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RATIONAL SYMBOLIC CUBATURE RULES OVER THE FIRST QUADRANT
IN A CARTESIAN PLANE*

JILALI ABOUIRT, BRAHIM BENOUAHMANE', AND YASSINE CHAKIR?

Abstract. In this paper we introduce a new symbolic Gaussian formula for the evaluation of an integral over the
first quadrant in a Cartesian plane, in particular with respect to the weight function w(z) = exp(—zTz — 1/zTz),
where z = (z1,22)T € Ri. It integrates exactly a class of homogeneous Laurent polynomials with coefficients in
the commutative field of rational functions in two variables. It is derived using the connection between orthogonal
polynomials, two-point Padé approximants, and Gaussian cubatures. We also discuss the connection to two-point
Padé-type approximants in order to establish symbolic cubature formulas of interpolatory type. Numerical examples
are presented to illustrate the different formulas developed in the paper.
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1. Introduction. In different fields of science and engineering including automatic and
control theory [2, 3, 19, 20], several methods of computation require the integration of a
function of several variables in a given domain. However, there are many integrals for which
no analytical solution is provided, and therefore a numerical integration approach is required.

A symbolic (instead of numeric) Gaussian cubature formula over the unit disk, with

{o ) ana {amn}

defining the nodes and the weights, respectively, of the form

// g\ + Aas)w(r, s)drds =~ ZAgm)(A)g(¢Em)(A))7 A= (A, \2) €R?,
r2+4+s2<1

i=1

is an approach to approximate a finite double integral. The nodes are the zeros of a ho-
mogeneous orthogonal polynomial [4]. This formula integrates exactly any homogeneous
polynomial of degree 2m — 1. In the case when the nodes are chosen freely, we then deal with
symbolic cubature formulas of interpolatory type, and the degree of exactness becomes m — 1.

The so-called two-point Padé approximants have been introduced and studied by several
authors, e.g., [1, 10, 11, 13, 14, 17] and others. These approximants are rational functions
which provide a good approximation for both small and large values. They are a particular
case of multipoint Padé approximants. For general results about multipoint Padé approximants,
see, e.g., [15, 16, 18]. In [7], Bultheel et al. have discussed how two-point Padé approximants
of a Stieltjes function are related to numerical quadrature formulas. For more details on this
issue, the reader is referred to [8, 9].

The main objective of this paper is to construct Gaussian symbolic cubature rules as
well as symbolic cubature rules of interpolatory type that are exact not only for bivariate
homogeneous polynomials but also for specific bivariate rational functions using the theory of
two-point Padé and Padé-type approximants.
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This paper is organized as follows. Section 2 reviews the concept of two-point Padé-
type approximants and of two-point Padé approximants, and we derive the error formulas.
Section 3 shows the connection between rational quadrature formulas and two-point Padé-type
approximants. We present the connections among rational Gaussian quadratures, orthogonal
polynomials, and two-point Padé approximants in Section 4. In Section 5, we introduce the
properties of the two-dimensional moments. In Section 6, we treat rational symbolic cubature
rules of interpolatory type over the first quadrant in a Cartesian plane. In Section 7, we provide
rational symbolic Gaussian cubature formulas over the same domain. Numerical examples to
illustrate our theoretical results are presented in Section 8.

2. Two-point Padé-type approximants and higher-order approximants. Let f(z) be
a function which admits the following expansions

+oo ) +o0 4
fo(2) =D ez, fwlz) ==Y iz
i=0 i1

For [ € Z, we define the linear functional ¢(*) by
D () = ¢, i € Z.

We denote ¢(*) simply by ¢. We have

fo(z):c<11tz>, 250,
foo(Z)=c< ! >, z — 00.

1—tz

For 0 < k£ < 'm, we consider a polynomial V}, ,,, of the form
Vi (2) = D b2
i=0

Then we define the associated polynomial of degree m — 1 by

m"“kam(t) — tm_thm(Z) )

%1% m = (k—m)(z
km(2) = ¢ t—=z

We define
vk}m(z) = sz;mn(z_l)7
and
ka(z) = 2" W (7).

So, we immediately have the following theorem.
THEOREM 2.1.
th(t)

o) P () = Wi (2) = et (el o

Foo(2) Vi (2) — ka(z) = kelk—m) ((tz)_lm> ) z = 0.
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The rational approximant ka / Vk,m is called a two-point Padé-type approximant and de-
noted by (k/m) . When k = m, we deal with the standard Padé-type approximant [5]. If the
polynomial V}, ,,, is orthogonal with respect to the functional cF=2m) 0 < k < m, that is,

@1 R (Ve (1) =0, 0<i<m—1,

then it holds

fo(z) — Vi/k’m(z) == 2" clk=2m) <tmvk’M(t)) ; z—0,
Vk7m(z) Vk,m(Z) 1—tz

and due to the orthogonality conditions, we have

ok—2m) (tmvk,m(t)) — (k—2m) (vak,m(t)> )

1—tz 1—tz
Therefore
Wiom(2) P o (Vi (1)
Fool2) = = = =l
Vk)m(z) Vk,m(z) z
k—m
= = (k-2m) ((tz)_l‘W) , z — 00.
Vien(2) (tz)~1 -1

In the orthogonal case, the rational approximant Wk,m / \N/k,m is called a two-point Padé
approximant and denoted by [k/m];. The case k = 2m corresponds to the standard Padé
approximant [5].

3. Two-point Padé-type approximants and rational quadrature of interpolatory type.
The advantage of the two-point Padé-type approximants compared to the two-point Padé
approximants lies in the more flexible choice of the denominator, i.e., in the free choice of the
roots of the generating polynomial. Let

m

Vim(z) = H (z B ¢§k,m)>

i=1

be an arbitrary polynomial. We define the linear functional c as follows:
o(ti) = ¢ = / Fu@)dt,  i—0,41,42,...
0
where w(t) is a positive weight function such that all the moments {c; } exist. Thus, the relation

between the two-point Padé-type approximant and the quadrature formula of interpolatory
type is given by

400 w(t) tm—k m A(_k,m)
f _ = (k_m) _— = E R —

where {AEkm) }i<i<m are calculated by the formula

m—k
(k,m) m
() w0\
m ’ m - ’ k,m)y
(t= o) V@) ) W (e™)

k—2m)

Agk’m) = ¢!
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Therefore, we define the rational quadrature formula of interpolatory type by
e Nk k
/ h(t)w(t)dt ~ Z AEM (k) for all integrable functions A.
0 i=1

Let us complete this section by demonstrating the following theorem.

THEOREM 3.1. Let gzﬁgk’m), ceey ¢$,]f’m) be the zeros of Vi, m, and let Ry, , be a function
of the form

k—1
Rpm(t)= > ait'.
i=k—m

Then we have
e ~ (k) ()
| Rem®u(oit =3 A8 By (6,
0 i=1

Proof. The function Ry, ,,, (t) can be written as
Rpm(t) = tF"mP(1),
where P(t) is a polynomial of degree m — 1. We have
c(Brn(t) = F(P(1)).

The polynomial P(¢) can be written as a Lagrange interpolation polynomial of degree m — 1
(k;m) (k,m)
1

yeeeyOm N

at the points ¢

Vk,m(t) (k,m)
P(t) = P(o: .
v g (t— oW L (6™) @)

Applying the functional ¢(*=") to both sides of this equation gives the result

m

/ 7 Rem(®ut)dt = S (PE) = 3 AV R (60™). D
0

i=1

4. Two-point Padé approximants and rational Gaussian quadrature. For n > 0 and
| € Z, the Hankel determinant H, ,(Ll) is defined by

Cl Cl41  --- Clyn—1
Cl+1 Cly2 ... Cl4yn !
HY = coHY =1,
Cl4n—1 Cl4n --- Cl42n-2

For a fixed [, let {V};2,, } be the family of orthogonal polynomials with respect to the linear

functional ¢(!). To guarantee the existence of this family we assume HT(LZ) = 0 for any n > 0.
The linear functional c¢() is said to be positive definite if

HY >0, Vvn>o0.
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THEOREM 4.1. If ¢ is positive definite, then the zeros of the orthogonal polynomial
Viton.n are real and distinct.

Proof. 1t is similar to the proof of Theorem 2.15 a) in [5]. a0
Let k and m be fixed with 0 < k& < 2m. We now assume that ¢(*=2m) ig positive definite,
so the m zeros of the orthogonal polynomial Vj, ,,, (2), gbgk’m), e ¢$7’§ ’m), are distinct.
THEOREM 4.2.
(—2m) m A(km)
A e (:2)) = 2 T = W/l (2)

where pi, . (t, z) is the Lagrange interpolation polynomial of degree m — 1 in t of the function
t27n—k

1—-tz
Proof. This Lagrange interpolation polynomial is given by

at the points (bgk’m), ey ¢£§’m), where z is considered a parameter.

(k:,m)) 2m—k

i Vi m( ) (¢i

(=L (™) 1 — gl

“.1) pkm (t, z

b

and using the orthogonality conditions (2.1), the polynomial Wp.m can be written as

2m7kv m t 7t2mfkv m
Wi () = b2 (2 Vel 2 E0 e )y

Applying the functional ¢(*=2™) to (4.1), we get

(k—2m) zm: AP
T (prm (t,2) = ) ——
-
where
(k,m) 2m—k
A(f%””) _ c(k72m) (gbZ ) Vk’m(t) Wk m(¢( m))

(t= 6™ ) V08 | Vo)

It is obvious that

1 Wk,?n(z_l)

(4.2) F72m) (pp (8, 2)) = V)

— [k/ml;(z). O

Thus, from (4.2), a quadrature formula is given by

+oo w 2m—k m (k7m)
£(2) :/0 W) gy = h-2m) (t> ~3 A eyl (2).

_ _ k,m
1—1tz 1—tz —1— ¢§ )Z

This establishes a connection between two-point Padé approximants and numerical quadratures
in the similar way as for one-point Padé approximants [5, 6]. We can therefore propose the
following rational Gaussian quadrature

+oo m
/ h(t)w(t)dt =~ ZAEk,m)h(¢§k,7n)).
0

i=1
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THEOREM 4.3. If ¢*=27) s positive definite, then the zeros of the orthogonal polynomial
Vi.m belong to [0, +00].
Proof. See the proof of Theorem 2.16 in [5]. O

THEOREM 4.4. Let qﬁ (k, m) R ﬁff’m) be the distinct zeros of Vi, m, and let Ry, ,, be a
rational function of the form

ka Z at’

i=k—2m

Then we have

m

+o0
| Bt =30 AF R 6,
0

i=1
Proof. The function Ry, ,,, (t) can be written as
Ry (t) = 172" P(1),
where P(¢) is a polynomial of degree 2m — 1 that can be written as
P(t) = Q) Vi,m () + S(1).

Here V}, »,, is an orthogonal polynomial with respect to the linear functional c*=2m) "and the
quotient () and the remainder S are polynomials of degree less than m — 1. Thus,

c(Ryem(t)) = P2 (P(1)) = P 2(Q() Vi (8) + S(1)) = 2 (S(1)).

The polynomial S(t) is equal to its Lagrange interpolant of degree m — 1 for the interpolation
points dngk’m), .., %™ and is given by

. V m ,m
0= ; (t— ¢><’“’m;€)v,i | ("™ 56

Applying the functional ¢(*~2™) on both sides of this equation, we obtain

—2m —2m - Vi m( ) (k,m)
(S () = b2 >< ; S} >>
;< OV (0)
o) m Vkm() (kym) 2m—k (km)
- (Z (t= 6V, o) () R )
=2 AN R (65).
Therefore,

/ +°° R ()w(t)dt = c( Ry (1)) = 2™ (S(t)) = i AP Ry (o). D
0

=1
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5. Properties of two-dimensional moments. In this section we establish a recurrence
relation that allows computing recursively the two-dimensional moments over the first quadrant.
This enables us to approximate a finite integral of the form

// g(rar + sx2)w(]|(r, s)||2)drds, A= (M, A2) €RE,
Q

where
e O={(r,s) eR?|r,s >0};
e w is a positive weight function on 2;
o [l(r,s)ll2 = v + 5%

e g is an integrable function on ).

The above integral can be written as
J [ a3+ et loyards = [ oGurcos(@) -+ ssinta)) w2y drds
= //Q h (rcos(a) + ssin(a)) w(||(r, s)||2)drds,

where A; = pcos(a), Ag = psin(a), a € [0, g} , >0, and h(z) = g(pz).
We define the moments {d;(«)};cz by

di(a)://ﬁ (rcos(a) + ssin(a)) w(|(r, s)|2)drds,  i=0,41,42,. ..,

and establish the following propositions.
PROPOSITION 5.1.

di(a) = (/O (cos(0 — a))’ d9> (/;m ziﬂw(z)dz) .

Proof. The change of variables (r,s) = (zcos(f), zsin(f)), with (z,0) € A and
A = [0, +00] x [0, g},gives

() = [[ (reos(@) + ssin(@) w9 |2)drds
= //A ((cos(a) cos(#)z + sin() sin(6)z)* w(z)) 2d0dz
— //A cos(f — a) 2" w(2)dodz.

The result is obtained due to the fact that the variables can be separated. 0
The following proposition will be useful.
PROPOSITION 5.2. Let us define J;(c) as

The integrals {J;(c) }iez satisfy the recurrence relation

iJi(a) = (cos(@)" ' sin(a) + cos(a) sin(a)' " + (i — 1)J;_a(a)), > 2.
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Proof. The result is immediately obtained by using integration by parts. 0
Thus, according to the latter proposition, the integrals {.J; («) };>¢ are obtained inductively
by
1 ) )
Ji(a) = = (cos(a)" ' sin(a) + cos(a) sin(a) ™" + (i — 1)J;—2(a)) ,
i
with
Jo(a) = g, J1(a) = cos(a) + sin(a),

and the integrals {.J;(a)};<o are determined using the relation

Foanito) = iy (o) L @)

1+ \cos(a)lt?  sin(a)lt?

Jﬂ@:m(ygiyv+m<ﬁfﬁg>.

PROPOSITION 5.3. The moments d; (g — a) and d;(«) are the same.
Proof. We have

d (g —a) = //Q (rcos (g —Oé) + ssin (g —a))iw(H(r, s)||2)drds

= //Q (rsin(a) + scos(a))iw(H(r, s)||2)drds
a

with

6. Rational cubature rules of interpolatory type. The aim of this section is to establish
symbolic cubature formulas of interpolatory type using two-point Padé-type approximants.
Let us now associate to the sequence {d;(a)};cz a linear functional d defined on the space of
polynomials in the variable ¢ with coefficients from R(cos(«), sin(«)), the commutative field
of rational functions in cos(«) and sin(«) with real coefficients, by

d(t") = di(a), i€

We define the bivariate Stieltjes function as follows [12]:

(Ul 5)ll2)
drds.
Ae.y) //17 ra+sy)"
By defining

_ || r,8)|2)
Zo(2) = 3(z cos(a), zsin(a // = (r cos( drds,

) + ssin(a))z

we have

—:i:di(a)zi—d<l_1tz>, z =0,
_ i di(a)z' = —d (%), z — 00.

1=—00
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Fix an arbitrary 0 < k& < m. We define a polynomial V, ,,, of the form

m

Vi.m(a, z) = H (z — gbl(-k’m)(a)) ,

i=1

where the zeros {gzﬁz(.k’m) (o) F1<i<m are chosen arbitrarily. It will be assumed that

ad U E;,;, where E,;= {a € {O, g} : ¢Ek’m)(a) = gf)ék’m)(a)}.

1<i<j<m

Using the two-point Padé-type approximant, we propose the following approximation

1
7.6) = || e a0 o) e)drds

A(-k’m)
PR ;<k,m(>2)z = (k/m)z. (2),
i=1 %

~

where {A""™ (a)} are computed by

_ Wi, 6™ (@)
Vi, 6™ (@)

AP (a)

and Wy, (v, 2) is defined by

zm’ka,m(oz, t) — tm’ka,m(a, z))

Wk,m(o‘v Z) = d(kim)( t—=z

We can then define rational symbolic cubature rules of interpolatory type as

m

/ / B(r cos(a) + ssin(a))w(|(r, 5)[2)drds ~ 3 AS™ (@)h(¢F™ (),

i=1
which integrate exactly any function of the form

k—1
a;(a)(r cos(a) + ssin(a))’, ai(a) € R(cos(a), sin(a)).

i=k—m

7. Rational symbolic Gaussian cubature rules. The purpose of this section is to
construct symbolic cubature rules using two-point Padé approximants. In other words, we use
the zeros of orthogonal polynomials related to two-point Padé approximants depending on the
parameter « to construct symbolic cubature rules.

Let k£ and m be fixed with 0 < k < 2m. We consider a polynomial in 2z of degree m and
whose coefficients belong to R(cos(a), sin(a)), denoted by Vi, ., (c, 2), of the form

BE™ (q) 7

m—1

I

@
Il
=)

Vi,m(a, z) =

that satisfies the orthogonality conditions

(7.1) A2 (Ve t)) =0, 0<i<m-—1,
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where the linear functional d¥) is defined by dV)(t*) = d;;(cr). We remind that its associated
polynomial is defined by

z2m*vk,m(a, t) — t2m*’€vk,m(a, z))

Wi (at, 2) = d<k*2m>( t
—Z

If the linear functional d(*—2™) ig defined, which means that the Hankel determinant

di—2m(@)  di—2my1(@) ... dp—m-1()
’Hs,’f_Qm)(oz) _ dk—2m'+1(a) dk—2mt+2(a) dk—in(a) 7 ,H[()k—2m)(a) -1,
dk_m_l(oz) dk_m(a) N dk_g(oz)

is not identically null for any o € {0, g} , then a solution of (7.1) is given by

dk—2m(a) dk—2m+l(a) e dk—m(a)
di—om+1(a)  di—ami2(a) -+ di—my1(a)
Viem(a, 2) = , Viola,z) =1,
dk—m—l(a) dk—m(a) e dk—l(a)
1 Z o e Zm

In the following, we assume that d(k=2m) ig positive definite, which means ’Hslk_zm) (a) >0,
forallm =1,2,...andalla € [O, g] . In this case, for each «, the m zeros {gbgk’m) (@)} 1<i<m

of Vi .m (v, z) are real and distinct. Thus, the connection between the two-point Padé approxi-
mant and the symbolic Gaussian cubature formula is given by

To(2) = //Q 1—(r ii!é;i!?in(a))zdrds = dkmim (fT—n_tz)

AE™ (o
=3 = il 2,

where Agk’m) () are defined by

_ Weam(a, 6™ (@)
Vi (@65 ()

This can also be obtained by solving the linear system of equations

AF™ (a)

7

7.2) ST AT (@) (@™ ()2 = g (e),  for j=0,1,...,2m — 1.
=1

The matrix of the linear system (7.2) has full rank since we assume that V}, ,,, (v, z) has m real
and distinct non-zero roots. Moreover, with the orthogonality conditions (7.1), we have

(@™ @) (@ @)F e @™ @) dyam(a)
, : 5 =0
(61 (@) (9 (@) (@™ (@) da(0)

1
(@™ (@))Fm (@ (@) (G ™ (@) dg (@)
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forl=0,1,...,m—1.
It follows that the system (7.2) has a unique solution. We can therefore propose the
following cubature formula

[ 1t costa) + ssin(@)) ) |2)drds = 3~ AL (@h(ef " a),

called the rational symbolic Gaussian cubature, which integrates exactly any function of the

form

k—1
Z ai(a)(rcos(a) + ssin(a))’, a;(@) € R(cos(a), sin(a)).

i=k—2m

PROPOSITION 7.1. The nodes and weights for g — «and « are the same.

Proof. Since the moments d; (g — a) and d;(«) are equal, we have

Vie,m (g —a, Z) =Vim (@, 2) .

Thus,

) (2~ a) = o™ (o),

and consequently

g ’ u km) (T
2 V(G ed (5-9)

8. Numerical examples. This section is devoted to establish numerical examples to
illustrate the theoretical results obtained in the above sections. All computations were carried
out using Maple on a computer with an Intel Core i7 processor and with about 16 significant

digits. We define the moments {d;(a)};cz by
di(a) = // (r cos(a) + ssin(a)* w((|(r, s)|[2)drds,
Q
with the weight function given by

w(ll(r,8)ll2) = exp (—<r2 e - (i)) |
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The coefficients d;(«), i € Z, are given by

U
[ V)
£

I

(cos(a) + sin(a)) /e 2,

T4 cos(ar) + sin(a)) BesselK (2, 2),

-3 (o2 )t

o= () ) (L) (LSO 7
TR p——

-l ()

gB esselK(1,2),

3

!

(

e

— (cos®(a) sin(c) 4 cos(a) sin®(a) + 2(cos(a) + sin(a)) Ve,

l\')»—l
ka

<cos3(a) sin(a) + cos(a) sin® () + 3 cos(a) sin(a) + iw) BesselK (3, 2),

] =

EXAMPLE 8.1. Let us take k = 2 and m = 4, and let the nodes {¢52’4)(a)} be taken as

¢§2’4) () = gcos(a), ¢52,4) (a) = gSin(a>7
(@) = cos(a)sinfa), () = S

Hence, the sets E; ; are

3 2
Eio= {arctan <2> } , Ei3= 0, By = {arcsin (5) } ,

-1 V1
Ey3 =0, Eyy= {arctan <8+609> } ) B3y =0.

-3+ 109

In Tables 8.1, 8.2, and 8.3 below, we give some numerical results for the rational cubature
formula of interpolatory type for different values a.

Consider the test function shown in Figure 8.1

—t
Alt) = exp (w) :
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0 R
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| Interpolated graph —— - Exact graphl
FIG. 8.1. The exact solution at some discrete points of the integral are marked by circles.
TABLE 8.1
Nodes of the rational cubature of interpolatory type formula for k = 2 and m = 4.
2,4 2,4 2,4 2,4
a " () 5" (a) 68" (a) 6" ()
27 /5 0.7725424859373692 1.585094193825256 0.2938926261462368 | 0.3249196962329066
7w/18 | 0.8550503583141712 1.566154367976514 0.3213938048432695 | 0.3639702342662021
37/8 0.9567085809127255 1.539799220852145 0.3535533905932741 | 0.4142135623730956
5 /14 1.084709347793895 1.501614779837365 0.3909157412340149 | 0.4815746188075286
w/3 1.250000000000000 1.443375672974064 0.4330127018922192 | 0.5773502691896256
37/10 1.469463130731183 1.348361657291579 0.4755282581475768 | 0.7265425280053610
w/4 1.767766952966369 1.178511301977579 0.5000000000000000 1.
/5 2.022542485937369 0.9796420871541220 | 0.4755282581475768 1.376381920471174
/6 2.165063509461096 0.8333333333333333 | 0.4330127018922192 1.732050807568877
w7 2.252422169756048 0.7231395651959305 | 0.3909157412340150 2.076521396572336
w/8 2.309698831278217 0.6378057206084830 | 0.3535533905932737 2.414213562373096
w/9 2.349231551964771 0.5700335722094479 | 0.3213938048432696 2.747477419454623
w/10 2.377641290737884 0.5150283239582458 | 0.2938926261462366 3.077683537175254
TABLE 8.2
Weights of the rational cubature of interpolatory type formula for k = 2 and m = 4.
2,4 2,4 2,4 2,4
a APV (@) AP (@) AP (@) AP (@)
27 /5 0.1269481628072058 | 0.07822335307097074 | 0.002883704888345295 | 0.01164559263480096
7w/18 | 0.1190703628569230 | 0.07626229373650935 | -0.01103181355182133 | 0.03539997035970996
37/8 | 0.1101589219926027 | 0.07398006199533127 | -0.01689340114890447 | 0.05245523056229328
5m/14 | 0.09979539230698447 | 0.07132239598415320 | -0.01549501584272252 | 0.06407804095290844
w/3 | 0.08611908515674661 | 0.06907954321955271 | -0.008037564838628852 | 0.07253974986364871
37/10 | 0.08514721873453091 | 0.04703952358592624 | 0.003329129522834805 | 0.08418494155804301
w/4 | 0.06092151833022646 | -0.02878877470747727 | 0.01381756921473507 | 0.1737505005638428
w/5 | 0.03193229501456138 | 0.1478033561557251 0.01453300899619359 | 0.02543215323483874
w/6 | -0.02656157338913685 | 0.1223710774821061 0.01023632933532651 0.1136549799730239
w7 -0.2753272573156168 | 0.1171685881536023 | 0.005375191166698295 | 0.3724842913966512
/8 0.8527878150884699 0.1148636519549771 | 0.001053898042592330 | -0.7490045516847124
/9 0.3335197073494495 0.1131394647093831 | -0.002532193220097974 | -0.2244261654374153
w/10 | 0.2556099202312826 0.1114752753575796 | -0.005437360909425199 | -0.1419470212781146
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TABLE 8.3
Relative errors of the rational symbolic cubature formula of interpolatory type for k = 2 and m = 4.

o Relative errors

2m/5 | 0.3337141745532643 x 10~°
7m/18 | 0.4773277080444892 x 1075
3m/8 | 0.1123044535551117 x 10~4
5m/14 | 0.1484200472971130 x 10~*
7/3 | 0.1406198123521202 x 10~4
3m/10 | 0.7470816212517977 x 10>
7/4 | 0.3784664333070251 x 10~
7/5 | 0.6138534069087626 x 10~°
7/6 | 0.3963279913478425 x 10~°
7/7 | 0.2138585068475668 x 104
7/8 | 0.4268655890507296 x 10~4
7/9 | 0.6563048632875481 x 10~4
7/10 | 0.8884502411056956 x 10~*

EXAMPLE 8.2. Choose m = 2. The orthogonal polynomials V, 2 (v, 2), k = 0,1,2, 3,4,
are

Vog(a, Z)
: a ' i — 3cos?(a) sin*(a
~ 48(cos’ () sin’ (a)) <3” * (2cos®(@) sin®(a) — 3 cos” () sin® (@) +1)
+ 3me™*(a — b) cos?(a) sin?(a) x
((a — b) cos*(a) sin®(a) + 2(cos®(a) + sin3(a))))z2
1

+ 12(cos3(a) sin®(a)) (3(a — b) BesselK (0, 2) cos?(a) sin?(a)

+ 3 BesselK (0, 2)(cos®(a) + sin®(a))
—2(a — b) BesselK(1, 2)) z
1

- 8(cos2(a) sin*(ar)) ( — e~ *(a — b)? cos?(a) sin?(a)

+ me~*(a — b)(cos? () sin(a) + cos(a) sin?(a))

— (cos(a) + sin(«)) + 8 BesselK(0, 2)2>,

V172(Oé,2’)

== - esse 2 — e *(a — b)? cos®(a) sin*(a
T 7 8(cos?(a) sin’(a) (8B 1K (0, 2) (a—b) (@) (a)

— e *(a — b)(cos®(a) + sin3(a))) 22

N

8(cos2(a) sin®(a))

< — BesselK(1,2) + 7(cos®(a) + sin®(a))
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— m(a — b) BesselK(1, 2) cos?(a) sin?(a)

+ 4(a — b) BesselK(0, 2) cos(«) sin(a)) z

_ m ( — 2BesselK(1, 2) BesselK(0, 2)
+7me *(a — b)? cos(a) sin(a)) ,
VQ,Q(O‘» Z)
= —m ( — 2 BesselK (1, 2) BesselK(0, 2)

+ e *a — b)? cos(a) sin(a)> 22
ﬁ—e_Q m(a — esse cos(a) sin(a
4 cos(a) sin(a)( (a = b) BesselK(1, 2) cos(a) sin(a)

— 3 BesselK (0, 2)(cos(a) + Sin(a))) z

- g (27r BesselK(0,2)% — me~*(a — b) ((cos®(a) + sin®(a))

- Deaynt))

V372(Oé, Z)
=-3 <27T BesselK(1,2)? — 3¢~*(a — b)(cos(a) sin(a))) 22

—2
+ ﬁse

< — (a — b)(BesselK(1, 2) + BesselK(0, 2)) (7 + 4 cos(a) sin(«))

+ 37 BesselK(1, 2)(cos(a) + sin(a))) z

- 116 (964 — 27(BesselK(1,2)? + BesselK(1,2))

+ (18" — 8 BesselK(1,2)* — 8 BesselK(1, 2) BesselK(0, 2)) x

cos(a) sin<a>),

- (96_4 — 21(BesselK(1,2)? + BesselK(1,2))
+ (18" — 8 BesselK(1,2)* — 8 BesselK(1, 2) BesselK(0, 2)) x

cos(a) sin(a)) 922
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0.6+

0.4

0.2+

FIG. 8.2. Zeros of V2 2(av, z).

TABLE 8.4
Nodes and weights of the rational symbolic Gaussian cubature formula for k = m = 2.
2,2 2,2 2,2 2,2
o 6% (@) £ (@) AP (@) AP (o)
w/4 0.7225719582946155 1.429405491101398 | 0.08434109400766578 | 0.1353597193936567
w/5 0.6915792626139660 1.408759908053796 | 0.08116737957001600 | 0.1385334338313066
/6 0.6385079834998610 1.373747128437559 | 0.07624226326755025 | 0.1434585501337722
w7 0.5865874591403105 1.339495732441536 | 0.07190707354034310 | 0.1477937398609794
/8 0.5407129917175890 1.308932076311594 | 0.06835818907780278 | 0.1513426243235197
/9 0.5011576642293720 1.282182473210330 | 0.06543693857056758 | 0.1542638748307549
w/10 | 0.4671294602305996 1.258782252613701 0.06298199311047522 | 0.1567188202908472
-2
Te .
+ 7\/:18 (97r(cos(a) + sin(a))
+ 36(cos?(a) sin(a) + cos(a) sin?(«)) BesselK(0, 2)
+ BesselK(1, 2) (137 (cos® () + sin® () — 307 (cos(a) + sin(a)))) z
13me4 2
T (BesselK(1,2) + BesselK(0,2)) " x
2
T T : .
(1—6 + 5 cos(a) sin(a) + cos?(a) sin® (a))
—4
e . 65 .

+ 16 <13 cos? () sin’(a) + 5 cos(a) sm(a)>,

where we set a = In (1:%(2()&)) andb=1In (%&(é?))

In Tables 8.4, 8.5, and 8.6 below, we give some numerical results for the rational symbolic
Gaussian cubature formula for different values of a. We present in Figure 8.2 the zeros of
the second-degree orthogonal polynomials Vs 5(cv, z) as functions of the parameter . Note
that every zero («, z) with a € [0, 7] lies on two trajectories in the domain 2 which are
symmetrical with respect to the axis o = 7.

Table 8.7 presents the relative errors between the exact values and the rational symbolic
Gaussian cubature formula for £ = 4 and m = 3.
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TABLE 8.5
Nodes of the rational symbolic Gaussian cubature formula for k = 4 and m = 3.
a 61" () 2 (@) 05" ()

w/4 | 0.6161503629514887 | 1.114395435588610 | 1.894548292262727

w/5 | 0.5828998825097352 | 1.087933941318848 | 1.877492354226239

w/6 | 0.5300275705823403 | 1.046060130006930 | 1.850561357129055

w/7 | 0.4819162238424462 | 1.007251738910978 | 1.825067008201785

/8 | 0.4414376479005542 | 0.9736169068022864 | 1.802279882258584

/9 | 0.4075895621605507 | 0.9446284412807688 | 1.782070638966526

7/10 | 0.3790243205296104 | 0.9194803033446130 | 1.764127862184243

TABLE 8.6
Weights of the rational symbolic Gaussian cubature formula for k = 4 and m = 3.

a A" () 45" () A5 ()
w/4 | 0.03842739992165646 | 0.1444356138009614 | 0.03683779967860888
w/5 | 0.03599902677130752 | 0.1451298630219150 | 0.03857192360807164
w/6 | 0.03318706537976423 | 0.1454169680334712 | 0.04109677998799345
w/7 | 0.03146152562857054 | 0.1449743804660527 | 0.04326490730671018
m/8 | 0.03042637042990856 | 0.1442051754625434 | 0.04506926750890688
w/9 | 0.02974536776516242 | 0.1433522985702679 | 0.04660314706596627
w/10 | 0.02924286194200602 | 0.1425213620560342 | 0.4793658940323795

9. Conclusion. In this work, we have presented rational symbolic cubature rules over the
first quadrant in a Cartesian plane. More precisely, from the connection between the theory of
two-point Padé approximants and the symbolic Gaussian cubature formulas corresponding to a
bivariate Stieltjes function, we have constructed some cubature formulas that integrate exactly
a combination of bivariate homogeneous polynomials and some specific bivariate rational
functions. In order to illustrate the main idea of the work, some examples have been presented.
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