
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 58, pp. 164–176, 2023.
Copyright © 2023, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol58s164

EXPLICIT DEFLATION IN
GOLUB-KAHAN-LANCZOS BIDIAGONALIZATION METHODS∗

JAMES BAGLAMA† AND VASILIJE PEROVIĆ†

Abstract. We discuss a simple, easily overlooked, explicit deflation procedure applied to Golub-Kahan-Lanczos
Bidiagonalization (GKLB)-based methods to compute the next set of the largest singular triplets of a matrix from
an already computed partial singular value decomposition. Our results here complement the vast literature on this
topic, provide additional insight, and highlight the simplicity and the effectiveness of this procedure. We demonstrate
how existing GKLB-based routines for the computation of the largest singular triplets can be easily adapted to take
advantage of explicit deflation, thus making it more appealing to a wider range of users. Numerical examples are
presented including an application of singular value thresholding.

Key words. Lanczos bidiagonalization, (partial/truncated) singular value decomposition, deflation, thresholding

AMS subject classifications. 65F15, 65F50, 15A18

1. Introduction. An s-partial singular value decomposition (s-PSVD) of A ∈ R`×n

with s� rank(A) is given by

(1.1) AVs = Us Σs , ATUs = Vs Σs,

where Us = [u1, u2, . . . , us] ∈ R`×s and Vs = [v1, v2, . . . , vs] ∈ Rn×s are matrices with
orthonormal columns and Σs = diag(σ1, . . . , σs) ∈ Rs×s with σ1 ≥ . . . ≥ σs > 0. For
j = 1, . . . , s, the singular triplets of A are denoted by {σj , uj , vj}, and we refer to the largest
singular triplets as those associated with the largest singular values. The prominent role that the
SVD occupies in scientific computing can be attributed to two facts: very diverse application
areas and the development of efficient numerical methods for its computation. Matrices
arising in applications such as principal component analysis (PCA) [18], genomics [1, 32],
data mining, data visualization, machine learning, pattern recognition [13], and directed
networks [4], are often very large, sparse, and only accessible via matrix-vector routines,
thus making it impractical for the computation of all singular triplets. Fortunately, with such
matrices, one is often interested in computing only a few of the largest singular triplets—this
has spurred a considerable amount of research (see, e.g., [6, 7, 19, 20, 21, 24, 25, 31, 33] and
the references therein). This paper also deals with the computation of the largest singular
triplets, though our starting point here is different when compared to the previously listed
references. More specifically, we are interested in the following problem:

“Using a GKLB-based method and given the k0 largest singular triplets of A,
determine the next set of k1 largest singular triplets. That is, expand the given

k0-PSVD of A into a k1-PSVD, where k1 = k0 + k1.”

One could solve this problem by simply (re)computing all k1 = k0 + k1 largest singular
triplets from scratch. We do not consider this approach here since it can be unnecessarily
expensive and it takes no account of the available k0-PSVD of A. Moreover, in applications
where the number of needed singular triplets is not known in advance, one often has to solve
this problem multiple times. For example, one approach for solving large-scale linear discrete
ill-posed problems, minx∈Rn ‖Ax− b‖ with A being very ill-conditioned, relies on solving
a smaller least-squares problem associated with an s-PSVD of A (1.1), where s is suitably

∗Received January 13, 2023. Accepted January 20, 2023. Published online on February 7, 2023. Recommended
by L. Reichel.

†Department of Mathematics and Applied Mathematical Sciences, University of Rhode Island, 02881, USA
({jbaglama, perovic@}uri.edu).

164

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol58s164

ETNA
Kent State University and

Johann Radon Institute (RICAM)

EXPLICIT DEFLATION IN GKLB 165

chosen in order to satisfy the discrepancy principle; see for example [27] and the references
therein. But the index s is typically not known in advance, in which case one may resort
to computing the largest singular triplets in increments until the desired s is determined.
Another example where the number of desired singular triplets is not known in advance is
the problem of singular value thresholding, which aims to determine all singular triplets of
a matrix A with singular values exceeding a certain threshold—this in fact can be achieved
by solving our proposed problem time after time until a singular value that falls below the
threshold is identified. There are numerous applications where singular value thresholding
arises, e.g., matrix completion problems [11], the identification of highly-correlated pairs of
vectors in various machine learning algorithms [5], and the analysis of directed networks [4],
and consequently, finding an efficient method for solving it will have an immediate impact.

One approach to determining the next set of the k1 largest singular triplets of A, given that
the k0 largest singular triplets are already known, is to transform the singular value problem
into an equivalent symmetric eigenvalue problem associated with the matricesATA,AAT , and
C =

[
0 A

AT 0

]
[15]. For example, the additional k1 largest singular triplets can be computed by

solving the symmetric eigenvalue problem applied to (I−Vk0
V T
k0

)ATA orATA−Vk0
Σ2

k0
V T
k0

,
[15, 23, 24, 28], or, applied as a subspace restriction technique, by orthogonalizing generated
basis vectors against converged eigenvectors; see also [3, 28, 30]. In [22], the authors
developed a MATLAB wrapper routine svt1, which leverages MATLAB’s eigs function
and repeatedly applies an explicit deflation technique on C to compute additional sets of
largest eigenpairs of C, and hence largest singular triplets of A, until a singular value below a
user-specified threshold is found. It is the purpose of this note to apply a deflation process
directly toA without the need to transform the problem to the equivalent symmetric eigenvalue
problem. That is, in this paper, we use an explicit deflation of subspace restriction applied
to methods based on the Golub-Kahan-Lanczos Bidiagonalization (GKLB) procedure [14]
and thus eliminating the need to consider the equivalent symmetric eigenproblem as in [22].
Furthermore, the explicit deflation in many cases can be applied in the GKLB process on one-
side only, thus reducing the overall computational cost with an often modest, manageable error
growth. There are numerous GKLB-based methods, one of the most popular being the efficient
thick-restarted GKLB algorithm often referred to as IRLBA [7]. The ubiquitousness of the
IRLBA method for large matrices/data sets [32] is most evident by the existence of its robust
implementations in numerous programming languages, e.g., in R code irlba [21], in Python
code irlbapy, in MATLAB syntax code irlba, and in C++ code Cppirlba.2 Moreover,
starting in 2016, the MATLAB internal function svds [31] references the IRLBA method [7].
With the exception of the R code irlba, none of the other listed software packages have the
option to input singular vectors to deflate computed singular triplets. However, at this time, the
current version of the R code irlba does not take advantage of the analysis provided here.

The process of explicit deflation with subspace restriction for the GKLB process, although
quite natural, does not appear to be well-investigated in the literature. We do remark that
svdifp [24] and rd2svds [6] compute only one singular triplet at a time and apply an
internal explicit deflation techniques to compute additional singular triplets. These differ from
the focus of this paper. For discussions on techniques for internal deflation (locking/purging)
while computing the k1 singular triplets, see for example [6, 9, 19, 24].

In Section 2 we show how the next set of the k1 largest singular triplets can be computed
from an already existing k0-PSVD (1.1) via the d-GKLB Algorithm 1 and how “one-sided”

1Code available at: https://github.com/Hua-Zhou/svt. Retreived on November 30, 2022.
2R irlba: https://github.com/bwlewis/irlba, irlbapy: https://github.com/

bwlewis/irlbpy, MATLAB syntax irlba: http://www.netlib.org/numeralgo/na26.tgz,
Cppirlba: https://github.com/LTLA/CppIrlba

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://github.com/Hua-Zhou/svt
https://github.com/bwlewis/irlba
https://github.com/bwlewis/irlbpy
https://github.com/bwlewis/irlbpy
http://www.netlib.org/numeralgo/na26.tgz
https://github.com/LTLA/CppIrlba

ETNA
Kent State University and

Johann Radon Institute (RICAM)

166 J. BAGLAMA AND V. PEROVIĆ

explicit deflation can be used, and we provide a short analysis of the propagated error. Further-
more, like the approach in [22], the process can be implemented without modifying the existing
codes by only requiring a simple modification to the matrix-vector product routines leading
to the development of software wrapper routines like svt for threshold computations. We
illustrate this approach using MATLAB’s svds [31] and a modified version of irlba [2, 7]
given in Appendix A. Numerical examples illustrating the error analysis and thresholding are
presented in Section 3 along with concluding remarks in Section 4.

2. The deflated GKLB procedure. The simple explicit deflation process described
below is a subspace restriction technique applied to the GKLB basis vectors and translates
to only needing to modify the matrix-vector product routines without internal algorithmic
modifications. Even though it is not essential (see Remark 2.1), we assume that the initial
k0-PSVD of A is obtained from the non-deflated m-GKLB factorization (2.1)–(2.2) with
Uk0

= 0, Vk0
= 0, and that all subsequent k-PSVD’s of A are obtained from the deflated

m-GKLB factorization (2.1)–(2.2). We also make two common assumptions about the GKLB
process:

(a) On each restart cycle, the methods produce an m-GKLB factorization (2.1)–(2.2)
where orthogonality is maintained to the desired accuracy among the generated basis
vectors and also with the converged singular vectors [7, 10, 20].

(b) The d-GKLB Algorithm 1 does not breakdown, i.e., αi > 0 and βi > 0, so that
one can build an m-GKLB factorization (2.1)–(2.2); see [7] for details. We provide
further remarks on breakdowns in Remark 2.2.

Suppose a k0-PSVD of A from a GKLB-based method is given. Then the d-GKLB
Algorithm 1 produces

(I − Uk0
UT
k0

)APm =QmBm ⇐⇒ APm =QmBm + Uk0
UT
k0
APm,(2.1)

(I−Vk0
V T
k0

)ATQm =PmB
T
m+fk1e

T
m ⇐⇒ ATQm=PmB

T
m+fk1e

T
m+Vk0

V T
k0
ATQm,(2.2)

where Pm ∈ Rn×m, Qm ∈ R`×m, PT
mPm = QT

mQm = Im, PT
mfk1 = 0, V T

k0
Pm = 0,

V T
k0
fk1 = 0, UT

k0
Qm = 0, and Bm ∈ Rm×m is an upper bidiagonal matrix (cf. steps 5, 9, 11).

Algorithm 1 Deflated GKLB (d-GKLB).

1: Input: A; p1; Uk0 , Vk0 ;§ m.
2: Output: Pm, Qm, Bm, fk1 (see(2.1)–(2.2))

3: p1 := (I − Vk0V
T
k0
)p1; P1 := p1/‖p1‖;

4: q1 := (I − Uk0U
T
k0
)Ap1;

5: α1 := ‖q1‖; q1 := q1/α1; Q1 := q1;

6: for j = 1 . . .m do
7: fk1

:= (I − Vk0V
T
k0
)AT qj − αjpj ;

§§

8: if j < m then

9: βj := ‖fk1
‖; pj+1 := fk1

/βj ;
10: qj+1 :=(I − Uk0U

T
k0
)Apj+1 − βjqj ;

11: αj+1:=‖qj+1‖; qj+1:=qj+1/αj+1;

12: Pj+1 :=[Pj , pj+1];

13: Qj+1 :=[Qj , qj+1];
14: end if
15: end for
§If k0 = 0, then Uk0

:= 0 and Vk0
:= 0.

§§Can be replaced by fk1
:=AT qj−αjpj ; (see (2.9)).

Once an m-GKLB factorization is available, a variety of projected approximations can be
used to estimate the singular triplets of A, e.g., Ritz methods [6, 7, 19, 20, 21, 31], harmonic
Ritz methods [7], (iterative) refined Ritz and refined harmonic Ritz methods [6, 17, 19]. In
this paper, in order to keep our analysis short, we focus on the Ritz method as one of the most
commonly used approximation for the largest singular triplets.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

EXPLICIT DEFLATION IN GKLB 167

If
{
σ

(Bm)
i , u

(Bm)
i , v

(Bm)
i

}
is the largest computed singular triplet of Bm, then the approxi-

mate largest singular triplet of A,
{
σ̃

(A)
i , ũ

(A)
i , ṽ

(A)
i

}
, is given by

σ̃
(A)
i := σ

(Bm)
i , ũ

(A)
i := Qmu

(Bm)
i , and ṽ

(A)
i := Pmv

(Bm)
i .

We use the matrices

Σ(Bm)

k1
:= diag(σ

(Bm)
1 , . . . , σ

(Bm)

k1
), U (Bm)

k1
:= [u

(Bm)
1 , . . . , u

(Bm)

k1
], and

V (Bm)

k1
:= [v

(Bm)
1 , . . . , v

(Bm)

k1
]

to denote the k1-PSVD of the projected problem while their counterparts without the super-
script (Bm) give us the next largest k1 singular triplets of A, i.e.,

(2.3) Σk1
= Σ(Bm)

k1
, Uk1 := QmU

(Bm)

k1
, Vk1 := PmV

(Bm)

k1
.

REMARK 2.1. It is important to highlight that our subsequent developments are reliant
on starting with and having the GKLB-like structure outlined in this paper. If this is not the
case, e.g., if the initial k0-PSVD is not obtained via non-deflated GKLB or the computed
singular vectors do not have strong orthogonality, then a single, potentially expensive, pre-
(post-)processing step enables us to still apply results from here. More specifically, if given
V ∈ Rn×k and after securing V TV = I , one can then compute the SVD of AV , i.e.,

(AV)V̄ = Ū Σ̄ and (AV)T Ū = V̄ Σ̄,

where Ū ∈ R`×k, V̄ ∈ Rk×k, and Σ̄ ∈ Rk×k, and we set V := V V̄ , U := Ū , and
Σ := Σ̄. But this now resembles the structure of a GKLB-based k-PSVD approximation,
where AV = UΣ and ATU = V Σ + (I − V V T)ATU ; see [16, 26] for details on one-sided
SVD projections.

We start by taking a closer look into the relations (2.1)–(2.2). Starting at the initial
stage using the d-GKLB Algorithm 1 and assuming we are interested in computing the k0
largest singular triplets and that no singular triplets of A are known in advance, we obtain the
k0-PSVD of A, with k0 = 0 + k0, by post-multiplying (2.1) and (2.2) by V (Bm)

k0
and U (Bm)

k0
,

respectively, to obtain

(2.4) AVk0 = Uk0Σk0
+ Verr

k0
and ATUk0 = Vk0Σk0

+ U err
k0
,

where in exact arithmetic Verr
k0

= 0 and U err
k0

:= fk0e
T
mU

(Bm)

k0
(or as given in Remark 2.1). For

the purpose of staying consistent with our later notation, we let

Σk0 := Σk0
, Uk0 := Uk0 , Vk0 := Vk0 , Verrk0 := Verr

k0
, and U errk0 := U err

k0

so that (2.4) becomes

(2.5) AVk0
= Uk0

Σk0
+ Verrk0 and ATUk0

= Vk0
Σk0

+ U errk0 .

Next, for the rest of this paper, we assume that the ki-PSVD of A, where ki =
∑i

j=0 kj
with i > 0, is determined by starting with no knowledge of any singular triplets of A and by
computing the largest singular triplets kj at a time using the d-GKLB Algorithm 1. Analogous
to (2.5), we have the factorization

(2.6) AVki
= Uki

Σki
+ Verrki and ATUki

= Vki
Σki

+ U errki ,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

168 J. BAGLAMA AND V. PEROVIĆ

where, for j = 1, 2, . . . , i, we have

Σkj := diag
(
Σkj−1 , Σkj

)
, Ukj :=

[
Ukj−1 Ukj

]
, Vkj :=

[
Vkj−1 Vkj

]
,

Verr
kj

:= Ukj−1U
T
kj−1

AVkj
, U err

kj
:= fkj

eTmU
(Bm)

kj
,(2.7)

Verrkj :=
[
Verrkj−1 V

err

kj

]
, U errkj :=

[
U errkj−1 U

err

kj

]
.

Observe that the term Vkj−1
V T
kj−1

ATQmU
(Bm)

kj
is absent in U err

kj
(2.7), and we now argue

that in exact arithmetic it is zero. From (2.6) we have that V T
ki
AT = Σki

UT
ki

+ Verrki
T , which

together with (2.2), gives us

Vki
(V T

ki
AT)Qm = Vki

(Σki
UT
ki
Qm + Verrki

TQm)

(a)
= Vki(0 + Verrki

TQm)
(b)
= Vki

(0 + 0) = 0 ,
(2.8)

where (2.8(a)) is due to the orthogonality requirement of the qj’s with Uki
in the d-GKLB

Algorithm 1 (cf. steps 4,10). Analogously, Verrki
TQm = 0 in (2.8(b)) since

Verrki =
[
Verr
k0

. . . Verr
ki

]
and Verr

kj

TQm = V T
kj
ATUkj−1U

T
kj−1

Qm = 0,

for j = 0, 1, . . . , i. Thus,

(2.9)
[
(I − Uki

UT
ki

)A
]T
Qm =AT (I − Uki

UT
ki

)Qm =ATQm =
[
(I − Vki

V T
ki

)AT
]
Qm.

Note that in exact arithmetic, (2.9) is trivially satisfied since

[(I − Uki
UT
ki

)A]T = (I − Vki
V T
ki

)AT

and that the explicit deflation (I − Uki
UT
ki

)A has a simple effect on the singular triplets of A,
namely it moves the largest ki singular values of A to zero and leaves the rest unchanged.

Returning back to (2.9), we observe that given the ki-PSVD of A, the output of the
d-GKLB Algorithm 1 simply corresponds to the standard GKLB process operating on the
deflated matrix (I − Uki

UT
ki

)A. Moreover, the corresponding m-GKLB factorization (2.1)–
(2.2) becomes

APm = QmBm + UkiU
T
ki
APm ,(2.10)

ATQm = PmB
T
m + fki+1

eTm + Vki
V T
ki
ATQm = PmB

T
m + fki+1

eTm ,(2.11)

which suggests that it is unnecessary to orthogonalize pj+1 against Vki
. This means that

one-sided orthogonality with the vectors qj can be used to save computational costs, thus
making it an appealing feature and in general appropriate. Despite that in certain rare cases the
implicit orthogonality may fail and it also may be overcome (see Remark 2.2 and Example 3.1),
we continue our analysis with the one-sided deflation equations (2.10)–(2.11).

In the reminder of this section we consider two types of error estimates related to the
quality of the computed triplets of A: the error in computing a single set of the next ki+1

largest singular triplets given ki-PSVD, denoted by Aerr
itr , and the total error in computing all

ki+1 desired singular triplets k0, . . . , ki, ki+1 at a time, denoted by Aerr
tot . Note that for the

matrix Bm from (2.10)–(2.11) and for its ki+1 largest singular triplets, the following relations
hold:

BmV
(Bm)

ki+1
= U (Bm)

ki+1
Σ(Bm)

ki+1
and BT

mU
(Bm)

ki+1
= V (Bm)

ki+1
Σ(Bm)

ki+1
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

EXPLICIT DEFLATION IN GKLB 169

Moreover, these relations together with (2.3) and (2.10) imply that the ki+1 largest singular
triplets of A satisfy

AV err
itr := ‖AVki+1

− Uki+1
Σki+1

‖ = ‖Uki
UT
ki
AVki+1

‖

= ‖Uki(VkiΣki + U errki)TVki+1
‖ = ‖(U errki)TVki+1

‖ = ‖Verr
ki+1
‖,

(2.12)

where V T
ki
Vki+1

=0 in (2.12) since the newly computed vectors Vki+1
are orthogonal to Vki

. An
analogous analysis using (2.3) and (2.11) shows that

AT U err
itr := ‖ATUki+1

− Vki+1
Σki+1

‖ = ‖fki+1
eTmU

(Bm)

ki+1
‖ = ‖U err

ki+1
‖ ,(2.13)

which, in conjunction with (2.12), gives the error Aerr
itr defined by

(2.14) Aerr
itr :=

√
(AV err

itr)2 + (AT U err
itr)2 .

On the other hand, the total errors analogous to (2.12)–(2.13) associated with incre-
mentally computing the complete set of the

∑i+1
j=0 kj largest singular triplets of A are given

by

AV err
tot := ‖AVki+1− Uki+1Σki+1‖ = ‖[Verr

k0
. . . Verr

ki+1
]‖ ≤

∑i+1
j=0 ‖Verrkj ‖ ,(2.15)

AT U err
tot := ‖ATUki+1

− Vki+1
Σki+1

‖ = ‖[U err
k0

. . . U err
ki+1

]‖ ≤
∑i+1

j=0 ‖U errkj ‖ .(2.16)

Finally, (2.15) together with (2.16), result in an upper bound for the total error, Aerr
tot , given by

Aerr
tot :=

√
(AV err

tot)2 + (AT U err
tot)2(2.17)

≤
√(∑i+1

j=0 ‖Verrkj ‖
)2

+
(∑i+1

j=0 ‖U errkj ‖
)2

=: Aerr
bnd.(2.18)

2.1. Basic implementations with svds and irlba. We close this section with a
simple illustration of how the ideas outlined in this paper can be used to compute the next
k1 largest singular triplets of A, given that a k0-PSVD of A is known. Figure 2.1 displays
four such approaches: the first three (M1–M3) use MATLAB’s svds as a GKLB-based SVD
solver while the last method (M4) leverages irlba_def, an updated implementation of the
thick-restarted IRLBA with deflation (see Appendix A). The method M1 employs two-sided
deflation using U0 and V0 as in (2.1)–(2.2), while M2 also uses two-sided deflation but only
with a matrix U0 as in (2.9). Note that line 10 in Figure 2.1 provides an alternative to M2
without the call of an external matrix-vector product routine. M3 only performs one-sided
deflation using U0 as in (2.10)–(2.11), while M4 is the same as M3 except that svds is replaced
by irlba_def.

In line 4 of Figure 2.1, an initial k0-PSVD (k0 = 10) of A is computed via svds as a
way to initialize the process. The additional k1 = 5 largest singular triplets are computed
using the methods M1 through M4 (resp., lines 6, 9, 13, 16), which is then followed by updates
of Uk0

and Vk0
resulting in a k1-PSVD of A with k1 = k0 + k1 = 10 + 5 = 15 (resp., lines

7, 11, 14, 17). It is now obvious how this process can be repeated to compute the next set of
largest singular triplets and so on.

There are several points worth emphasizing in Figure 2.1. If the initial k0-PSVD of A is
known, then line 4 can be omitted; otherwise, any SVD solver can be used instead of svds
though some pre-processing might be needed (Remark 2.1). Further, the svds in Figure 2.1
(lines 6, 9, 13) can be replaced by another GKLB-based method such as irlba [7, 8]. Finally,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

170 J. BAGLAMA AND V. PEROVIĆ

FIG. 2.1. Multiple approaches to computing the next k1 largest singular triplets given k0-PSVD of A by using
svds and irlba_def (Appendix A).

lines 6, 9, and 13 also highlight a desirable and intrinsic feature of our proposed scheme—
using a GKLB-based routine for the computation of the next set of the largest singular triplets
requires no modification of the routine itself, and the explicit deflation can be handled by an
external function call (lines 19–26). This is true in any programming environment and thus
has a broad and immediate impact given a wide range of implementations of GKLB-based
methods across disciplines; see, e.g., [32, p. 3] and the references therein.

REMARK 2.2. As an alternative to using svds, our method M4 in Figure 2.1 utilizes a
short and easily understandable MATLAB code irlba_def (see Appendix A) that imple-
ments one-sided explicit deflation in a straightforward manner. irlba_def in Appendix A
can be viewed as a generalization of a simplistic implementation of irlba from [2], though a
more robust implementation of irlba with explicit deflation analogous to the implementa-
tion3 in [8] is currently under development. One advantage of irlba_def over svds is that
it can easily access and rather cheaply compute the values UT

ki
APm, which has a substantial

payoff (lines 18, 44 in Appendix A). For example, the access toUT
ki
APm enables irlba_def

to easily determine the error Aerr
itr (2.14) and the error bound Aerr

bnd (2.18) (lines 62, 64 in
Appendix A), whereas the same error would have to be computed exactly in case of svds.
Furthermore, in the restarting strategy, post-multiplying UT

ki
APm by [v

(Bm)
1 , . . . , v

(Bm)
j−1] allows

for a continued tracking of the error (see line 80 in Appendix A); for a through discussion on
how restarting is set up, see [2, 7].

Another advantage of using irlba_def over svds in Figure 2.1 (M3–M4) becomes
evident in case that a breakdown occurs in the d-GKLB Algorithm 1 (i.e., αj ≈ 0 or βj ≈ 0).
First note that this is a rare occurrence though it can happen in practice, for example, when there
are numerically repeating singular values (see Example 3.1). Both svds and irlba_def
handle this problem similarly, i.e., in order to continue to build a basis, a random vector is
introduced, either αj or βj is set to zero, and then the GKLB procedure is continued. But, in
order to secure one-sided explicit deflation, irlba_def takes an additional step and first

3Code available at http://www.netlib.org/numeralgo/na26.tgz.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://www.netlib.org/numeralgo/na26.tgz

ETNA
Kent State University and

Johann Radon Institute (RICAM)

EXPLICIT DEFLATION IN GKLB 171

orthogonalizes the random vector against the converged singular vectors before continuing the
GKLB procedure (lines 23, 36, 49, 87–90 in Appendix A). This in turn prevents a breakdown
encountered by svds in M3 when the computed set of the kj singular vectors is not orthogonal
to the previous kj−1 singular vectors (this is denoted by “–” in Table 3.2 in Example 3.1). For
the sake of completeness, it is worth noting here that the methods M1 and M2 in Figure 2.1 do
not suffer the same fate when using svds due to the fact that the two-sided explicit deflation is
not impacted since the d-GKLB Algorithm 1 is applied explicitly to the deflated matrix where
the deflated singular values are moved to zero. Finally, we note that when using irlba_def
and a random vector is introduced (lines 23, 36, 49 in Appendix A), our recommendation is to
compute Aerr

itr exactly just as in case with svds. In our simple implementation we just used√
eps ≈ 10−8 as an approximate zero to determine when a random vector is to be introduced

(lines 22, 35, 48 in Appendix A). This introduces a new error that is not included by our
previous error analysis, and therefore we simply compute Aerr

itr exactly (see lines 70–72 in
Appendix A). We note here that there are other, possibly more appropriate, alternatives that
include, for example, the norm and/or the size of the matrix; see [7, 8, 9, 19, 20, 28] and the
references within for more details—this investigation goes beyond the scope of the paper and
contrary to our intended objective of keeping implementation simplistic.

3. Numerical examples. All computations were carried out using MATLAB version
R2022b on an iMac with a 3.7Ghz Intel Core i5 processor and 32GB (2667 MHz) of memory
using the operating system macOS Monterey. Machine epsilon is ε = 2.2 · 10−16. The nu-
merical experiments were performed on matrices from the SuiteSparse Matrix Collection [12]
with varied sizes, norms, and condition numbers (see Table 3.1). The matrices mhd4800b,
bibd 20 10, and stormG2 1000 were used in [22], while mhd4800b is also used in the demo
routine for svt.

TABLE 3.1
Test matrices used for the examples from the SuiteSparse Matrix Collection [12].

Matrix/Properties size nonzeros σ1 (Largest) Cond #

illc1033 1,033×320 4,732 ≈ 2.144 1.9 · 104

mhd4800b 4,800×4,800 27,520 ≈ 2.196 8.1 · 1013

JP 87,616×67,320 13,734,559 ≈ 4,223 not full rank
bibd 20 10 190×184,756 8,314,020 ≈1,403.2 1.2 · 101

stormG2 1000 528,185×1,377,306 3,459,881 ≈ 3,288 not full rank

For our example, we compared between MATLAB’s svds, irlba_def (Appendix A),
and the MATLAB software wrapper svt [22]. The methods M1 through M4 are as labeled in
Figure 2.1. Associated with the computation of a ki+1-PSVD of A, we report the error Aerr

tot

from (2.17) computed exactly for all methods and the error bound Aerr
bnd from (2.18) only for

M4 with the starting error of a k0-PSVD being computed exactly. For all methods we also
report

(3.1) UV err :=
√
‖UT

ki+1
Uki+1

− I‖2 + ‖V T
ki+1

Vki+1
− I‖2,

and for Example 3.2 we record the CPU times in seconds using MATLAB’s tic-toc
command. We used the same random vector for all restart runs with a fixed RandomStream
chosen to coincide with the demo for svt (svt did not permit an input starting vector). We
set the tolerance for convergence to

√
eps ≈ 10−8.

EXAMPLE 3.1. This example illustrates the error growth for methods M1 through M4 for
the matrices mhd4800b, JP, and bibd 20 10. All methods/runs start with the same k0-PSVD

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

172 J. BAGLAMA AND V. PEROVIĆ

(k0 = 10) and compute subsequent sets of triplets in increments of k1 = 5, k1 = 10, and
k1 = 20 until reaching ki+1 = 110. Table 3.2 reports the errors Aerr

tot and UV err after one
restart and when ki+1 = 110. The error growth is modest for well-conditioned matrices and
both the two-sided (M1, M2) and one-sided (M3, M4) methods behave as expected. Table 3.2
shows that the error bound Aerr

bnd (2.18) from irlba_def is quite good and does not tend
to dramatically overestimate the exact error Aerr

tot . It is worth noting that if UV err becomes
too large, then it can be refined through a process similar to Remark 2.1, e.g., for the matrix
mhd4800b with k1 = 5 and k20 = 110, a single refinement at the end of method M3 results in
the reduced error UV err = 5.5 · 10−15 with a new Aerr

tot = 2.7 · 10−10. This can be done at
any stage, though its frequent use is not recommended as it can be computationally expensive.

TABLE 3.2
Example 3.1: Displays of the errors Aerr

tot (2.17) and UV err (3.1) for the four methods from Figure 2.1. All
runs start with k0 = 10, and reported are the errors after one restart k1 and when ki+1 = 110. For the matrix
bibd 20 10, a random vector is introduced and a failure to converge for the one-sided method M3 is denoted by (−).

mhd4800b JP bibd 20 10

k0-PSVD Aerr
tot = 1.2·10−9 Aerr

tot = 4.7·10−9 Aerr
tot = 2.1·10−10

UV err = 3.3·10−15 UV err = 4.9·10−15 UV err = 1.7·10−14

Initial k1 k1 = 5 k1 = 10 k1 = 20 k1 = 5 k1 = 10 k1 = 20 k1 = 5 k1 = 10 k1 = 20

1 Restart k1 = 15 k1 = 20 k1 = 30 k1 = 15 k1 = 20 k1 = 30 k1 = 15 k1 = 20 k1 = 30

M
1 Aerr

tot 1.4·10−10 1.4·10−10 1.5·10−10 2.0·10−5 2.0·10−6 2.2·10−6 2.1·10−10 2.2·10−10 2.2·10−10

UV err 3.6·10−15 3.9·10−15 3.9·10−15 6.5·10−15 5.3·10−15 4.9·10−15 2.4·10−14 5.2·10−14 5.4·10−14

M
2 Aerr

tot 1.4·10−10 1.4·10−10 1.5·10−10 2.0·10−5 2.0·10−6 2.2·10−6 2.1·10−10 2.2·10−10 2.2·10−10

UV err 8.9·10−15 7.0·10−15 7.2·10−15 7.8·10−15 5.6·10−15 5.0·10−15 3.0·10−14 5.9·10−14 6.3·10−14

M
3 Aerr

tot 1.4·10−10 1.4·10−10 1.5·10−10 2.0·10−5 2.0·10−6 2.2·10−6 − − −
UV err 7.1·10−15 7.5·10−15 7.8·10−15 5.8·10−15 5.7·10−15 5.1·10−15 − − −

M
4

Aerr
tot 1.6·10−10 1.4·10−10 1.5·10−10 1.8·10−6 6.5·10−8 9.2·10−7 2.1·10−10 2.1·10−10 2.1·10−10

UV err 6.6·10−15 7.2·10−15 7.0·10−15 7.2·10−15 7.3·10−15 5.3·10−15 2.1·10−14 1.2·10−14 2.2·10−14

Aerr
bnd 3.1·10−10 1.4·10−10 1.5·10−10 1.8·10−6 7.0·10−8 9.3·10−7 2.2·10−10 2.3·10−10 2.3·10−10

n Restart k20 = 110 k10 = 110 k5 = 110 k20 = 110 k10 = 110 k5 = 110 k20 = 110 k10 = 110 k5 = 110

M
1 Aerr

tot 5.5·10−10 1.0·10−9 2.0·10−10 4.1·10−5 2.6·10−5 2.2·10−6 5.4·10−9 6.3·10−9 3.3·10−9

UV err 2.2·10−10 7.2·10−15 5.7·10−15 1.7·10−14 9.0·10−15 7.5·10−15 4.6·10−11 4.9·10−11 2.7·10−11

M
2 Aerr

tot 6.6·10−10 1.3·10−9 2.0·10−10 4.1·10−5 2.6·10−5 2.8·10−6 1.9·10−7 1.4·10−8 2.9·10−9

UV err 2.2·10−9 4.3·10−13 1.2·10−14 2.7·10−14 9.3·10−15 8.2·10−15 9.0·10−10 3.2·10−11 1.1·10−11

M
3 Aerr

tot 3.8·10−10 4.0·10−10 2.0·10−10 4.1·10−5 2.6·10−5 2.8·10−6 − − −
UV err 1.1·10−9 1.4·10−14 1.2·10−14 2.4·10−14 1.1·10−14 7.9·10−15 − − −

M
4

Aerr
tot 7.6·10−10 2.0·10−10 2.0·10−10 3.8·10−5 1.5·10−5 1.1·10−6 2.2·10−10 2.2·10−10 2.2·10−10

UV err 1.8·10−14 1.5·10−14 1.1·10−14 1.8·10−14 9.5·10−15 1.3·10−14 4.5·10−14 3.9·10−14 1.1·10−13

Aerr
bnd 4.1·10−9 5.9·10−10 3.4·10−10 3.2·10−4 2.7·10−5 1.5·10−6 7.2·10−10 3.6·10−10 3.1·10−10

Table 3.2 also shows that for the matrix bibd 20 10, the one-sided M3 method fails to
converge—it appears that the singular value distribution of bibd 20 10 (one largest singular
value 1403.2, the next 19 largest singular values clustered around 467.7, and the final 170
singular values clustered around 113.4) caused the svds to introduce random vector(s) in
order to continue to build the subspace. This is not detected by the FLAG output for svds
but can be determined by analyzing UV err, as the orthogonality with the converged singular
vectors is lost; the one-sided method M4 remedies this by using irlba_def (lines 36, 49 in
Appendix A). Thus, we recommend UV err to be checked if one-sided deflation is used with
svds.

EXAMPLE 3.2. In this example, we show how the problem of computing the largest
singular triplets above a predetermined threshold (for applications, see for example [4, 5, 11])
can be solved using our proposed methods M1–M4, and we compare our results with an external

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

EXPLICIT DEFLATION IN GKLB 173

method svt [22]. For M1–M4 we implemented a simplistic algorithm based on Figure 2.1,
while the svt implementation came from the authors’ GitHub account.4 Both svt and
M1–M4 approach the problem of thresholding as sequentially computing a predetermined
number, denoted here by ′incre′, of the largest singular triplets until a singular value that falls
below the threshold is identified. For a fair comparison, all methods used the default settings
for deflation from svt, i.e., an initial k0-PSVD with k0 = 6 was computed, and then at each
restart the number of the newly computed singular triplets were doubled (′incre′ = 2 · ′incre′,
where initially, ′incre′ is set to 5) until a desired threshold was reached.

From Table 3.3, we see that the error Aerr
tot (respectively, UV err) corresponding to all

four methods M1–M4 is no worse (respectively, several orders of magnitude lower) than the
error produced by svt. Moreover, the CPU time for M1–M4 is roughly half of the time used
by svt. This suggests that our proposed methods, despite our simplistic implementations,
are at least very competitive when it comes to thresholding. We do note, however, that the
comparison between M1–M4 and svt is not as straightforward, and in fact leads to many open
questions, e.g., different choices of ′incre′ (or different threshold) can cause the algorithm to
succeed or fail thus placing similar limitations on our methods as svt. More concretely, svt
and M1 both failed to converge for illc1033 with a threshold set to 0.2, i.e., neither methods
captured all 222 singular values, where svt and M1 only computed 79 and 21 out of 222,
respectively. However, changing ′incre′ to 6, enabled M1 to compute all 222 singular triplets
above 0.2, but svt still failed. Other reasonable choices for ′incre′ also led to svt not being
able to compute all 222 singular triplets for illc1033. The threshold 0.1 chosen for mhd4800b
was used in the demo for svt, and the threshold for stormG2 100 was set to capture the 50
largest singular triplets as reported in [22, Sec. 4.6] for svt. While it is beyond the scope of
this paper and an ongoing area of research, our preliminary results show that convergence of
the methods based on svds can be improved by utilizing more sophisticated techniques, e.g.,
using ′FailureTreatment′,′ keep′, where the matrices V and U are updated with only the
converged singular vectors and then svds is restarted with an appropriate linear combination
of the approximate unconverged vectors [29].

TABLE 3.3
Example 3.2: Displays of the error Aerr

tot (2.17), the error bound Aerr
bnd (2.18) for M4, UV err (3.1), and the

CPU times in seconds for the threshold routine based on the four methods from Figure 2.1 and svt [22]. Failure to
capture all singular values above the given threshold is denoted by (−).

mhd4800b stormG2 100 illc1033
Threshold 0.1 (k1 = 48) 632.4603 (k1 = 50) 0.2 (k1 = 222)

Aerr
tot UV err CPU Aerr

tot UV err CPU Aerr
tot UV err CPU

Aerr
bnd time Aerr

bnd time Aerr
bnd time

M1 9.9·10−10 4.1·10−12 0.30 s 3.0·10−5 1.7·10−14 5.4·101 s − − −
M2 9.0·10−10 3.8·10−12 0.20 s 2.4·10−5 8.7·10−9 4.6·101 s 4.2·10−8 1.3·10−12 2.7 s

M3 4.8·10−11 1.7·10−13 0.18 s 2.4·10−5 8.7·10−9 4.2·101 s 4.2·10−8 1.3·10−12 2.0 s

M4
8.2·10−12

2.2·10−14 0.32 s 6.8·10−6
1.8·10−14 1.1·102 s 2.8·10−8

2.4·10−13 0.81 s
1.1·10−11 1.0·10−5 5.3·10−8

svt 1.5·10−9 2.7·10−9 0.52 s 3.0·10−5 1.2·10−8 2.9·102 s − − −

4. Conclusion. In this short note we described and briefly analyzed a powerful method
for enlarging an already computed PSVD. The simplicity of our proposed approach, the ease
in which it can be implemented, the reasonable error growth, and its direct connection to
commonly used SVD solvers makes this work particularly attractive to a broader audience.

4Code available at: https://github.com/Hua-Zhou/svt. Retrived on November 30, 2022.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://github.com/Hua-Zhou/svt

ETNA
Kent State University and

Johann Radon Institute (RICAM)

174 J. BAGLAMA AND V. PEROVIĆ

As part of the ongoing work, the authors are currently developing a public domain threshold
software and an updated explicit deflation irlba public domain code.

Appendix A. Simplistic implementation of thick-restarted IRLBA with deflation.

1 function[U,S,V,flag,AVerr_itr,ATUerr_itr,Aerr_itr] = irlba_def(A,P,U,V,k)
2 %IRLBA_DEF - thick-restarted w/ Ritz vectors and explicit one-sided deflation
3 % References: Primarily [2] with more robust theory/implementation in [7,8]
4 % This MATLAB code is for illustrated purposes only and is not optimized.
5 % Initialization
6 m = max(3*k,15); Smax = 0; J = 1; iter = 1; UTAP = 0; tol = sqrt(eps);
7 ranvec = 0; flag = 0; if ~isempty(U), UTAP = zeros(size(U,2),m); end
8 % d-GKLB Alg. 1 step 3 Comment out if input V'*P(:,J) = 0
9 if ~isempty(V), P(:,J) = P(:,J) - V*(V'*P(:,J)); end

10 P(:,J) = P(:,J)/norm(P(:,J));
11

12 % d-GKLB and thick-restarted (maximum iteration fixed at 1000 steps)
13 while iter <= 1000
14

15 % d-GKLB Alg. 1 steps 4 and 5
16 Q(:,J) = A*P(:,J);
17 if ~isempty(U) % deflation step - (2.12) and Remark 2.2
18 UTAP(:,J) = U'*Q(:,J); Q(:,J) = Q(:,J) - U*UTAP(:,J);
19 end
20 if J > 1, Q(:,J) = Q(:,J) - Q(:,1:J-1)*B(1:J-1,J); end % Thick-Restart (1)
21 Qnorm = norm(Q(:,J));
22 if Qnorm < sqrt(eps) % if needed rand vec, deflation, orthogonalize
23 Q(:,J) = genrand(Q(:,1:J-1),U); B(J,J) = 0; ranvec = 1; % Remark 2.2
24 else
25 B(J,J) = norm(Q(:,J)); Q(:,J) = Q(:,J)/B(J,J);
26 end
27

28 % d-GKLB Alg. 1 step 6
29 for i = J:m
30 f = A'*Q(:,i) - B(i,i)*P(:,i); % d-GKLB Alg. 1 step 7
31 f = f - P(:,1:i)*(P(:,1:i)'*f); % one-side reorth step
32 if i < m % d-GKLB Alg. 1 step 8
33 % d-GKLB Alg. 1 steps 9 and 12
34 fnorm = norm(f);
35 if fnorm < sqrt(eps) % if needed rand vec, deflation, orthogonalize
36 P(:,i+1) = genrand(P(:,1:i),V); B(i,i+1) = 0; ranvec = 1; % Remark 2.2
37 else
38 B(i,i+1) = fnorm; P(:,i+1) = f/B(i,i+1);
39 end
40

41 % d-GKLB Alg. 1 steps 10, 11, and 13
42 Q(:,i+1) = A*P(:,i+1);
43 if ~isempty(U) % deflation step - (2.12) and Remark 2.2
44 UTAP(:,i+1) = U'*Q(:,i+1); Q(:,i+1) = Q(:,i+1) - U*UTAP(:,i+1);
45 end
46 Q(:,i+1) = Q(:,i+1) - B(i,i+1)*Q(:,i);
47 Qnorm = norm(Q(:,i+1));
48 if Qnorm < sqrt(eps) % if needed rand vec, deflation, orthogonalize
49 Q(:,i+1) = genrand(Q(:,1:i),U); B(i+1,i+1) = 0; ranvec = 1; % Remark 2.2
50 else
51 B(i+1,i+1) = Qnorm; Q(:,i+1) = Q(:,i+1)/B(i+1,i+1);
52 end
53 end
54 end % end for
55

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

EXPLICIT DEFLATION IN GKLB 175

56 % Thick-Restarted (2)
57 [ub,sb,vb] = svd(B); Smax = max(Smax,sb(1,1)); fnorm = norm(f);
58 J = k+4; P(:,1:J-1) = P*vb(:,1:J-1); Q(:,1:J-1) = Q*ub(:,1:J-1);
59 sb = sb(1:J-1,1:J-1); rho = fnorm*ub(m,1:J-1);
60

61 % Error Computations
62 AVerr_itr = norm(UTAP*vb(:,1:k)); % (2.14)
63 ATUerr_itr = norm(rho(1:k)); % (2.15)
64 Aerr_itr = sqrt(AVerr_itr^2+ATUerr_itr^2); %(2.16)
65

66 % test convergence and exit
67 if Aerr_itr < Smax*tol || iter == 1000
68 V = P(:,1:k); U = Q(:,1:k); S = sb(1:k,1:k);
69 if ranvec % Remark 2.2 - random vector compute exact residuals
70 AVerr_itr = norm(A*V-U*S); % (2.14)
71 ATUerr_itr = norm(A'*U-V*S); % (2.15)
72 Aerr_itr = sqrt(AVerr_itr^2+ATUerr_itr^2); %(2.16)
73 end
74 if iter == 1000, flag = 1; end; return;
75 end
76

77 % Thick-Restarted (3)
78 B = [sb, rho']; P(:,J) = f/fnorm; iter = iter + 1;
79 if ~isempty(U) % update deflation based on thick-restarted strategy
80 UTAP(:,1:J-1) = UTAP*vb(:,1:J-1); % (2.12) and Remark 2.2
81 end
82

83 end % end while
84

85 % Simple function to generate random vector and orthogonalize against
86 % basis vectors and converged singular vectors.
87 function y = genrand(X,Z) % Remark 2.2
88 y = randn(size(X,1),1); if ~isempty(Z), y = y - Z*(Z'*y); end
89 y = y - X*(X'*y); y = y/norm(y);
90 end % end genrand
91

92 end % end irlba_def

REFERENCES

[1] O. ALTER, P. O. BROWN, AND D. BOTSTEIN, Singular value decomposition for genome-wide expression
data processing and modeling, Proc. Nat. Acad. Sci., 97 (2000), pp. 10101–10106.

[2] J. BAGLAMA, IRLBA: fast partial singular value decomposition method, in Handbook of Big Data,
P. Bühlmann, P. Drineas, M. Kane, and M. van der Laan, eds., Chapman & Hall/CRC Handb. Mod.
Stat. Methods, CRC Press, Boca Raton, 2016, pp. 125–136.

[3] J. BAGLAMA, D. CALVETTI, AND L. REICHEL, Iterative methods for the computation of a few eigenvalues of
a large symmetric matrix, BIT Numer. Math., 36 (1996), pp. 400–421.

[4] J. BAGLAMA, C. FENU, L. REICHEL, AND G. RODRIGUEZ, Analysis of directed networks via partial singular
value decomposition and Gauss quadrature, Linear Algebra Appl., 456 (2014), pp. 93–121.

[5] J. BAGLAMA, M. KANE, B. LEWIS, AND A. POLIAKOV, Efficient thresholded correlation using truncated
singular value decomposition, Preprint on arXiv, 2015. https://arxiv.org/abs/1512.07246

[6] J. BAGLAMA, V. PEROVIĆ, AND J. PICUCCI, Hybrid iterative refined restarted Lanczos bidiagonalization
methods, Numer. Algorithms, 93 (2023), pp. 1183–1212.

[7] J. BAGLAMA AND L. REICHEL, Augmented implicitly restarted Lanczos bidiagonalization methods, SIAM J.
Sci. Comput., 27 (2005), pp. 19–42.

[8] , Restarted block Lanczos bidiagonalization methods, Numer. Algorithms, 43 (2006), pp. 251–272.
[9] Z. BAI, J. DEMMEL, J. DONGARRA, A. RUHE, AND H. VAN DER VORST, Templates for the Solution of

Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.
[10] J. L. BARLOW, Reorthogonalization for the Golub-Kahan-Lanczos bidiagonal reduction, Numer. Math., 124

(2013), pp. 237–278.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://arxiv.org/abs/1512.07246

ETNA
Kent State University and

Johann Radon Institute (RICAM)

176 J. BAGLAMA AND V. PEROVIĆ

[11] J.-F. CAI, E. J. CANDÈS, AND Z. SHEN, A singular value thresholding algorithm for matrix completion,
SIAM J. Optim., 20 (2010), pp. 1956–1982.

[12] T. A. DAVIS AND Y. HU, The University of Florida sparse matrix collection, ACM Trans. Math. Software, 38
(2011), Art. 1, 25 pages.

[13] L. ELDÉN, Matrix Methods in Data Mining and Pattern Recognition, SIAM, Philadelphia, 2007.
[14] G. GOLUB AND W. KAHAN, Calculating the singular values and pseudo-inverse of a matrix, J. Soc. Indust.

Appl. Math. Ser. B Numer. Anal., 2 (1965), pp. 205–224.
[15] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 4th ed., Johns Hopkins University Press,

Baltimore, 2013.
[16] N. HALKO, P. G. MARTINSSON, AND J. A. TROPP, Finding structure with randomness: probabilistic

algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217–288.
[17] Z. JIA AND D. NIU, A refined harmonic Lanczos bidiagonalization method and an implicitly restarted

algorithm for computing the smallest singular triplets of large matrices, SIAM J. Sci. Comput., 32 (2010),
pp. 714–744.

[18] I. T. JOLLIFFE, Principal Component Analysis, 2nd. ed. Springer, New York, 2002.
[19] E. KOKIOPOULOU, C. BEKAS, AND E. GALLOPOULOS, Computing smallest singular triplets with implicitly

restarted Lanczos bidiagonalization, Appl. Numer. Math., 49 (2004), pp. 39–61.
[20] R. M. LARSEN, Lanczos bidiagonalization with partial reorthogonalization, Tech. Peport, DAIMI Report

Series 27, #537, Aarhus University, Aarhus, 1998.
[21] B. W. LEWIS, J. BAGLAMA, AND L. REICHEL, The irlba package, Software package, 2021.

https://cran.r-project.org/web/packages/irlba
[22] C. LI AND H. ZHOU, svt: Singular value thresholding in MATLAB, J. Statist. Softw., 81 (2017), pp. 1–12.
[23] R. LI, Y. XI, E. VECHARYNSKI, C. YANG, AND Y. SAAD, A thick-restart Lanczos algorithm with polynomial

filtering for Hermitian eigenvalue problems, SIAM J. Sci. Comput., 38 (2016), pp. A2512–A2534.
[24] Q. LIANG AND Q. YE, Computing singular values of large matrices with an inverse-free preconditioned

Krylov subspace method, Electron. Trans. Numer. Anal., 42 (2014), pp. 197–221.
http://etna.ricam.oeaw.ac.at/vol.42.2014/pp197-221.dir/pp197-221.pdf

[25] P.-G. MARTINSSON, V. ROKHLIN, AND M. TYGERT, A randomized algorithm for the decomposition of
matrices, Appl. Comput. Harmon. Anal., 30 (2011), pp. 47–68.

[26] Y. NAKATSUKASA, Accuracy of singular vectors obtained by projection-based SVD methods, BIT Numer.
Math., 57 (2017), pp. 1137–1152.

[27] E. ONUNWOR AND L. REICHEL, On the computation of a truncated SVD of a large linear discrete ill-posed
problem, Numer. Algorithms, 75 (2017), pp. 359–380.

[28] B. N. PARLETT, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, 1998.
[29] Y. SAAD, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Linear

Algebra Appl., 34 (1980), pp. 269–295.
[30] A. STATHOPOULOS, Locking issues for finding a large number of eigenvectors of Hermitian matrices, Tech.

Rep. WM-CS-2005-09, College of William and Mary, Williamsburg, 2005.
[31] THE MATHWORKS, MATLAB (R2022b) svds, Natick, Massachusetts.
[32] K. TSUYUZAKI, H. SATO, K. SATO, AND I. NIKAIDO, Benchmarking principal component analysis for

large-scale single-cell RNA-sequencing, Genome Biology, 21 (2020), 17 pages.
DOI: https://doi.org/10.1186/s13059-019-1900-3

[33] L. WU, E. ROMERO, AND A. STATHOPOULOS, PRIMME_SVDS: a high-performance preconditioned svd
solver for accurate large-scale computations, SIAM J. Sci. Comput., 39 (2017), pp. S248–S271.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://cran.r-project.org/web/packages/irlba
http://etna.ricam.oeaw.ac.at/vol.42.2014/pp197-221.dir/pp197-221.pdf
https://doi.org/10.1186/s13059-019-1900-3

