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Abstract. A spectral method for identifying lumping in large Markov chains is presented. The identification of
meta stable states is treated as a special case. The method is based on the spectral analysis of a self-adjoint matrix
that is a function of the original transition matrix. It is demonstrated that the technique is more robust than existing
methods when applied to noisy non-reversible Markov chains.
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1. Introduction. The structural dynamics of large biomolecules can often be accurately
described as a Markov transition process. Frequently, the dynamics display a separation of
time scales where aggregated conformational states are evolving at much slower rate than the
detailed molecular dynamics does. The problem of identifying the conformational states from
the detailed Markov transition matrix has received recent interest [3, 4, 7, 9]. The technically
similar problem of identifying modularity and community structure on complex networks has
also been discussed extensively; see, e.g., [6, 13, 15].

Identification of meta stable states is a special case of a more general reduction called
(approximate) lumping. Lumping of a Markov chain means thatthe state space is partitioned
into equivalence classes of states called macro states. A coarse grained process is defined
by the transitions between the macro states. If the coarse grained process is Markovian, i.e.,
exhibits no memory, we call the reduction a lumping. A partition into meta stable states
is an example of an approximate lumping in the following sense: in the limit of complete
stability, i.e., when there are no transitions between the macro states, the macro states define
a degenerate case of exact lumping. More generally, the Markov property is fulfilled on the
aggregated level if the relaxation process within a meta stable state is fast and mixing so that
the memory of exactly how the meta stable state was entered islost before the transition to a
new meta stable state occurs. In this sense, aggregation into meta stable states can be viewed
as an approximate lumping. Aside from separation of time scales, there are other generic
situations when a Markov process is expected to be lumpable.For example, when a particle
interacts with many other particles in a “heat bath” the dynamics of the single particle can
be described as a Brownian motion. Technically, the transition matrix of a lumpable Markov
chain can be rearranged into a block-stochastic structure;see Figure5.1and Definition (5.1).
Markov chains with metastable states can be permuted into a block-diagonal structure (see
Figure4.1), which is a special case of a block-stochastic matrix.

The most successful methods for identifying meta stable states and modules in networks
are based on the level structure of the eigenvectors whose corresponding eigenvalues are
clustered close to the Perron-Frobenius eigenvalue. The technique introduced in this paper
is closely related to these spectral method first introducedby Fidler in the 70’s at that point
as a method for graph partitioning [6]. Fidler noted that the second eigenvector of the graph
Laplacian shows tightly connected communities of nodes that are connected to the other
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communities by relatively few edges or low algebraic connectivity. Later the method was used
in connection with the classic graph coloring problem [1]. In the same paper, the idea of using
the sign structure of thek first eigenvectors to partition a graph intok aggregates of nodes
was introduced. The same idea was later applied to identify meta stable states in Markov
chains [3]. For these spectral methods to be stable, the eigenvalue problem must be symmetric
with respect to some scalar product. This means that the Markov process must be reversible,
or that the network is assumed to be effectively non-directional. A notable exception based
on symmetrization using the stationary distribution was presented in [8]. Another exception
is a recent method for Markov chains based on singular value decomposition of the Markov
transition matrix [7]. However, the SVD-based method is not appropriate for identifying
lumpings of Markov chains since the singular vectors typically do not have a level structure
(or relevant sign structure) in the theoretical limit of exact lumpability; see, for example, the
transition matrix defined in (2.2).

In this paper we present a new robust spectral method for identifying possible lumpings
of non-reversible Markov chains. Instead of using the spectrum of the transition matrix di-
rectly, we define a self-adjoint “invariance matrix” whose kernel relates to the eigenvectors
that define the meta stable states, or, more generally, the lumps of the Markov chain. Since the
invariance matrix is self-adjoint by construction, the usual assumption of reversibility can be
lifted. We demonstrate the method on both Markov chains withmeta stable states and more
general block-stochastic structures and compare the performance to other methods reported
in the literature, e.g., the methods presented in [8] and [7].

2. Lumping of Markov chains. Consider a Markov processxt+1 = xtP . TheN × N
transition matrixP is a row stochastic matrix, i.e.,

∑
j Pij = 1, ∀i. Consider a partition of the

states spaceΣ into K equivalence classes of statesLk such thatLk∩Ll = ∅ and
⋃

k Lk = Σ;
see [16]. A necessary and sufficient condition for a partition to be alumping is that [10]

(2.1)
∑

j∈Ll

Pij is constant for alli in an aggregate,i ∈ Lk.

If a Markov chain allows for a non-trivial lumping we call it lumpable. A simple example of
a lumpable transition matrix is

(2.2) P =
1

4




3 0 1
1 2 1
0 2 2


 ,

which, aside from the trivial lumping defined by all states aggregated into one macro-state,
allows the non-trivial lumping{{1, 2}, 3}, i.e., state1 and2 are lumped into one macro-state.

The condition in (2.1) also immediately defines the transition matrix with dimensions
K × K for the aggregated dynamics

(2.3) P̃kl =
∑

j∈Ll

Pij i ∈ Lk

since all statesi ∈ Lk give the same result:

P̃kl =
1

4

[
3 1
2 2

]
.

In practice, Equation (2.1) is usually not fulfilled exactly. For example, if a transition
matrix can be written as

P = (1 − ǫ)A + ǫB,
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whereA is a transition matrix that fulfills the lumpability condition (2.1) and B is some
arbitrary transition matrix. Then, ifǫ is small, we say thatP is approximately lumpable. Note
that the aggregated transition probabilities in (2.1) are in this case approximately constant
with deviations ofO(ǫ). The reduced dynamics must in this case be approximated, e.g.,
using a weighted average for the transitions between the aggregated states

(2.4) P̃kl =
1∑

j∈Ll
vj

∑

i∈Lk

∑

j∈Ll

vjPij ,

wherevj is the stationary distribution. Using the weighted averageis natural since it gives
the same reduced transition matrix as we find if we estimate the aggregated transition proba-
bilities directly from a stationary time series.

A partition can be represented by a matrixΠ defined asΠik = 1 if i ∈ Lk andΠik = 0
otherwise. Equation (2.1) can be reformulated as

(2.5) PΠ = ΠP̃ ,

which, if written out explicitly in terms of the elements, implies that the column space of
Π spans a right-invariant subspace ofP . Assuming thatP is diagonalizable, the invariant
subspace is spanned by a set of right eigenvectors ofP , and due to the0 or 1 structure ofΠ
the elements in these eigenvectors must be constant over theaggregates. To be more precise,
a lumping withK aggregates exists if and only if there are exactlyK right eigenvectors ofP
with elements that are constant over the aggregates; see [14, 12] for details. As an example,
the transition matrix defined in (2.2) allows for the lumping{{1, 2}, 3} as indicated by the
two first elements in the right eigenvectors(1, 1, 1)T and(−1,−1, 2)T being constant.

It should be noted that there exist other types of aggregation of states where the aim is to
preserve (for example) the structure of the equilibrium distribution. A prominent example of
this is the renormalization of lattice spin systems. However, in this paper we focus on lumping
that respect thedynamicsof the process. In this case the Markov property is the central con-
straint, i.e., the mutual information between the past and the future given the present should
be zero on both the micro (a prerequisite for the procedure) and macro level (the lumping
condition). This leads to the strong conditions on the aggregation seen in Equations (2.1) and
(2.5). For a more detailed discussion on how memory appears on thecoarse grained level if
the lumping criterion is not fulfilled, see [14].

The principle idea behind spectral methods for identifyinglumping or meta stable states,
as well as modularity in networks, is to search for (right) eigenvectors whose elements are
constant over the aggregates, i.e., eigenvectors with a level structure; see, e.g., [14] for de-
tails. If the transition matrix is symmetric under some scalar product, the eigenvectors are
orthogonal, and it is easy to show that the constant level sets must have different sign struc-
ture [1] (the sign structure of a vector is defined by mapping negative elements to−1 and
positive elements to+1). The sign structure is often used as a lumping criterion rather than
the constant levels since this is expected to be a more numerically stable [1, 3].

For the detection of metastable states or modularity, the eigenvectors of interest are those
corresponding to eigenvalues close to the Perron-Frobenius eigenvalue since these eigenval-
ues are related to the slow dynamics. In the case of general lumping, the eigenvectors involved
are not necessarily distinguished by their appearance in the spectrum. However, as we dis-
cuss in Section5, for large transition matrices the eigenvectors involved in lumping tend to
be separated from the rest of the spectrum by being located further away from the origin in
the complex plane than the rest of the spectrum, but not necessarily by being closer to1.

As a complement to the spectral methods, the commutation relation (2.5) can be used
directly to identify lumping of Markov chains. Start by making a random assignment of the
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N states toK aggregates, and construct the correspondingΠ matrix. Given theΠ matrix,
the reduced transition matrix̃P , defined in Equation (2.3), can be derived by simply ignoring
that the row elements are not constant within the aggregatesand by using the average defined
in (2.4). The left hand side in (2.5), PΠ, defines aK dimensional vector for each of the
N states. If the lumping is correct then all states in an aggregatek should have identicalK
dimensional vectors, and they should be equal to thek-th row of P̃ . If Π is not a lumping,
we can try to improve it by assigning statei to aggregatek wherek = argminl‖(PΠ)i − P̃l‖
and (PΠ)i is the i-th row of the matrixPΠ. The result is a new aggregation with a new
Π matrix. The process can be iterated until convergence. A similar method was introduced
by Lafon and Lee [11]. As pointed out in [5], it is similar in structure to theK-means
clustering algorithm. It should be noted that this direct clustering technique only works if
the aggregated dynamics has long relaxation time, i.e., there is a spectral gap supporting the
lumping; see [11] for details. The performance of the algorithm is shown in comparison with
the method introduced in this paper in Figures4.4and5.3.

3. A robust method for identifying lumping. We now present the main idea of this
paper. We would like to find invariant vectors containing invariant level sets. For moderately
sized (unperturbed) transition matrices or for time-reversible Markov chains, the eigenvectors
can be used to detect lumping. If the Markov chain is not reversible, a calculation of both
eigenvalues and eigenvectors is numerically unstable since, for example, the transition matrix
may contain non-trivial Jordan blocks [14]. This is the motivation for the new method. We
start by noting that if a normalized vectoru is approximately right invariant underP then
there must exist aλ such that

(3.1) ‖(P − λI)u‖2 ≪ 1,

whereI denotes the identity matrix. The general idea behind Equation (3.1) is similar to the
definition of pseudospectra of nonnormal matrices [17]. The square of the2-norm on the left
hand side in (3.1) is not sensitive to small changes in the elements ofP , whereas for non-
symmetricP the eigenvalue and eigenvector problem can be ill conditioned. Obviously, if
u is an eigenvector andλ the corresponding eigenvalue, then (3.1) is zero reflecting the fact
that the eigenvector is exactly invariant. The2-norm of (3.1) is given by

u†Q(λ)u,

whereu† denotes the conjugated transpose of the vectoru. The “invariance matrix”Q is
defined as

Q(λ) = P †P − λ∗P − λP † + |λ|2I

(note thatQ is typically not a stochastic matrix). Regardless of the properties ofP , Q(λ)
is by construction a self-adjoint matrix and its diagonalization is numerically stable. Ifλ is
an eigenvalue ofP , thenQ(λ) is positive semi-definite with a zero eigenvalue corresponding
to the eigenvector ofP with eigenvalueλ. If λ is not an eigenvalue, thenQ(λ) is positive
definite. For a givenλ, (3.1) is minimized byu being the eigenvector ofQ(λ) corresponding
to the smallest eigenvalue ofQ(λ), or, in the case of degeneracy, by a linear combination of
the eigenvectors of the smallest eigenvalue. It should be noted that the eigenvectors of the
matrixQ are equivalent to the singular vectors of the shifted transition matrixP − λI, which
can be found using a singular value decomposition.

4. Meta stable states.Detecting meta stable states is an especially simple, but also es-
pecially interesting case of general (approximate) lumping. The meta stable states are charac-
terized by their long relaxation time, and hence their dynamics is associated with eigenvalues
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close to1. The right eigenvectors involved in the aggregation have corresponding eigenval-
ues closer to1 than the rest of the spectrum. As a consequence, meta stable states can be
identified by the approximate constant level structure of the eigenvectors of

(4.1) Q(1) = P †P − P − P † + I

with eigenvalues close to0. As a consequence, the small eigenvalues of (4.1) include the
eigenvectors needed in the aggregation. It should be noted that the actual eigenvalues ofP
associated with the meta stable states need not be close to1 for the sub-dominant eigenvec-
tors ofQ(1) to reveal the meta stable states; see Figures4.2and4.3. SinceQ is self-adjoint,
the eigenvectors are orthogonal. The eigenvectors are approximately constant over the aggre-
gates, and orthogonality can then only be achieved if each aggregate has a unique sign struc-
ture in the eigenvectors. This observation was used by Aspvall and Gilbert [1] and Deuflhard
and coworkers [3, 4], but in these cases under the condition of symmetry of the adjacency
matrix or reversibility of the transition matrix, respectively. Using theQ matrix, there is no
need to make assumptions onP . It is straightforward to apply the same sign structure crite-
rion to the eigenvectors ofQ, but empirical tests have shown that in our case the following
simple approach is very robust (see Figure4.4):

1. Find the eigenvectors{ui}K
i=1 corresponding to the small eigenvalues ofQ(1) in

(4.1).
2. For each statej = 1, . . . , N form aK dimensional vectoru•j = (u1j , u2j , . . . , uKj)

of its corresponding elements in theK eigenvectors.
3. Use a standard clustering algorithm (e.g., K-mean) to cluster the states with respects

to theu•j vectors.
To test the method we generate two classes of matrices. The first class is of the form

(4.2) P = (1 − ǫ)B + ǫA,

whereB is a block diagonal transition matrix with3 − 5 blocks and transition probabilities
within the blocks chosen uniformly in the interval[0, 1] and then normalized. The matrix
A is a transition matrix with no block diagonal structure generated in the same way as the
blocks inB. The parameterǫ sets the level of perturbation ofP from being block diagonal.
Figures4.1–4.3show the corresponding spectrum and clustering of the elements in the domi-
nant eigenvectors ofP and the sub-dominant eigenvectors ofQ for an example of a transition
matrix of this type withǫ = 0.7.

It can be argued that matrices of the type in (4.2) are unlikely to appear in practical
applications. Instead of the smooth average modulation that decrease the transition probabil-
ities between blocks in (4.2), a more binary modulation often occurs in practice, i.e., many
transition probabilities are zero. In this situation, metastable states occur as a consequence
of a higher probability of having transitions within (rather than between) meta stable states.
Contrasting the construction in (4.2) this produces a sparse transition matrix. We construct
the second class of matrices according to

(4.3) P ∗
ij(ǫ, δ) = χij(ǫ, δ)Bij ,

whereB, as before, is a matrix with random entries chosen uniformlyin the interval[0, 1].
In the matrixχ(ǫ, δ), the entries are chosen as binary values so thatχij = 1 with probability
δ if i andj are in the same block,χij = 1 with probability ǫ if i andj arenot in the same
block, andχij = 0 otherwise. Thus,δ controls the overall probability of transitions within
the blocks, andǫ controls the transitions between the blocks withδ ≥ ǫ. The two extreme
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FIGURE 4.1. A weakly block dominant transition matrix, constructed by (4.2) with ǫ = 0.7, is shown. The
time scale separation is not very pronounced; see the spectrum in Figure4.3. To the left with random permutation
and to the right after sorting the matrix according to the aggregation revealed in the clusters of the eigenvectors of
theQ matrix shown in Figure4.2.

points areǫ = 0 which produce a completely block diagonal matrix, andǫ = δ which gives
a matrix without any block diagonal structure. The rows in the matrixP ∗ are normalized
to produce a stochastic matrix. The procedure described above can produce states with no
outgoing transitions, i.e., that are ill defined as transition matrices. If this happens we generate
a new matrix.

We tested the performance of theQ method and compared it to the following existing
techniques: results from the eigenvectors ofP , the right and left singular vectors from an SVD
as suggested in [7], the clustering method presented in [11], and the spectral method described
in [8]. As test cases we used the two classes of matrices describedabove and measured how
stable the meta stable states produced by the different methods were by measuring the average
waiting time between jumps between meta stable states. The result is shown in Figure4.4.
For each value ofǫ shown, the average switching time is measured for100 matrices of size
200 × 200 in the respective class. The timeτ is scaled so that the “correct partitioning” used
to generate the matrices has waiting time1. The results indicate that theQ method is more
robust against perturbations than previously reported methods. It is especially interesting to
note that for highǫ values, i.e., when the original block diagonal structure isalmost lost, the
Q method still produce aggregations that are more stable thanrandom partitions. None of the
other methods are capable of finding these very weak meta stable states.

5. Block stochastic matrix. As discussed earlier, matrices with dominant block diago-
nal structure are special cases of lumpable Markov processes. The more general structure of
lumpable transition matrices is shown in Figure5.1. A block-stochastic matrix is a matrix of
the form

(5.1) P =




P̃11a11 P̃12a12 · · · P̃1ma1m

...
...

. ..
...

P̃k1ak1 P̃k2ak2 · · · P̃mmamm


 ,

whereP̃ is them × m transition matrix of the reduced dynamics and each of theaij is a
transition matrix in itself. Naturally,aij andaji must have the same dimensions for a fixedi
and forj = 1, . . . ,m.
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FIGURE 4.2. The figure shows the clustering of the elements in the second and third smallest, respectively
largest, eigenvectors ofQ(1) (to the left) and ofP (to the right) for the matrix shown in Figure4.1. Note that the
clusters are more distinct in the eigenvectors ofQ(1) shown on the left.
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FIGURE 4.3. The spectrum of the transition matrixP in Figure 4.1 to the left and of the correspondingQ(1)
matrix on the right. The aggregation into meta stable statesis associated with the dominant eigenvalues ofP ,
i.e., the Perron-Frobenius eigenvalue and the two eigenvalues close to0.1, or alternatively with the three smallest
eigenvalues ofQ(1) (to the far right in the figure). Note that even though the dominant eigenvalues ofP are
not clustered close to1, the spectrum and eigenvectors ofQ(1) show the meta stable states more clearly than the
eigenvectors ofP ; see Figure4.2.

The spectra of large block stochastic matrices tend to separate out the eigenvalues associ-
ated with the lumping. The separation is, however, different from the one occurring in block
diagonally dominant transition matrices. Instead of clustering around the Perron-Frobenius
eigenvalue, the reducing eigenvalues of a block stochasticmatrix is separated by a large dis-
tance to the origin in the complex plane; see Figure5.2. The reason behind the separation
is also different from the block diagonal case, and this onlyappears as a statistic effect for
large random transition matrices, as the following argument shows. When lumping a Markov
chain, the spectrum of the reduced dynamics is always a subset of the original spectrum [2].
For a large transition matrix of sizeN × N with uncorrelated random transition probabili-
ties, the spectrum is typically concentrated to a disk with radius∼ 1/(2

√
N), except for the

Perron-Frobenius eigenvalue. For a block stochastic matrix, the eigenvalues of the lumped
Markov chainP̃ are typically concentrated to a disk with radius∼ 1/(2

√
K) whereK is

the number of states in the lumped chain. IfK ≪ N , then it should be expected that the
eigenvalues associated with the lumped process separate from the rest of the spectrum. An
example of this can be seen in Figure5.2. However, it should be noted that the separation is
only a typical behavior, it is not necessary for the Markov chain to be lumpable. (This seems
to be incorrectly stated in [5, 12]; see [14] for details.)

If the spectrum does not show any separated eigenvalues thatindicate the best choice of
λ in Q(λ), the implementation of theQ method is less straightforward when searching for
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FIGURE 4.4. The average result of identifying the meta stable states of adominant block diagonal transition
matrices defined in (4.2) is shown on the left, and for matrices defined in (4.3) with δ = 0.2 on the right. The
average waiting time for transitions between meta stable states (normalized against the result for the partitioning
used to generate the matrices) for100 test matrices of size200 × 200 for eachǫ value is used as a measure of the
quality of the results. The result for theQ method is displayed as•, the result for using eigenvectors ofP as¥, the
singular vectors from SVD [7] as ¨, results from the clustering method suggested in [11] (see Section2 for details)
asH, and the method suggested in [8] as N.
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FIGURE 5.1. A block stochastic transition matrixP , constructed as (5.1) with ǫ = 0.5, is shown to the left

andPP
T

to the right. The SVD method from [7] is based on the right matrix and it is clear that the two matrices
share the same block stochastic structure. However, the numerical tests show thatQ method based on the left matrix
is more stable to perturbations than the SVD method based on the eigenvectors of the right matrix. The spectrum of
P is shown in Figure5.2.

general lumping. This is of course also the case for other spectral methods if the eigenvalues
involved in the lumping do not separate from the rest of the spectrum. Perhaps the easiest way
is to choose a set of numbers{λi}K

i=1 randomly in the disk of radius1 in the complex plane,
use the eigenvectors ofQ(λi), i = 1, . . . ,K, corresponding to the smallest eigenvalue, cluster
the elements in the same way as for the meta stable states, andcheck how well the result
satisfies the lumpability criterion (2.1). The procedure must be repeated a few times to find
the configuration with the most satisfying result. It is possible to design more sophisticated
methods by reusing theλ’s that seem to produce good results. However, we use the simplest
possible approach choosing between2 and5 (guided by the separation in the spectrum)λ
values randomly in the complex plane and repeating10 times. The results are shown in
Figure5.3 in comparison with other methods. In these numerical test, we use the deviation
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FIGURE 5.2. The figure shows the spectrum of the block stochastic matrices shown in Figure5.1. The eigen-
values associated with the eigenvectors that are involved in the lumping process are separated from the rest of the
spectrum, but typically not close to the Perron-Frobenius eigenvalue. It should be noted that, though the separation
in the spectrum typically appears for large block stochastic matrices, this is a statistical effect and not necessary for
the transition matrix to be lumpable; see the main text for further discussion on this.
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FIGURE 5.3.The average result of inferring lumping of states of a block stochastic transition matrices defined
in (5.1). The deviation from fulfilling the lumpability condition,defined in (5.2), is normalized against the deviation
produced by the lumping used when producing the matrix, i.e., smaller values implies better results. For eachǫ

value100 independent realizations of200 × 200 matrices on the form (5.1) were used to calculate the average
performance. The result for theQ method is displayed as•, the result for using eigenvectors ofP as¨, the singular
vectors from SVD [7] as ¥, and results from the clustering method suggested in [11] (see Section2 for details) asN.
For moderateǫ, theQ method and the clustering performs equally superior to the other methods, while for largerǫ
all methods except the clustering technique show approximately equal performance.

from the lumpability condition (2.5)

(5.2) ∆ = ‖PΠ − ΠP̃‖2

as a measure of how well the different methods perform. For each value ofǫ, tests were
performed with100 matrices of the formP = (1 − ǫ)B + ǫA generated, whereB was
constructed according to (5.1) andA was a random transition matrix. The numerical tests
indicate that theQ method is more stable than usingP directly or the SVD method. The
clustering method performs almost as well as theQ method.

From a computational perspective, theQ method is, in the case of general lumping, sig-
nificantly slower than the other spectral methods. The reason is that several random choices
of λ’s must be tried, and, in addition,Q(λ) is a complex matrix ifλ is complex. Neither
of these complications occur when searching for meta stablestates since then we know be-
forehand thatλ = 1 is a good choice. In the implementation used to produce the results in
Figure5.3 theQ method is approximately15 times slower than usingP directly or the SVD
method. On the other hand the results are also better. The slowdown scales proportional to
the number ofλ-setups we need to try. A more sophisticated selection procedure for choosing
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the regions where the sub-dominant eigenvectors ofQ(λ) show a clear signal would probably
increase the efficiency of the algorithm.

6. Conclusions.We have introduced a new spectral method for identifying lumping in
large Markov chains with the identification of meta stable states as an important special case.
The key element of the method is to define a family of self-adjoint matrices from the transition
matrix. The eigenvectors of the self-adjoint matrices are,as opposed to those of the transition
matrix itself, stable to perturbations or noisy estimationof the transition probabilities. The ro-
bustness of the method is tested and compared to the results from previous methods, including
a direct clustering method introduced in [11] and the recently suggested SVD based method
introduced in [7]. TheQ method is shown to be more robust than previous techniques.

We mentioned in the introduction that the method presented here can be used to reduce
networks by aggregating nodes. The examples in this paper are, however, focused completely
on lumping of Markov chains. The relation between lumping ofMarkov chain and reduction
of complex networks was discussed recently in [5]. The authors define a diffusion process
on the network using the standard method of the graph Laplacian. It should be noted, how-
ever, that reduction of networks can be defined with respect to other types of dynamics than
diffusion. Straightforward jump processes are, for example, defined directly by multiplica-
tion of the adjacency matrix. Since the lumpability condition considered in this paper applies
to general linear processes, not only Markov processes withstochastic transition matrix, the
methods introduced can be used to reduce networks by aggregation with respect to different
criteria depending on which dynamic process we are considering on the network. For theQ
method to be different from using the eigenvectors of the transition matrix directly, the graph
must be directed.
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