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Abstract. One- and two-level parallel asynchronous methods for the numerical solution of nonlinear systems
of equations, especially those arising from (nonlinear) partial differential equations, are studied. The proposed
methods are based on domain decomposition techniques. Local convergence theorems are presented in several
cases, with appropriate hypotheses. Computational results on a shared memory multiprocessor machine for various
problems exhibiting nonlinearities are reported, illustrating the potential of these asynchronous methods, especially
for heterogeneous clusters.
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1. Introduction. Asynchronous iterative methods are currently undergoing a resurgence
in popularity due to the dramatic increase of parallelism in modern computers. The good
performance of asynchronous methods is due to not needing to synchronize the computational
tasks, hence minimizing idle time, i.e., time for which some processors are inactive but can
be used. The effect of data exchange in the asynchronous method is then less pronounced;
see, e.g., [1, 3, 5, 22]. In these methods, the iterations (or updates) are carried out in parallel
by processors in an arbitrary order and without any synchronization. These asynchronous
iterative methods are especially attractive when the network of processors is heterogeneous,
or the communication costs are large, or when different processors have different loads, e.g.,
when each processor solves local problems with different physical properties or with different
types of nonlinearities.

In this paper, we study the parallel solution of nonlinear systems of equations. These
often arise from the finite element or finite difference discretization of nonlinear differential
equations such as nonlinear convection-diffusion problems. We present new one- and two-level
algorithms based on domain decomposition methods. The domain of the differential equation
is subdivided into several possibly overlapping subdomains, and the computational tasks are
assigned to different processors whereby the local components of the iterate vector can be
updated without any order nor synchronization.

Our point of departure is the restricted additive Schwarz (RAS) iterative method for linear
systems [11], which we review in Section 2. We then introduce a RAS method for nonlinear
problems and analyze its local convergence properties. We note that RAS has been used as
preconditioner for the linear systems arising in Newton’s methods for nonlinear problems;
see, e.g., [9, 10, 17, 29]. In these methods, the linear systems at each step are solved using a
Krylov subspace method preconditioned with RAS. Since we have in mind parallel computers
with high communication costs, the use of Krylov methods may not be suitable, since each
iteration usually entails orthogonalizations with the concomitant inner products, which in
turn entail communication among all processors. This is the reason why we concentrate
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on RAS as a solver, not as a preconditioner. We note that earlier work has been done on
using RAS as a preconditioner; cf. [12, 17]. We refer the reader also to the recent work [28]
for two-level RAS preconditioners using additive/multiplicative coupling of coarse spaces,
to [13] for substructured coarse correction, and to [24] for asynchronous multiplicative coarse
correction.

Our contribution includes the introduction of the asynchronous version of the nonlinear
RAS method in Section 4, where we also state convergence results and discuss its implemen-
tation. We further introduce a coarse grid correction in Section 5 and discuss convergence
results of the two-level method. Throughout the paper, we illustrate the performance of the
methods with numerical experiments.

2. Domain decomposition methods. Our goal is to study the parallel solution of dis-
cretized general nonlinear elliptic equations in R? (d > 2) of the form

d
2.1 Lu): = —Z aiw(x,u(x%Vu(x)) + ao(z, u(z), Vu(z)) = f(z), inQ,
i=1 "

with homogeneous Dirichlet boundary conditions, i.e., u = 0 on 2. Here €2 is a bounded
region in R¢ with Lipschitz continuous boundary. Let p = (po, p1, . - ., pa) € R4+ be such
that one can define the functions a; as a;(x,u(x), Vu(z)) = a;(x,p), fori = 0,...,d.
Existence and uniqueness of a solution to problem (2.1) can be stated under certain hypotheses
on the coefficients a;(x, p) as follows. Let ¢, C > 0 be such that for i = 0,...,d, a;(x,p)
satisfy

e a; € CH(Q x R+,

g—Z; g;; }§C,fori,k:O,...,d,j:1,...,d,and

d da;(x, d
® > ij—0 a(pjp)ﬁiﬁj > Yo &l for (&, ..., €a) € RTTL
Then, problem (2.1) is well posed in H*(£2), where H'(€) is the space of functions v € L?(Q)
such that Vo € L*(Q2), equipped with the norm [[v[131 ) == [[v[|72(q) + V072 (q)s see.
e.g., [31].
After discretization (e.g., with finite differences or finite elements), problem (2.1) yields a
large nonlinear system of equations of the form

)

. max{\a,;|,

2.2) F(u) = B(u) - f =0,

where B, F': V — V,V :=R"”, and n is the total number of unknowns. Here, we abuse the
notation and keep the same symbol for the continuous and discrete variables. Throughout this
article, we denote by u* € R"™ the vector that represents the solution of (2.2).

2.1. Restricted additive Schwarz (RAS) for linear systems. We introduce in the next
section the restricted additive Schwarz (RAS) method for nonlinear equations. We begin here
by reviewing RAS for the case that F'(u) is linear. Let us thus consider

F(u) = Au — b,

where A € R™ ™ and b € R™. We assume that F' has a simple zero u*, i.e., that A is
nonsingular, or in other words, A is of full rank, i.e., rank A = n. The RAS introduced in [11]
provides a means of constructing parallel iterative solvers based on domain decomposition
techniques. The general philosophy of RAS is that the local problems (i.e., in each subdomain)
are solved with overlap, but the variables communicated to the other local problems are those
corresponding to subdomains without overlap.


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

24 F. CHAOUQUI, E. CHOW, AND D. B. SZYLD

Let S = {1,...,n} be the set of indices of all variables, and let the sets S; C S,
1t =1,..., P, form a non-overlapping partitioning, i.e.,

Cr~

S; =5, SiﬂSjZ[b, i;«éj,e{l,...,P}.

i=1

These correspond to the variables of the subdomains without overlap. For the overlapping
subdomains, for any 4 > 0, we define S; C S; s C S, =1,..., P, thatis a covering of S.
We set V; 5 := R"9, withn; 5 = |S,'75| the cardinality of the set of variables corresponding to
the ith subdomain with overlap §. We define also the restriction mappings R; s: V — V; 5,
t =1,..., P. These restriction operators satisfy the identities

.
Ri,5Ri,6 = IVz‘,a )
T _
Ry 5Bis\m7 (vis) = LRI, (vis)-

Moreover, we have

P
> Rl Ris=1,
=1

which is known as the partition of unity condition.
We are ready to define the RAS iterative method. Given an initial vector u?, the iteration
is given by

P
(2.3) uF Tt = b + Y T RIA R 5(b— Aub),

i=1

where A; 5 := Ri75ARiT§ : Vis — Vs 1s the coefficient matrix for the local problem. Observe
that in (2.3) the local problem is solved with the overlap, but only the variables without the
overlap contribute to the next iterate. The iteration operator corresponding to (2.3) is thus
given by

P
(2.4) Tas=1-Y RlA;RisA.
=1

We present a convergence and comparison result for (linear) RAS from [23]. We need
some notation first. Let > (>) in R™ and R™*"™ denote the natural elementwise partial ordering,
ie,forz,y e R", o >y @ >y ifz; > y; (x; > y;),forj=1,...,n. Letw € R,
w > 0, and let || - ||, denote the weighted max-norm operator corresponding to the vector
norm ||z|, = maxj=1, ., |z;/w;|. A nonsingular matrix A is called an M-matrix if its
off-diagonal elements are nonpositive and the inverse is nonnegative, i.e., A~1 > 0.

THEOREM 2.1 ([23]). Let A be a nonsingular M-matrix. Let w > 0 such that Aw > 0.
Then, if § > &',

1Tasllw < | Tasllw < 1.

Theorem 2.1 shows that the (linear) RAS iterative method case converges linearly, and that
the larger the overlap, the faster the asymptotic convergence. Recall that the classical additive
Schwarz method may fail to converge as an iterative method. The main difference is that here
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the variables of the overlap are not included in the new iterate (and thus there is no “double
counting”™); see [18, 23].

For completeness, we remark that when RAS is used as a preconditioner for Krylov
subspace methods, it follows from (2.4) that the action of the RAS preconditioner M ~! on the
global matrix A is given by

P
M 'A= ZRIOA;;RMA.
=1

As mentioned in the introduction, in this paper we concentrate on asynchronous parallel
solvers, and therefore we do not consider Krylov subspace methods (or preconditioning), since
the orthogonalization processes lead to synchronization points.

2.2. Nonlinear RAS (NLRAS). We return to the case of nonlinear F' and now describe
the nonlinear iterative RAS (NLRAS) algorithm. While this algorithm is new, we base our
presentation on [16], where general Schwarz methods for nonlinear problems are discussed.
Define the restriction operators

FZ"(; Ve Vi,g
v = R; sF(v),
fori = 1,..., P. For any given u = u* € RY, define v; 5 as the solution of the local nonlinear
problem
(2.5) Fis(u+Rsvi5) =0, fori=1,...,P.

We can then define the NLRAS fixed point iteration as
P
(2.6) bt =k Z RIva’(;.
i=1

Note here again the philosophy of RAS: we solve the local (nonlinear) problem (2.5) with the
overlap, but only consider the non-overlapping variables as a contribution to the next iterate.

We provide now a result showing that (2.6) converges locally and has an asymptotic
convergence rate similar to that of the linear case. To this end, let T' define the nonlinear
mapping

P
2.7) T(u)=u+» Rlovis,
=1

where v; s is the solution of the local nonlinear problem (2.5), and recall that by u* we denote
the solution of (2.2). We shall prove that 7" is a contraction. Hence it admits a fixed point and
the iterative process (2.6) converges to u*; cf. [14].

THEOREM 2.2. Suppose that F'(u*) is a nonsingular M -matrix. Let w > 0 be such that
F'(u*)w > 0. Then, there exist 0 < { < 1, and U a neighborhood of u* so that

1T (u) — TW)||w < Cllu—v'||w forallu,u’ €U,

i.e., T has a fixed point u* and it is the solution of (2.2).
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Proof. By definition, we have

P P
T(u) = T(u') = (u + RZovi,(s) - (u +y RZové,a>
=1 =1

P
=u—u + ZRZO(UW — vgyé).

i=1

(2.8)

Let us define the multidimensional differential quotient of F' by
1
DF(v,v') = / F'(v+t( —v))dt, v, € R™
0

Let us denote the matrix J; 5 := DF(u + RZ(;UM, u' + thgvg’é). We have that v; 5 and v; 5
satisfy
(2.9) vis — V)5 = —(RisJisRi5) " RisJis(u—u).
Indeed, using (2.5), we have that v; s and vj s satisfy

0= Fis(ut Rlsvi5) = Fis(u' + R/ 50 5),

0= Ris(F(u+ R/svi5) — F(u' + R[50} 5)),

0=R;sDF(u+ RZ(;Ui,g, u + Rzévaé)(u —u + RZ(S(’U“; - vg,é)),

0=R;sJis(u—u + R;':(;(vm; — v£’5)),
from which we obtain

R¢,5Ji75(u — u') = *Ri,éji,éRI(s('Ui,& — Ug,(g).

Hence, substituting (2.9) in (2.8), we obtain

P
T(u)—T(W)=u—v' = R (RisJisR5) " RisJis(u—)
=1

(2.10) .
<I - Z RIO(Ri,éJi,5RZ5)_1Ri75Ji,5> (u— u’),
i=1

To complete the proof, we remark that by the definition of DF’,
(R; sDF(u, u’)RZ5)*1Ri75DF(u, u') — (RL(;F'(U*)RIZS)*lRi,(;F’(u*) asu,u’ — u*.
Moreover, formula (2.9) shows that v; 5, vg, s — 0, when u, v’ — «*. From this it follows that

P
1= Rl (RisJisR]s) 'RisJis = Tpruys  asu,u’ — u’,

i=1

where we used the notation in (2.4). This shows that for || T (,+) 5/lw < ¢ < 1, there exists a
neighborhood U of u* such that

P
1= Rl((RisJisR5) " RisJis

i=1

<(<l.

w



http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

ASYNCHRONOUS DOMAIN DECOMPOSITION METHODS FOR NONLINEAR PDES 27

It suffices then to take the norm || - ||, on both sides of (2.10) to obtain the stated result. a

Theorem 2.2 shows that the iterative procedure u**! = T'(u*) for u® € U converges
to u = T'(u) for some u. This implies that the NLRAS converges to the point u = u*, the
unique solution of (2.2). Moreover, the same result shows that the mapping 7" in (2.7) is
differentiable at u = u*, with T'(u*) = Tp/(y4+)s. This also demonstrates that NLRAS
with an overlap &’ > 4 has in general a faster local convergence rate since, by Theorem 2.1,
||TF’(u*),5' ||w < ||TF’(u*),5 Hw

We remark that the hypothesis that 7’(u*) is a nonsingular M -matrix may or may not be
satisfied for many practical problems. Although we can only prove convergence in this case,
numerical experiments indicate that the conclusion of the theorem is valid for a wider class of
problems; see, e.g., the numerical examples in Section 4.

Note that as domain decomposition methods for the linear case can be regarded as a way
to construct preconditioners for Krylov methods, nonlinear domain decomposition methods,
such as NLRAS, can be a way to construct nonlinear preconditioners for the Newton method
applied to (2.2), and for which the following equivalent problem

P
F(u) := va =0
i=1

is solved. However, we do not pursue this idea here, and we refer the interested reader to,
e.g., [9, 10, 17, 29].

3. General asynchronous iterations. Asynchronous iterations refer to a class of parallel
iterative procedures in which each processor executes its computations at the next iteration
without waiting for the others to finish theirs. In other words, there is no synchronization, and
the concept of iteration loses its meaning since different processors update elements of the
global approximation at different times (below named timestamps). As a consequence, some
processors use information which may have been updated in some processors more times than
in others.

Mathematical models of asynchronous iterations were developed in order to study their
convergence; see, e.g., [1, 3, 5, 22, 34, 36]. Sometimes these models are referred to as
mathematical descriptions of computational models of asynchronous iterations. We review
one of such models from [3], which is now classic.

LetU =U; x...xUp, T :U U, and T;(u) = (T'u);. The goal is to solve (2.2) by
means of the equivalent fixed point problem u = T'(u) in parallel, so that processor ¢ runs
iterations on the ith local problem, i.e., u** = T;(u). Let us call a timestamp the instant of
time at which at least one processor finishes its computation and updates its associated local
variables. Define by ¢;, the sequence of all these timestamps and by s;(k) the sequence of
integers that represent the timestamp index of the local variables coming from processor j and
that are available to processor ¢ at time instant when they start solving the local problem which
is completed at time ¢;. Let us also denote by I* a subset of {1, ..., P} that defines the list of
subdomains that are being updated at timestamp .

To solve u = T'(u), we generate asynchronously a sequence of vectors {u¥};>o, for
1 =1,... P, satisfying

7.,

3.1 ufﬂ :{ Ti(...,u] yee fOf’iGIk,

uk fori ¢ I*,

7

that is, either the +th portion of the solution is updated with the results of the computations in
the ith processor at the timestamp ¢, or it is not updated. We also make the following three
assumptions:
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() Vi,j €{l,...,P},Vk e N, st (k) <k,

(i) ¥i,j € {1,..., P}, limy_,o 55 (k) = 400, and
(i) Vi € {1,..., P}, |[{k > 0: i € I*}| = +oo.
The first assumption makes sure that no future updates are being used at the beginning of the
computation. The second ensures that eventually each processor is receiving new information.
The last one indicates that no processor stops being updated. Convergence results for (3.1)
were discussed and analyzed in several papers; see, e.g., [1, 22, 34] and references therein.

We list below three convergence results for general asynchronous iterations, which we
use in our analysis of the methods discussed in this paper.

THEOREM 3.1 ([22, Theorem 4.1] following [3]). Let T' be an n x n matrix, i.e.,
representing a linear map. Assume that the conditions (1)—(iii) hold. If the spectral radius
satisfies p(|T'|) < 1, where |T'| has components |t;;|, then the asynchronous iteration (3.1)
converges to the solution of the fixed point problem u = Tu.

For example, when 7T is the RAS operator (2.4) and A is a nonsingular M -matrix, we
know from Theorem 2.1 that there exists a vector w > 0 such that ||T'4 5|, < 1. This implies
that p(|Ta,5|) < 1, and we can use Theorem 3.1 to show that asynchronous RAS converges.

THEOREM 3.2 ([22, Theorem 4.4] following [19]). Assume that u*, the solution of (2.2),
i.e., the fixed point of T, lies in the interior of U and that T is Fréchet differentiable at
u*. Assume that the conditions (1)—(iii) hold and that p(|T"(u*)|) < 1. Then, there exists a
neighborhood U of u*, such that the asynchronous iteration (3.1) converges to u* for any
u® e U.

THEOREM 3.3 ([22, Theorem 3.3] following [19]). Let T% be a sequence of (nonlinear)
operators, T* : U — U, such that there exists a common fixed point u* € U for which
Tk(u*) = u* for all k. Moreover, assume that there exist 0 < ( < 1 and w € R™, w > 0,
such that

IT* () = u* [l < Cllu—u*lu,

for all k > 0. Assume that the conditions (1)—(iii) hold. Then, the asynchronous iteration

W = Tik(...,ujj yo..), forieIF,
! uéﬁ fori ¢ I*,

converges to u*, the unique fixed point of all the operators T*.

4. Asynchronous nonlinear RAS (ANLRAS). Asynchronous parallel methods for non-
linear equations have been studied before; see, e.g., [2, 6, 15, 20, 25, 32, 35, 37]. The
experimental results obtained in these papers showed that the asynchronous methods perform
better in terms of execution times than their synchronous counterparts; see, e.g., [15, Tables C5—
C7]. Here we present the asynchronous RAS method for nonlinear problems, provide local
convergence results, and compare its performance with that of the synchronous counterpart.
We emphasize that our approach is well suited to heterogeneous networks and in general to
parallel computers where synchronization and communication are at a premium.

The asynchronous NLRAS method consists of the standard asynchronous iteration (3.1),
where T is given by (2.5) and (2.7); see also Algorithm 1 below. We begin with a local
convergence theorem.

THEOREM 4.1. Let u* be the solution of (2.2). Suppose that F' exists in a neighborhood
of u* and that F'(u*) is a nonsingular M -matrix. Assume that the conditions (i)—(iii) hold.
Then, there exists a neighborhood U of u* such that the asynchronous NLRAS defined by (3.1)
with T; given by (2.5) and (2.7), converges to u* for any initial vector u® € U.
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Proof. The proof is essentially the same as the one of Theorem 2.2. However, here we

need the additional hypothesis that 7" is differentiable in a region containing u*. We recall that
the NLRAS iteration is given by

P
uFtt = T(u/€>7 T(u) =u+ Z RZOUZ'A’(;,
i=1

where F; s(u + R/ 5v; 5) = 0. To prove that the asynchronous iteration associated with the
operator T' converges, it suffices to prove that || 7" (u*)|| < 1 for some operator norm. To this
end, we compute

Also, differentiating F; 5, we obtain

Ov;
Filv(;(U‘i‘R,Ié’quﬁé) (I+RT U,,(S) = 0,

ZLr
hence,
/ T T 3Ui,6 i / T
is(u+ R 5vi5)R; 5 o —F; s(u+ R, 5vi5),
(9’[)7; -1
@.1) af — — (RisF'(u+ Rl 5vi5)Ris) Flg(u+ R]svi).
Thus,
P
“4.2) T/(u) =71 — Z R;,ré (RiﬁF’(U, + Ri75’l}i75)Ri75)_1 {,5(u + R;,révm;).
i=1

Evaluating (4.2) at u = u*, we obtain

P
T'(uw*) =1-> R]s(RisF'(u)R;s)

i=1

1 «
Go(u") = Tpiue).5

where the latter is exactly the same as in (2.4) but applied to F(u*). Hence, it holds that
1T (uw*)|lw = I TF (u*y,sllw < 1 forw > 0 such that F'(u*)w > 0. Using Theorem 3.2
with the observation that p(|Tpr(y+)5]) < [|TFs(u),s/lws We conclude that there exists a
neighborhood of U of u* such that the asynchronous NLRAS is convergent. ]

As was the case for the synchronous method, the convergence proof relies on the hypothe-
sis that F”(u*) is a nonsingular M -matrix. Many of the problems in practice do not satisfy
this hypothesis, but as we illustrate with the numerical experiments below, the conclusion of
the theorem still holds in practice.

We describe next the asynchronous stopping criterion we used in our implementation of
asynchronous NLRAS on a shared memory machine. For the sake of simplicity, we assume
that each computational thread is assigned to a unique subdomain. The goal is to reduce the
relative residual norm below a prescribed tolerance € > 0, namely

(4.3) IF (@) ll2/ | F ()2 < e.
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We observe that the L?-norm of the global residual can be computed as a sum of parts

,
IF@IE = 3 IFo(w]

Hence, in order to verify that the global stopping criterion was achieved, it suffices to
verify that the local solution on each subdomain satisfies the local convergence criteria
|1 E5.0(w)|l2/]|F(u®)|l2 < €/v/P. This condition ensures that the contribution of the local
residual is such that (4.3) holds. In our implementation, a global boolean variable is declared
and is then set to true when all the subdomains satisfy the local convergence criteria. We
comment that in order to update the local iteration vectors and residuals, we only need to
communicate with the neighboring subdomains. This allows us to test for the local stopping
criteria and hence avoid global communication between the subdomains/processors.
We describe the implementation of the asynchronous NLRAS in Algorithm 1.

Algorithm 1 Asynchronous nonlinear RAS (ANLRAS)

Require: Initial vector 1Y, tolerance €
1: Compute || F(u®)|2
2: Set global_convergence=false, and local_convergence(k]=false, k = 1,..., P
In parallel, each processor i:

3: while not global_convergence do

4: Compute v; s by solving (2.5) using Newton’s method
5:  Update u = u + Rzovi,a

6 if [|[Fio(w)|l2/||F(u)]2 < /P then

7: Set local_convergence[i]=true

8  endif

9: if i==1 then
10: if local_convergence[k], Vk = 1, ..., P then
11: Set global_convergence=true
12: end if
13:  endif

14: end while (for processor i)
15: Output: u*

We mention that once a processor/subdomain achieves local convergence, the local
convergence can be lost before the global convergence flag is triggered. This is why we
compute the global residual norm again after the iterations stopped and verify that it is below
the convergence threshold. This was always satisfied in our experiments.

We illustrate the performance of this algorithm on two nonlinear PDEs. Let us first
consider the following problem:

(4.4) ~V2u+g(u)=f ong, u=0 ondQ,

where Q = (0,1)? and g(u) = ue*. We choose f such that sin(7z) sin(ry) is the exact
solution of (4.4). The discretization of (4.4) using standard 5-points stencil with mesh size h
on the nodes (¢h, jh) yields the following nonlinear system of equations

1 o
(45) (F(u)i; = ﬁ(‘lui,j —Uim1j — Uit,j — Uil — Ui 1) + Uz et — fi 5 =0,

with ug j = uny1,; = uj0 = uj,n+1 = 0. We present and analyze computational results
for parallel asynchronous and synchronous NLRAS for the discrete nonlinear system of
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equations (4.5). The computational experiments were carried out on a shared memory machine
with 88 CPU cores/176 threads and 1536GB of RAM. The parallelization of the solvers
was implemented in C++ using the OpenMP multithreading library. The linear algebra data
structures and solvers were provided by EIGEN [30]. The local problems in (2.5) were solved
using an inner Newton’s method where the local convergence criterion is when the norm
of the difference between two updates in the local Newton iterations is smaller than 10719,
and the local Jacobian matrices arising from the inner Newton iterations were computed
analytically. We use a checker-board partitioning for the domain © = (0, 1)? with a total of
10000 discretization points. We choose the zero vector as an initial vector for both the RAS
iteration and the local Newton iterations.
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FIG. 4.1. Convergence curves of synchronous and asynchronous NLRAS for problem (4.4) with P = 16. Left:
homogeneous network. Right: one processor slower than the others by a factor of two.

For each tolerance in {1071,1072,...,107®}, we run Algorithm 1 and measure the
corresponding computational time (in seconds) required to reach that specific tolerance. We
then plot the timing versus the relative residual norm for both methods as shown in Figure 4.1
(left). We observe in this case that the synchronous method is faster in terms of execution
time. We repeat the same experiment, but with one processor twice as slow as the others
by performing the inner Newton solve twice for one processor, and we report the result in
Figure 4.1 (right). It is clear that in this case, the asynchronous method outperforms the
synchronous one in terms of execution time. This indicates that even with a small number of
processors, if the network is heterogeneous, asynchronous methods may be preferred. The
same effect would be observed if a large load imbalance is present, that is, if one or more
processors need to perform more work than others.

We report in Table 4.1 the number of local updates, varying the number of subdomains
for both the synchronous and the asynchronous NLRAS. With one processor twice as slow,
the asynchronous method is faster than the synchronous method even if, on average, the
asynchronous method requires more local updates.

We also compare the number of Newton solves required for each subdomain/processor for
both the synchronous and asynchronous cases. We illustrate this in Figure 4.2, where we see
that the number of Newton iterations is slightly different for each processor. We also observe
that the asynchronous case requires more Newton iterations compared to the synchronous case
since it usually requires more local updates.
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TABLE 4.1
Number of iterations/updates and computational time (in seconds) for problem (4.4) where one processor is
twice as slow.

#DOF  #subdomains NLRAS
#iter time
(min,mean,max)
Synchronous
2 500 4 160 2.40
5625 9 323 4.79
10 000 16 554  8.55
Asynchronous
2 500 4| (149,250,287) 2.18
5625 9 | (282,508,570) 4.20
10 000 16 | (470,834,892) 6.89
10000 NLRAS ——v—
ANLRAS —*—
e e B

Number of Newton iterations

1000
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FIG. 4.2. Total number of Newton iterations per processor for problem (4.4) with P = 16.

In order to investigate the influence of the heterogeneity factor on the performance of both
the synchronous and asynchronous methods, we perform an experiment where we vary the
heterogeneity factor in the interval [0, 4] and compute the timing required to reach a tolerance
of 10~8. This can be done by enforcing one processor to wait a given amount of time using
the C++ built-in function sleep_for () thatis proportional to the local Newton solve. The
plots in Figure 4.3 illustrate the time required to reach convergence for each method and with
different heterogeneity factors. We can observe that there is a heterogeneity threshold for
which the asynchronous method starts to outperform the synchronous one. We can also see
that the time required for the asynchronous method remains constant while the time required
for the synchronous method increases roughly proportionally with the heterogeneity factor.

For our next set of experiments, we consider a problem where the nonlinearity is on the
boundary. This is a temperature control model defined as follows:

—V2u+v-Vu=f onQ
(4.6) B
a—u—ﬂp(u):O onT and u=0 ondQ\T,
v
where v € R%, T C 99, and ¢: R +— R is a function of the form p(u) = vlog (3 + au),
with a, 3,7 > 0. For our experiments we consider = (0,1)%, T = {0} x [0,1], and
vT = [1,1]. We discretize (4.6) using finite differences with n = 10 000 discretization points.
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FIG. 4.3. Execution time of synchronous and asynchronous NLRAS with different heterogeneity factors for
problem (4.4) with P = 16.
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FIG. 4.4. Convergence curves of synchronous and asynchronous NLRAS for problem (4.6) witha =1, B =1,
~ = 102. Left: homogeneous processor speed. Right: one processor is twice as slow.

The resulting convergence plots are presented in Figure 4.4, and they illustrate the convergence
of synchronous and asynchronous NLRAS for (4.6) with P = 16 subdomains. We can clearly
see that in this case the asynchronous method is more advantageous, even in the case of an
homogeneous network. This is due to the load imbalance among subdomains solves. Some
subdomains (those lying in the boundary of () require a nonlinear solver, while others require
only a linear solver. The advantage is enhanced when one of the processors is twice as slow as
the others.

5. Two-level nonlinear RAS (2L-NLRAS). In order to improve the convergence of
NLRAS and ensure the scalablity of the method, an additional coarse correction can be
incorporated. Since the problem is nonlinear, we need to use a nonlinear coarse grid correction.
We opt here for the full approximation scheme (FAS) method to perform the coarse grid
correction; see, e.g., [8]. Let Vj denote the coarse space and Ry : V +— V| the coarse
restriction operator. We can then define by means of Ry the coarse nonlinear problem
Fy: Vo — Vo which could be stated by using a coarse discretization of (2.1) or using a
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Galerkin approach, namely
Fo(u) = RoF(R] u).

The coarse correction vy € V; using the FAS is defined as the solution of the nonlinear
problem

5.1 FQ(’UQ + Rou) = Fo(Rou) — R()F(u),

which can be incorporated into (2.6) either in an additive or multiplicative manner. Follow-
ing [26], here we opt to use the additive variant. In order to prevent overcorrection on the
overlap, we use a weighted two-level method of the form

(5.2) = uk 4 ZR,Ov(;qL ~ Ry vk

see [24] for an alternative approach. FAS [7] is a particular case of the nonlinear multilevel
method (NMLM) of Hackbusch [27]. Although NMLM is a globally convergent iteration [27],
there exist no such result for FAS. However, there exist cases for which the convergence of
FAS was proven for a class of mildly nonlinear PDEs [33, Theorem 5.1].

In the rest of the section, we discuss the local convergence of the two-level NLRAS
described in (5.2) and present numerical experiments which illustrate the benefits of the
two-level approach.

Let us thus define the mapping T corresponding to the fixed point iteration (5.2), i.e.,

P
1 1
(5.3) T(u) =u+3 > Rlyvis+ 5ROTUO.
=1

In order to show that (5.2) converges to the solution of (2.2), it suffices to show that there
exists a norm such that |77 (u*)|| < 1. We have that

~ ]. T 8'[}15 1 TaUO
(5.4) T'(u) =1+ = ZRzo R e

’L:1

Moreover, we know that (4.1) holds. It remains to compute the derivative corresponding to the
coarse correction vg. Indeed, taking the derivative on both sides of (5.1) with respect to u, we
obtain

0
Fl(vo + Rou) (8”5 + R0> = F!(Rou)Ro — RoF"(u)
v _
8711(,) + Ry = (F(S(’U() + ROU)) 1(F6(R0’U,)R0 — R()F/(’LL))
ov _
Ty (F§(vo + Rou) ' Fj(Rou) — IRy
— F}(vo + Rou) ' RoF'(u).
. . 8 6v0 .
Substituting both terms 5‘u % and Bu in (5.4), we obtain that the derivative of T atu = u*
reduces to
-2 ZR RisF'(u*)Ris) ' RisF'(u*)
(5.5)

— §ROT(ROF’(RJRou*)RJ)’lROF’(u*).
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In order to prove convergence of this two-level method, it suffices then to show that 7" (u*)
as in (5.5) is a contraction. We can use the same techniques as for the one-level method in
Theorem 2.2. One added complication is that unlike, e.g., in [26], for our coarse grid restriction
RJ Ry # I, and thus additional hypotheses are needed. Then, we can use arguments similar
to those in the proof of [4, Theorem 7.3] to complete the proof, as we show below. Let

P
B= ZRiTO(RiﬁF/(u*)RZ(S)_lRi,é
=1
and
By = Ry (RoF' (R Rou*)R{ )™ Ry.

THEOREM 5.1. Let u* be the solution of (2.2). Assume that F' exists in a neighborhood
of u* and that F'(u*) and F' (R} Rou*) are nonsingular M -matrices. Assume further that
there exist a weak regular splitting F'(u*) = My — Ny, and a diagonal matrix Eq such that

0 < EO < Ia
and
By = EoM; .

Let w > 0 be such that F'(u*)w > 0. Then p(T'(u*)) < |T'(u*)||lw < 1, and the
iteration (5.2) converges linearly to u*.
Proof. We start by showing that 7" > 0. Indeed, we observe that

. 1 ) 1 _ . 1
T (u*) = 3 (I — BF'(u*)) +3 Eo(I — My F'(u*)) +3 (I — Ey).
>0 >0 >0

Now, let us re-write the local contraction operator at the root T” (u*) (5.5) as

T'(u*) =1 — %(B + Bo)F'(u*).

We remark that as B and By are restrictions and prolongations of nonnegative matrices, it
follows that wherever the restriction and prolongation operators are nonnegative, these matrices
are nonnegative. Furthermore, B > 0 is nonsingular, in fact, it is a RAS preconditioner.
Therefore, it cannot have a zero row, and thus Be > 0, for any positive vector e. Let
e = F'(u*)w > 0. Then, we have that Be > 0 and Bye > 0, so that

~ 1
T (u")w =w — i(Be + Boe) < w,

concluding that || " (u*) ||, < 1. O

We note that the hypotheses mentioned in Theorem (5.1) are not always satisfied. In
particular, for our coarse grid, the nonnegativity of the operator 7" does not necessarily hold.
For the particular case where the coarse grid corresponds to a boolean matrix, it is shown
in [21] that the choice of Ey = R] Ry is possible.

We present now several numerical experiments comparing the performance of two-level
NLRAS with the one-level counterpart for problem (4.4), and conduct scaling experiments by
varying the number of subdomains.
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We show in Figure 5.1 a weak scaling experiment for the problem (4.4). We compare the
one- and two-level NLRAS for a 2 x 2 and 3 x 3 decomposition. The total number of degrees
of freedom (DOFs) in each subdomain is kept the same for both cases, namely 625 variables
per subdomain. As we can observe, the convergence of the one-level NLRAS deteriorates
when the number of subdomains increases from P = 4 to P = 9. In contrast, the convergence
rate of the two-level NLRAS remains approximately the same. We summarize weak scalability
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FIG. 5.1. Weak scaling experiment for one- and two-level NLRAS for problem (4.4) using a 2X2 checker-board
partition (left) and a 3x3 checker-board partition (right).

results with increasing numbers of subdomains for iteration (5.2) in Table 5.1, where we report
the number of iterations to reach a tolerance of 10~8. These results show that the method
without coarse correction fails to converge in 100 iterations, while for the two-level NLRAS,
the number of iterations has a slow growth with the number of subdomains.

TABLE 5.1
Number of iterations performed by NLRAS and two-level NLRAS for the problem (4.4) for different numbers of
subdomains P and a tolerance of ¢ = 10~8.

P |V| |Vo| NLRAS 2L-NLRAS

4 2500 36 160 62
9 5625 81 323 64
16 10000 144 554 94
25 15625 225 853 85
36 22500 324 1221 82
49 30625 441 1657 80

We repeat the same weak-scaling experiment but for a nonlinear diffusion equation
problem of the form

—V - ((1+v*)Vu) = f(z,y), inQ = (0,1)%

5.6
(>6) u(z,y) =0, on 0f2.

We summarize in Table 5.2 the convergence results of iteration (5.2) for this problem. We point
out that for a discretization of (5.6) using finite differences, F”(u) is a nonsingular M -matrix
for u € (), and therefore the hypothesis of our local convergence theorems are satisfied in this
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case. The results in Table 5.2 are similar to those in Table 5.1. The addition of the coarse
correction makes the algorithm scalable in a sense that the number of iterations required
to achieve the prescribed tolerance has a very slow growth as the number of subdomains
increases. Comparing Tables 5.1 and 5.2, we note that for two problems with different type
of nonlinearity, the two-level method behaves similarly in terms of number of iterations to
convergence.

TABLE 5.2
Number of iterations performed by NLRAS and two-level NLRAS for problem (5.6) for different number of
subdomains P and a tolerance of e = 108,

P V| |Vo| NLRAS 2L-NLRAS

4 2500 36 183 63
9 5625 81 373 64
16 10000 144 642 97
25 15625 225 992 89
36 22500 324 1411 84
49 30625 441 1913 85

We end this section with two practical observations on the implementation of this two-
level NLRAS method. The coarse correction step in (5.1) requires the use of Newton’s
iteration, which in turn necessitates the knowledge of the action of F'(u) as well as F”(u).
These quantities can be obtained by means of the local functions F; 5 as follows. By recalling
the definition of Fj 5, we have that

P
Fy(u) = RoF(RJ u) = Ry (Z R} Fis(Ry u)> :

=1

Similarly, we obtain for the derivative of F{

(Z R} F]s(Rg u)> RJ.

We comment on the appropriate choice of the coarse grid in this case to ensure convergence
and scalability of the two-level NLRAS. The one-level NLRAS has a residual F'(u), which is
zero outside the overlap. Indeed, the global nonlinear residual is defined as F' (uk) where u*
is the current approximation of the solution of (2.2). Moreover,

R; sF(uf) = R; s F(u"~ 1+ZRgTovfal) Fis(u" "+ RIufg 4+ T R gob 5.
Jj=1 J#i

Using the fact that vkgl satisfies F 5(uf~! —l—RZT va 5 ') = 0, it follows that the local nonlinear

residual R; s F (u k) is zero outside the overlap. This shows that a good coarse grid should
use this information for the construction of the coarse space. Thus, the coarse grid should be
chosen on the overlap.

6. Asynchronous two-level nonlinear RAS (A2L-NLRAS). In this section, we study
the asynchronous version of the iteration (5.2). We present related implementation details,
local convergence theory, and numerical experiments. The information for the coarse grid
correction comes from all subdomains, but it cannot be used until the information from all
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subdomains has arrived. Only then, the correction is added, and the process repeats. To
implement this, we follow some ideas described in [26] for linear problems. More in detail,
we use a weighted additive NLRAS method (see [24] for multiplicative variants), and in order
to prevent the coarse correction from over-correcting, we add the coarse grid only when all the
subdomains have sent new data. This can be realized by defining a local boolean variable for
each thread/subdomain. The coarse grid is then added when all these local boolean variables
are set to true, and this is done without a synchronization point. We describe the asynchronous
two-level NLRAS in Algorithm 2.

Algorithm 2 Asynchronous two-level nonlinear RAS (A2L-NLRAS)

Require: Initial vector u°, tolerance e
: Compute || F (u°)||2
2: Set global_convergence=false, and local_convergence[k]=false, k = 1,..., P
3. Set local_update[k]=false, and local_correction[k]=false, k = 1,..., P
In parallel, each processor i:

—

4: while not global_convergence do
5 if ¢ > 0 then
6: Compute v; s by solving (2.5) using Newton’s method
7: if local_correction[i] then
8 Update u = u + SR gvis + R/ o Risv0
9: Set local_correction[i]=false
10: else
11: Update v = u + Rzovi,g
12: Set local_update[i]=true
13: end if
14: if | Fio(w)]|2/||F(u®)|]2 < €/+/P then
15: Set local_convergencel[i]=true
16: end if
17: if i==1 then
18: if local_convergence[k], Vk = 1, ..., P then
19: Set global_convergence=true
20: end if
21: end if
22:  else
23: if local_update[k], Vk = 1,..., P then
24: Compute the coarse correction v using (5.1)
25: Set local_correction[k]=true, kK = 1,..., P
26: Set local_update[k]=false, k = 1,..., P
27: end if
28: end if

29: end while (for processor 7)
30: Output: v*

We state and prove a result on the local convergence of two-level NLRAS as presented in
Algorithm 2.

THEOREM 6.1. Let u* be the solution of (2.2). Assume that F' exists in a neighborhood
of u* and that F'(u*) and F'(R] Rou*) are nonsingular M-matrices. Let w > 0 be such
that F'(u*)w > 0. Assume that the conditions (i)—(iii) hold. Then Algorithm 2 converges to
u*, the solution of (2.2).
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Proof. We will use Theorem 3.3. To that end, we define a sequence of operators T,
which is either

P
- 1 1
©.1) T () = T(w) = u+ 5 ; Rgvi s+ 5B vo,
if the coarse grid in Algorithm 2 is added, or

P
(6.2) THu) =T(w) =u+ Y Rlovis,

i=1

otherwise. Of course the operators (6.1) are those of the two-level NLRAS method (5.3), while
the ones in (6.2) are those of the one-level method (2.7). It follows that both operators have u*
as a common fixed point, and in both cases || T%||,, < 1, by Theorems 2.2 and 5.1. Thus, from
Theorem 3.3, Algorithm 2 converges to u*. 0
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FIG. 6.1. Convergence curves of synchronous and asynchronous two-level NLRAS for problem (4.4) with
P = 16. Left: homogeneous network. Right: one processor four times slower than the others.

We compare numerically the parallel synchronous and asynchronous two-level NLRAS
for the nonlinear problem (4.4). We keep the same setting used in Section 4. In particular,
the Jacobians are computed exactly for the inner Newton solves. The coarse grid is chosen
using a full weighting restriction matrix. We use 10 000 discretization points for the domain
Q = (0, 1)? which we partition into 16 subdomains. The total size of the coarse grid is 144
discretization points. We test our methods in two settings: first with all processors of the same
speed, and then with one processor slower than the others, in this case, four times slower. These
experiments are reported in Figure 6.1. We can clearly see that in the case of a inhomogeneous
network, the asynchronous two-level method is faster than its synchronous counterpart. For
our weak scaling study, varying the number of subdomains, we report in Figure 6.2 the time
required to reach a tolerance of € = 1078 for the synchronous and asynchronous two-level
NLRAS for problems (4.4) and (5.6). We keep the computation unbalanced, where one
processor is four times slower than the others. Once again, we see that the asynchronous
method converges faster than the synchronous one.

We conclude with a table comparing execution times and the number of processor updates
for the one-level and two-level methods in both the synchronous and asynchronous versions
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FIG. 6.2. Convergence time in seconds of synchronous and asynchronous two-level NLRAS versus the number
of subdomains for € = 108 where one processor is four times slower than the others. Left: problem (4.4). Right:
problem (5.6).

for problem (4.4) in 2D and 3D using P + 1 processors. We note that each subdomain is
assigned to a processor and the coarse grid is computed on a separate one. In the 3D case,
the domain Q = (0, 1) is decomposed into P equally sized bricks, and their number is the
same in each direction. The size of each local problem is 1000 x 1000. We assume that
one processor is four times slower than the others. The convergence results are reported in
Table 6.1. We see from Table 6.1 that the asynchronous method outperforms the synchronous
NLRAS. The addition of the coarse grid correction makes both methods even faster, with
an advantage for the asynchronous one. The results in Table 6.1 also show that the timing
required for the coarse step increases with the number of subdomains.

Observe that, as expected, the asynchronous method has a larger number of updates on
average than the number of iterations of the synchronous method. Nevertheless, its execution
time is faster, confirming that it can outperform the synchronous method. This is true for both
the one- and two-level methods.

TABLE 6.1
Time (in sec) and the number of iterations or average number of updates for synchronous and asynchronous
NLRAS and its two-level variant for problem (4.4) in 2D (top) and 3D (bottom) to reach a tolerance of ¢ = 108 for
different numbers of subdomains with constant local problem size.

P V| Vol NLRAS 2L-NLRAS
sync async sync async
time #iter time #updates| time coarse #iter time coarse #updates

4 2500 36 4.44 160 3.38 374 1.71 020 62 1.39 0.57 131
9 6525 81 9.67 323 5.22 581| 1.87 045 64 140 0.72 153
16 10000 144 16.42 554 7.18 880| 2.86 130 94 147 0.96 170
25 15625 225 26.15 853 10.98 1339| 2.82 1.66 85 1.68 1.25 187

8 8000 125 21.53 72 17.28 163|17.64 1.68 56 14.17 4.02 150
27 27000 343 47.51 147 30.71 2682423 955 77 1771 5.82 159
64 64 000 1000 56.73 251 41.99 447|17.86 17.71 67 16.70 13.51 182
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7. Conclusion. In summary, the new parallel nonlinear RAS algorithm converges to the
unique solution of the problem in the original domain of the PDE. An asynchronous version
can be about twice as fast or faster, depending on the inhomogeneities of the computation
and the communication costs. The two-level version can be an order of magnitude faster, and
its asynchronous version is faster, still exhibiting slow growth in execution times when the
number of processors increases in weak scaling.
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