner and the MATLABtes “luinc” (incomplete LU
factorization), “chol” (exact Cholesky factorizationgtolinc” (incomplete Cholesky factor-
ization) and “bicgstab”. In Tabl&.9we record the set-up times for the various factorizations
with varying accuracies. Apparently, the exact Choleskydezation has been optimized to
an extent where it outperforms the incomplete Choleskyofézation for the given problem
sizes (with respect to time, but not with respect to storage)

Tables3.10and3.11 show iteration steps and times for the MATLAB implementaion
solving the three-dimensional Oseen problem with 10~2 and convection directions, ;.
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TABLE 3.8
Dependence ofit-accuraciesi 4 andd g 3, table lists iteration steps and time (se€)= 102

n+m o4 =1073 dprp =108
6BTB:10_2 | 6BTB:10_4 04 =0.5 | (5,4210_1 | 6A=10_2
bzline
21,908 14/1 8/1 9/1 8/1 8/1
49,618 15/4 9/2 11/2 9/2 9/3
94,286 17/9 10/6 12/6 9/5 9/6
187,218 20/26 12/16 14/15 11/15 11/16
417,636 24/74 15/51 17/45 12/39 11/41
786,078 29/185 17/118 23/126 14/93 13/100
BFBt 31/176 20/118 27/105 14/71 15/90
brecirc
21,908 14/1 8/1 12/1 8/1 8/1
49,618 17/5 11/3 14/3 10/3 11/3
94,286 23/13 13/8 19/8 12/7 12/7
187,218 28/34 16/21 23/23 13/16 14/19
417,636 38/115 26/88 29/75 18/57 18/65
786,078 50/309 40/271 38/202 25/161 22/165
BFBt 39/214 33/192 br 20/97 21/120
TABLE 3.9
MATLAB: Set-up costs
n+m LUINC(A,64) CHOLINC(BT B, 651 5)
d4=10"1154=10"2] 64 =103 | exact dprp = 10~
49,618 0.04 0.74 1.62 0.10 1.12
94,286 0.09 2.13 4.75 0.27 3.35
187,218 0.29 6.57 15.2 1.02 11.43
417,636 1.16 25.7 56.6 6.05 52.9

andb,.c.;r., resp. Table3.10shows the results for the approximate inverse precondition
whereas Tabl8.11shows the results for the BFBt preconditioner. For less mtetsettings of
inner solvers, the approximate inverse preconditionepediorms the BFBt preconditioner.
As the accuracies increase, the number of iteration stepsnie comparable and iteration
time is faster for the BFBt preconditioner since each stegheaper. However, the gain in
iteration time comes at the expense of an increase in setrgddor better accuracies of inner
solvers. Overall, the approximate inverse preconditicapgrears to be less sensitive with
respect to the accuracies of inner solvers than the BFBopigitioner.
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