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A ROBUST SPECTRAL METHOD FOR FINDING LUMPINGS AND META
STABLE STATES OF NON-REVERSIBLE MARKQOV CHAINS *

MARTIN NILSSON JACOBI'

Abstract. A spectral method for identifying lumping in large Markov ahgiis presented. The identification of
meta stable states is treated as a special case. The meth@gdsdrathe spectral analysis of a self-adjoint matrix
that is a function of the original transition matrix. It is denstrated that the technique is more robust than existing
methods when applied to noisy non-reversible Markov chains.
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1. Introduction. The structural dynamics of large biomolecules can oftercoarately
described as a Markov transition process. Frequently, yhardics display a separation of
time scales where aggregated conformational states argérayat much slower rate than the
detailed molecular dynamics does. The problem of idemtifghe conformational states from
the detailed Markov transition matrix has received recetetrest B, 4, 7, 9]. The technically
similar problem of identifying modularity and communitywstture on complex networks has
also been discussed extensively; see, €¢13, 15].

Identification of meta stable states is a special case of & general reduction called
(approximate) lumping. Lumping of a Markov chain means thatstate space is partitioned
into equivalence classes of states called macro states.asegrained process is defined
by the transitions between the macro states. If the coaeseegt process is Markovian, i.e.,
exhibits no memory, we call the reduction a lumping. A paitinto meta stable states
is an example of an approximate lumping in the following gens the limit of complete
stability, i.e., when there are no transitions between thermstates, the macro states define
a degenerate case of exact lumping. More generally, the dgrkoperty is fulfilled on the
aggregated level if the relaxation process within a metalststate is fast and mixing so that
the memory of exactly how the meta stable state was entetestibefore the transition to a
new meta stable state occurs. In this sense, aggregatmmata stable states can be viewed
as an approximate lumping. Aside from separation of timéescdhere are other generic
situations when a Markov process is expected to be lump&boleexample, when a particle
interacts with many other particles in a “heat bath” the dgits of the single particle can
be described as a Brownian motion. Technically, the trenmsinatrix of a lumpable Markov
chain can be rearranged into a block-stochastic strucsereFigures.1 and Definition b.1).
Markov chains with metastable states can be permuted intock-diagonal structure (see
Figure4.1), which is a special case of a block-stochastic matrix.

The most successful methods for identifying meta stabtestnd modules in networks
are based on the level structure of the eigenvectors whasesponding eigenvalues are
clustered close to the Perron-Frobenius eigenvalue. Tdmnigue introduced in this paper
is closely related to these spectral method first introdumeBidler in the 70’s at that point
as a method for graph partitioning][ Fidler noted that the second eigenvector of the graph
Laplacian shows tightly connected communities of nodes dn@ connected to the other
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communities by relatively few edges or low algebraic cotinitg. Later the method was used
in connection with the classic graph coloring problelh [n the same paper, the idea of using
the sign structure of thé first eigenvectors to partition a graph intocaggregates of nodes
was introduced. The same idea was later applied to identdtaratable states in Markov
chains B]. For these spectral methods to be stable, the eigenvablégon must be symmetric
with respect to some scalar product. This means that thedvwafocess must be reversible,
or that the network is assumed to be effectively non-dioeeti. A notable exception based
on symmetrization using the stationary distribution wasspnted in§]. Another exception
is a recent method for Markov chains based on singular vadgerdposition of the Markov
transition matrix f]. However, the SVD-based method is not appropriate fortifieng
lumpings of Markov chains since the singular vectors tylpic@o not have a level structure
(or relevant sign structure) in the theoretical limit of exlumpability; see, for example, the
transition matrix defined in(2).

In this paper we present a new robust spectral method fotifgieny possible lumpings
of non-reversible Markov chains. Instead of using the spetiof the transition matrix di-
rectly, we define a self-adjoint “invariance matrix” whosertel relates to the eigenvectors
that define the meta stable states, or, more generally, tiygslof the Markov chain. Since the
invariance matrix is self-adjoint by construction, the alsassumption of reversibility can be
lifted. We demonstrate the method on both Markov chains wigha stable states and more
general block-stochastic structures and compare therpeafuce to other methods reported
in the literature, e.g., the methods presentedjapd [7].

2. Lumping of Markov chains. Consider a Markov process;; = z;P. TheN x N
transition matrixP is a row stochastic matrix, i.ezj P;; = 1,Vi. Consider a partition of the
states spack into K equivalence classes of stafgssuch thatl, N L; = ¢ andJ, L, = %;
see [L6]. A necessary and sufficient condition for a partition to Beraping is that 0]

(2.1) > P, isconstant for alf in an aggregate, € Lj.
JEL

If a Markov chain allows for a non-trivial lumping we call ittnpable. A simple example of
a lumpable transition matrix is

3
2.2) P=-|1
0

which, aside from the trivial lumping defined by all stateg@gated into one macro-state,
allows the non-trivial lumpind {1, 2}, 3}, i.e., statd and2 are lumped into one macro-state.

The condition in 2.1) also immediately defines the transition matrix with dimiens
K x K for the aggregated dynamics

(23) ﬁkl = Z PU 1€ Ly
JEL

since all states € L, give the same result:

~ 13 1
In practice, Equation2.1) is usually not fulfilled exactly. For example, if a transiti

matrix can be written as

P=(1-¢€A+eB,
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where A is a transition matrix that fulfills the lumpability conditi (2.1) and B is some
arbitrary transition matrix. Then, ifis small, we say thaP is approximately lumpable. Note
that the aggregated transition probabilities 1) are in this case approximately constant
with deviations ofO(¢). The reduced dynamics must in this case be approximated, e.g
using a weighted average for the transitions between theeggtged states

~ 1
(24) Pkl = <~ .. Z Z ijija
ZieLz Y i€Ly jeL;

wherev; is the stationary distribution. Using the weighted aversgeatural since it gives
the same reduced transition matrix as we find if we estima@ggregated transition proba-
bilities directly from a stationary time series.

A partition can be represented by a mafiixdefined adl;, = 1if i € L, andll;; =0
otherwise. Equation2(1) can be reformulated as

(2.5) PII = TIP,

which, if written out explicitly in terms of the elements, piies that the column space of
IT spans a right-invariant subspace /f Assuming thatP is diagonalizable, the invariant
subspace is spanned by a set of right eigenvectof’ ahd due to th® or 1 structure ofll
the elements in these eigenvectors must be constant ovagtiiegates. To be more precise,
a lumping with K aggregates exists if and only if there are exaéflyight eigenvectors oP
with elements that are constant over the aggregateslde#?] for details. As an example,
the transition matrix defined ir2(2) allows for the lumping{{1, 2}, 3} as indicated by the
two first elements in the right eigenvectdis 1, 1)” and(—1, —1,2)” being constant.

It should be noted that there exist other types of aggregatistates where the aim is to
preserve (for example) the structure of the equilibriuntrdigtion. A prominent example of
this is the renormalization of lattice spin systems. Howgwethis paper we focus on lumping
that respect thdynamicsof the process. In this case the Markov property is the cecora
straint, i.e., the mutual information between the past &edture given the present should
be zero on both the micro (a prerequisite for the procedurd)raacro level (the lumping
condition). This leads to the strong conditions on the aggfien seen in Equation&.(l) and
(2.5). For a more detailed discussion on how memory appears ocotrse grained level if
the lumping criterion is not fulfilled, sed {j].

The principle idea behind spectral methods for identifyimgping or meta stable states,
as well as modularity in networks, is to search for (rightegivectors whose elements are
constant over the aggregates, i.e., eigenvectors witheh $¢ucture; see, e.g.14] for de-
tails. If the transition matrix is symmetric under some acaglroduct, the eigenvectors are
orthogonal, and it is easy to show that the constant levelrseist have different sign struc-
ture [1] (the sign structure of a vector is defined by mapping negatiements to-1 and
positive elements te-1). The sign structure is often used as a lumping criterioherathan
the constant levels since this is expected to be a more ncafigrstable [, 3].

For the detection of metastable states or modularity, therwiectors of interest are those
corresponding to eigenvalues close to the Perron-Froberigenvalue since these eigenval-
ues are related to the slow dynamics. In the case of genemgihg, the eigenvectors involved
are not necessarily distinguished by their appearanceeiisplectrum. However, as we dis-
cuss in Sectior, for large transition matrices the eigenvectors involvetuimping tend to
be separated from the rest of the spectrum by being locatdtefuaway from the origin in
the complex plane than the rest of the spectrum, but not sadbsby being closer ta.

As a complement to the spectral methods, the commutatiatiorl 2.5 can be used
directly to identify lumping of Markov chains. Start by magia random assignment of the
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N states toK aggregates, and construct the correspondingatrix. Given thell matrix,
the reduced transition matrik, defined in Equation?.3), can be derived by simply ignoring
that the row elements are not constant within the aggregaigby using the average defined
in (2.4). The left hand side inA.5), PII, defines aK dimensional vector for each of the
N states. If the lumping is correct then all states in an aggeggshould have identicak’
dimensional vectors, and they should be equal tokttie row of P. If II is not a lumping,
we can try to improve it by assigning stat® aggregaté wherek = argmin||(PII); — P,||
and (PII); is thei-th row of the matrixPII. The result is a new aggregation with a new
IT matrix. The process can be iterated until convergence. Alaimethod was introduced
by Lafon and Lee I1]. As pointed out in ], it is similar in structure to the{-means
clustering algorithm. It should be noted that this directstéring technique only works if
the aggregated dynamics has long relaxation time, i.ere isea spectral gap supporting the
lumping; see 11] for details. The performance of the algorithm is shown imparison with
the method introduced in this paper in Figude$éand5.3.

3. A robust method for identifying lumping. We now present the main idea of this
paper. We would like to find invariant vectors containinganant level sets. For moderately
sized (unperturbed) transition matrices or for time-reil@e Markov chains, the eigenvectors
can be used to detect lumping. If the Markov chain is not i, a calculation of both
eigenvalues and eigenvectors is numerically unstable sfocexample, the transition matrix
may contain non-trivial Jordan block&4]. This is the motivation for the new method. We
start by noting that if a normalized vectaris approximately right invariant undd? then
there must exist & such that

(3.1) [(P = Aullz <1,

where! denotes the identity matrix. The general idea behind Eqods.1) is similar to the
definition of pseudospectra of nonnormal matriced.[ The square of the-norm on the left
hand side in 3.1) is not sensitive to small changes in the element® pfvhereas for non-
symmetricP the eigenvalue and eigenvector problem can be ill conditiorObviously, if
u IS an eigenvector andl the corresponding eigenvalue, theénlj is zero reflecting the fact
that the eigenvector is exactly invariant. Th@orm of 3.1) is given by

u' QM)

whereu! denotes the conjugated transpose of the vegctohe “invariance matrix’Q is
defined as

Q\) = PTP—X*P — \PT +|\J2I

(note that@ is typically not a stochastic matrix). Regardless of thepprties of P, Q(\)

is by construction a self-adjoint matrix and its diagoredian is numerically stable. Ik is

an eigenvalue oP, then@(\) is positive semi-definite with a zero eigenvalue correspund

to the eigenvector oP with eigenvalueX. If X is not an eigenvalue, the(\) is positive
definite. For a giver\, (3.1) is minimized byu being the eigenvector @p(\) corresponding

to the smallest eigenvalue 6f()\), or, in the case of degeneracy, by a linear combination of
the eigenvectors of the smallest eigenvalue. It should ednihat the eigenvectors of the
matrix () are equivalent to the singular vectors of the shifted ttamsmatrix P — A1, which

can be found using a singular value decomposition.

4. Meta stable states.Detecting meta stable states is an especially simple, botes-
pecially interesting case of general (approximate) lumpifhe meta stable states are charac-
terized by their long relaxation time, and hence their dyicans associated with eigenvalues
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close tol. The right eigenvectors involved in the aggregation haveesponding eigenval-
ues closer td than the rest of the spectrum. As a consequence, meta statde san be
identified by the approximate constant level structure efdiyenvectors of

(4.1) Q=P P-P-P' 41

with eigenvalues close t0. As a consequence, the small eigenvaluesidf) (include the
eigenvectors needed in the aggregation. It should be nb&dhe actual eigenvalues &f
associated with the meta stable states need not be cldstdhe sub-dominant eigenvec-
tors of Q(1) to reveal the meta stable states; see Figardand4.3. Since( is self-adjoint,
the eigenvectors are orthogonal. The eigenvectors arexippately constant over the aggre-
gates, and orthogonality can then only be achieved if eagheggte has a unique sign struc-
ture in the eigenvectors. This observation was used by Alspivd Gilbert [1] and Deuflhard
and coworkersd, 4], but in these cases under the condition of symmetry of thacadcy
matrix or reversibility of the transition matrix, respegiy. Using theQ) matrix, there is no
need to make assumptions én It is straightforward to apply the same sign structureeerit
rion to the eigenvectors @, but empirical tests have shown that in our case the follgwin
simple approach is very robust (see Figdré:
1. Find the eigenvectoru, } X ; corresponding to the small eigenvalues@fl) in
(4.7).
2. Foreachstate=1,..., N formakK dimensional vectotly; = (w15, u2j, ..., UK ;)
of its corresponding elements in té eigenvectors.
3. Use a standard clustering algorithm (e.g., K-mean) tsteltthe states with respects
to theu,; vectors.
To test the method we generate two classes of matrices. Bheléss is of the form

(4.2) P=(1—-¢€)B+e€A,

whereB is a block diagonal transition matrix with— 5 blocks and transition probabilities
within the blocks chosen uniformly in the interv@, 1] and then normalized. The matrix
A is a transition matrix with no block diagonal structure gated in the same way as the
blocks in B. The parameter sets the level of perturbation &f from being block diagonal.
Figures4.1-4.3show the corresponding spectrum and clustering of the eiemirethe domi-
nant eigenvectors dP and the sub-dominant eigenvectorgbfor an example of a transition
matrix of this type withe = 0.7.

It can be argued that matrices of the type 4n2) are unlikely to appear in practical
applications. Instead of the smooth average modulatiardnzrease the transition probabil-
ities between blocks in4(2), a more binary modulation often occurs in practice, i.eanyn
transition probabilities are zero. In this situation, msti@ble states occur as a consequence
of a higher probability of having transitions within (rathtban between) meta stable states.
Contrasting the construction id.Q) this produces a sparse transition matrix. We construct
the second class of matrices according to

(43) P{;—(E, (S) = Xij(é, (S)Bij,

where B, as before, is a matrix with random entries chosen unifoimihe intervall0, 1].

In the matrixx (e, 0), the entries are chosen as binary values soxthat 1 with probability

¢ if 4 andj are in the same blocky;; = 1 with probability e if ; andj arenotin the same
block, andy;; = 0 otherwise. Thus§ controls the overall probability of transitions within
the blocks, and controls the transitions between the blocks with> ¢. The two extreme
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FIGURE 4.1. A weakly block dominant transition matrix, constructed #yX with e = 0.7, is shown. The
time scale separation is not very pronounced; see the gpadin Figure4.3. To the left with random permutation
and to the right after sorting the matrix according to the sggation revealed in the clusters of the eigenvectors of
the @ matrix shown in Figuret.2.

points arec = 0 which produce a completely block diagonal matrix, and § which gives

a matrix without any block diagonal structure. The rows ia thatrix P* are normalized
to produce a stochastic matrix. The procedure describedeatsn produce states with no
outgoing transitions, i.e., that are ill defined as traosithatrices. If this happens we generate
a new matrix.

We tested the performance of themethod and compared it to the following existing
techniques: results from the eigenvector®othe right and left singular vectors from an SVD
as suggested irT], the clustering method presented iri], and the spectral method described
in [8]. As test cases we used the two classes of matrices desetfiloe and measured how
stable the meta stable states produced by the differenoaethere by measuring the average
waiting time between jumps between meta stable states. égudtlis shown in Figurd.4.
For each value of shown, the average switching time is measuredi fér matrices of size
200 x 200 in the respective class. The timés scaled so that the “correct partitioning” used
to generate the matrices has waiting tilneThe results indicate that th@ method is more
robust against perturbations than previously reportedhotst It is especially interesting to
note that for highe values, i.e., when the original block diagonal structuralisost lost, the
@ method still produce aggregations that are more stablertiraiom partitions. None of the
other methods are capable of finding these very weak metke stizltes.

5. Block stochastic matrix. As discussed earlier, matrices with dominant block diago-
nal structure are special cases of lumpable Markov prose3$e more general structure of
lumpable transition matrices is shown in Figéré. A block-stochastic matrix is a matrix of
the form

Prair Poaz - Pipaim
(5.1) P= : : : ,

Pklak,l Pk2ak,2 to Pmmam,m

where P is them x m transition matrix of the reduced dynamics and each ofahds a
transition matrix in itself. Naturallyy;; anda;; must have the same dimensions for a fixed
andforj =1,...,m.
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FIGURE 4.2. The figure shows the clustering of the elements in the secothdhérd smallest, respectively
largest, eigenvectors @ (1) (to the left) and ofP (to the right) for the matrix shown in Figuré.1. Note that the
clusters are more distinct in the eigenvectorgifl) shown on the left.
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FIGURE 4.3. The spectrum of the transition matriX in Figure 4.1to the left and of the correspondir@(1)
matrix on the right. The aggregation into meta stable staseassociated with the dominant eigenvaluesof
i.e., the Perron-Frobenius eigenvalue and the two eigeresklose td).1, or alternatively with the three smallest
eigenvalues of)(1) (to the far right in the figure). Note that even though the dwmt eigenvalues oP are
not clustered close ta, the spectrum and eigenvectors@f1) show the meta stable states more clearly than the
eigenvectors of; see Figure4.2

The spectra of large block stochastic matrices tend to agpaut the eigenvalues associ-
ated with the lumping. The separation is, however, diffefeam the one occurring in block
diagonally dominant transition matrices. Instead of @tisy around the Perron-Frobenius
eigenvalue, the reducing eigenvalues of a block stochasdticix is separated by a large dis-
tance to the origin in the complex plane; see Figbi2 The reason behind the separation
is also different from the block diagonal case, and this @ppears as a statistic effect for
large random transition matrices, as the following argursbows. When lumping a Markov
chain, the spectrum of the reduced dynamics is always a sabge original spectrun].

For a large transition matrix of siz& x N with uncorrelated random transition probabili-
ties, the spectrum is typically concentrated to a disk waitius~ 1/(2v/N), except for the
Perron-Frobenius eigenvalue. For a block stochastic mdtré eigenvalues of the lumped
Markov chainP are typically concentrated to a disk with radits1/(2v/K) where K is

the number of states in the lumped chain.KIf < N, then it should be expected that the
eigenvalues associated with the lumped process sepapatetlie rest of the spectrum. An
example of this can be seen in Fig&€. However, it should be noted that the separation is
only a typical behavior, it is not necessary for the Markogioho be lumpable. (This seems
to be incorrectly stated irb[ 12]; see [L4] for details.)

If the spectrum does not show any separated eigenvalueisithedte the best choice of
Ain Q()), the implementation of th€) method is less straightforward when searching for
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FIGURE 4.4. The average result of identifying the meta stable statesdafrainant block diagonal transition
matrices defined in4(2) is shown on the left, and for matrices defined 4n3( with 6 = 0.2 on the right. The
average waiting time for transitions between meta statd¢est(normalized against the result for the partitioning
used to generate the matrices) fod0 test matrices of siz200 x 200 for eache value is used as a measure of the
quality of the results. The result for thig method is displayed as the result for using eigenvectors Bfasm, the
singular vectors from SVD/] as e, results from the clustering method suggestedLitj [see Sectior? for details)
asv, and the method suggested Bj s a.
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FIGURE 5.1. A block stochastic transition matriR, constructed as5(1) with e = 0.5, is shown to the left

and PP" to the right. The SVD method fror][is based on the right matrix and it is clear that the two medts
share the same block stochastic structure. However, theerioah tests show thap) method based on the left matrix
is more stable to perturbations than the SVD method baseteaigenvectors of the right matrix. The spectrum of
P is shown in Figures.2.

general lumping. This is of course also the case for othestegdenethods if the eigenvalues
involved in the lumping do not separate from the rest of theespm. Perhaps the easiest way
is to choose a set of numbefs; } X, randomly in the disk of radius in the complex plane,
use the eigenvectors §f()\;),7 = 1, ..., K, corresponding to the smallest eigenvalue, cluster
the elements in the same way as for the meta stable stateghank how well the result
satisfies the lumpability criterior2(1). The procedure must be repeated a few times to find
the configuration with the most satisfying result. It is pbksto design more sophisticated
methods by reusing ths that seem to produce good results. However, we use thdesmp
possible approach choosing betweeand5 (guided by the separation in the spectruin)
values randomly in the complex plane and repeatifgimes. The results are shown in
Figure5.3in comparison with other methods. In these numerical testuse the deviation
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FIGURE 5.2. The figure shows the spectrum of the block stochastic matsicewn in Figuré.1. The eigen-
values associated with the eigenvectors that are involeetie lumping process are separated from the rest of the
spectrum, but typically not close to the Perron-Frobeniigepvalue. It should be noted that, though the separation
in the spectrum typically appears for large block stochastatrices, this is a statistical effect and not necessary fo
the transition matrix to be lumpable; see the main text fothfer discussion on this.

FIGURE 5.3. The average result of inferring lumping of states of a bldoklsastic transition matrices defined
in (5.1). The deviation from fulfilling the lumpability conditiodefined in §.2), is normalized against the deviation
produced by the lumping used when producing the matrix, Srealler values implies better results. For each
value 100 independent realizations @00 x 200 matrices on the form5(1) were used to calculate the average
performance. The result for th@ method is displayed as the result for using eigenvectors Bfas ¢, the singular
vectors from SVDT] as m, and results from the clustering method suggested i (see Sectior2 for details) asa.
For moderater, the@ method and the clustering performs equally superior to theomethods, while for larger
all methods except the clustering technique show apprdaeijmaqual performance.

from the lumpability conditionZ.5)
(5.2) A =||PII - TIP|5

as a measure of how well the different methods perform. Foh @alue ofe, tests were
performed with100 matrices of the formP = (1 — ¢)B + €A generated, wher® was
constructed according t& () and A was a random transition matrix. The numerical tests
indicate that the) method is more stable than usidgdirectly or the SVD method. The
clustering method performs almost as well as¢hmethod.

From a computational perspective, tQemethod is, in the case of general lumping, sig-
nificantly slower than the other spectral methods. The rea&sthat several random choices
of A's must be tried, and, in additiorf)(\) is a complex matrix ifA is complex. Neither
of these complications occur when searching for meta stthtes since then we know be-
forehand that\ = 1 is a good choice. In the implementation used to produce thdteein
Figure5.3the @ method is approximatelys times slower than using directly or the SVD
method. On the other hand the results are also better. Thvel@lan scales proportional to
the number of-setups we need to try. A more sophisticated selection droedor choosing
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the regions where the sub-dominant eigenvectotg(of) show a clear signal would probably
increase the efficiency of the algorithm.

6. Conclusions. We have introduced a new spectral method for identifyingding in
large Markov chains with the identification of meta stabégest as an important special case.
The key element of the method is to define a family of self-mdjmatrices from the transition
matrix. The eigenvectors of the self-adjoint matrices asspposed to those of the transition
matrix itself, stable to perturbations or noisy estimatibthe transition probabilities. The ro-
bustness of the method is tested and compared to the resufipfevious methods, including
a direct clustering method introduced ifi1] and the recently suggested SVD based method
introduced in f]. The @ method is shown to be more robust than previous techniques.

We mentioned in the introduction that the method presenéed tan be used to reduce
networks by aggregating nodes. The examples in this papehawever, focused completely
on lumping of Markov chains. The relation between lumpind/afrkov chain and reduction
of complex networks was discussed recently5h [The authors define a diffusion process
on the network using the standard method of the graph Lapiadt should be noted, how-
ever, that reduction of networks can be defined with respecther types of dynamics than
diffusion. Straightforward jump processes are, for examgefined directly by multiplica-
tion of the adjacency matrix. Since the lumpability coraitconsidered in this paper applies
to general linear processes, not only Markov processessiotthastic transition matrix, the
methods introduced can be used to reduce networks by agigregath respect to different
criteria depending on which dynamic process we are corisgien the network. For thg
method to be different from using the eigenvectors of thesiteon matrix directly, the graph
must be directed.
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