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ITERATIVE LAVRENTIEV REGULARIZATION METHOD UNDER A HEURISTIC
RULE FOR NONLINEAR ILL-POSED OPERATOR EQUATIONS∗

PALLAVI MAHALE† AND ANKIT SINGH†

Abstract. In this paper, we consider the iterative Lavrentiev regularization method for obtaining a stable
approximate solution for a nonlinear ill-posed operator equation F (x) = y, where F : D(F ) ⊂ X → X is a
nonlinear monotone operator on the Hilbert spaces X . In order to obtain a stable approximate solution using iterative
regularization methods, it is important to use a suitable stopping rule to terminate the iterations at the appropriate
step. Recently, Qinian Jin and Wei Wang (2018) have proposed a heuristic rule to stop the iterations for the iteratively
regularized Gauss-Newton method. The advantage of a heuristic rule over the existing a priori and a posteriori rules is
that it does not require accurate information on the noise level, which may not be available or reliable in practical
applications. In this paper, we propose a heuristic stopping rule for an iterated Lavrentiev regularization method. We
derive error estimates under suitable nonlinearity conditions on the operator F .
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1. Introduction. In this paper, we are interested in finding a stable approximate solution
for an ill-posed operator equation

(1.1) F (x) = y,

where F : D(F ) ⊂ X → X is a nonlinear monotone operator on a Hilbert space X. We recall
that the operator F is said to be monotone if it satisfies

〈F (x)− F (x̃), x− x̃〉 ≥ 0 for all x, x̃ ∈ D(F ).

We shall denote the inner product and the corresponding norm on the Hilbert space X by
〈., .〉 and ‖.‖, respectively. Throughout the paper we assume that (1.1) has a unique solution,
namely x†, and that in place of the exact data y we only have perturbed data yδ available
satisfying

(1.2) ‖y − yδ‖ ≤ δ.

As the operator equation considered in (1.1) is ill-posed, due to the instability of the problem,
one has to use regularization methods to find a stable approximate solution. Tikhonov
regularization is one of the classical continuous regularization methods used in literature for
calculating an approximate solution for nonlinear ill-posed problems (see [4, 5, 6, 15, 16, 28]).
For the case of monotone operators F , one can use a simpler method, namely Lavrentiev
regularization [31, 32]. In Lavrentiev regularization, the approximate solution is obtained by
solving the equation

(1.3) F (x)− yδ + α(x− x0) = 0,

where α > 0 is a suitably chosen regularization parameter and x0 is an initial guess for the
exact solution x†. If the operator F is Frèchet differentiable in an appropriate neighbourhood
of x†, then the equation (1.3) can be expressed as

x = x0 + (F ′(x) + αI)−1[yδ − F (x) + F ′(x)(x− x0)],
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where F ′(x) denotes the Frèchet derivative of F at x. In the literature on ill-posed operator
equations, Lavrentiev regularization have been studied under various discrepancy principles as
regularization parameter choice rules (see [11, 22, 23, 25, 29]). Another class of regularization
methods, namely iterative regularization methods, have gained a lot of popularity due to their
straightforward implementation. In [3], Bakushinsky and Smirnova used an iterative form of
Lavrentiev regularization in which the iterations are defined as

(1.4) xδk+1 = xδk − (Aδk + αkI)
−1[F (xδk)− yδ + αk(x

δ
k − x0)],

where Aδk := F ′(xδk) and (αk) is a sequence of regularization parameters satisfying

(1.5) αk > 0, 1 ≤ αk
αk+1

≤ µ, and lim
k→∞

αk = 0,

for some µ > 1. A generalized discrepancy principle (see [1, 2]) has been used by them to get
a stopping index kδ satisfying

(1.6) ‖F (xδkδ)− y
δ‖2 ≤ τδ ≤ ‖F (xδk)− yδ‖2 for 0 ≤ k < kδ,

for some suitable τ > 1. They have shown convergence of the approximate solution xδkδ to
the exact solution x† as δ → 0. In [22], Mahale and Nair have considered the method defined
in (1.4) under the following stopping rule: Select kδ as the first integer satisfying

(1.7) ‖αkδ(F ′(xδkδ) + αkδI)
−1/2(F (xδkδ)− y

δ)‖ ≤ τδ

for some τ ≥ 1. They have shown convergence of the method and also obtained order-optimal
error estimates under suitable nonlinearity conditions for the operator F . We observe that the
stopping rule defined in (1.6), (1.7) and many frequently used stopping rules in the literature
on ill-posed operator equations require accurate information about the noise δ = ‖y − yδ‖
to get a stable approximate solution. In practical applications, due to experimental errors
or due to some physical constraints, such noise level information may not be accurate or
reliable. Such incorrect or incomplete information may result in a bad approximation of the
solution. To overcome this issue, heuristic rules have been used in the literature by various
authors (cf. [5, 9, 10, 14, 33, 34]). Recently Jin and Wang in [18] have considered a heuristic
selection rule for the iteratively regularized Gauss-Newton method. They have presented a
convergence analysis of the method and have also derived error bounds under various forms
of source conditions. They have formulated the heuristic rule by first defining the integer
k∞ := k∞(yδ) that satisfies k∞ := max{k : xδl ∈ D(F ) for all 0 ≤ l ≤ k}, where D(F )
denotes the domain of F , and then the rule is defined as follows:

Let

θ(k, yδ) =
‖F (xδk)− yδ‖2

αk
,

and let k∗ = k∗(y
δ) be the integer satisfying

k∗ ∈ arg min{θ(k, yδ) : k = 0, 1, . . . , k∞}.

Then use xδk∗ as approximation of the exact solution x†. In this paper, we formulate a heuristic
selection rule for the iterated Lavrentiev regularization method defined in (1.4). We will obtain
error bounds for the proposed method under Hölder-type source conditions using suitable
nonlinearity conditions for the operator F .
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2. Formulation of the heuristic rule. Before formulating our heuristic rule for monotone
ill-posed operator equations, we introduce an integer k∞ := k∞(yδ) satisfying

k∞ := max{k : xδl ∈ D(F ) for all 0 ≤ l ≤ k}.

From the above definition of k∞, it is clear that it is the largest positive integer for which the
iterates xδk belong to the domain of F for each k satisfying 0 ≤ k ≤ k∞. Note that the integer
k∞ can take the value∞. This choice of k∞ := k∞(yδ) ensures that the iterates (xδk) defined
by (1.4) belong to D(F ). Now we define our heuristic rule as follows:

Let

θ(k, yδ) =
‖F (xδk)− yδ‖2

α2
k

.

We define k∗ = k∗(y
δ) to be the integer satisfying

(2.1) k∗ ∈ arg min{θ(k, yδ) : k = 0, 1, . . . , k∞}

and use xδk∗ as approximation of the exact solution x†.
In order to show the well-definedness of the heuristic rule and to obtain some crucial

results for the convergence analysis, we will assume the following condition for the noise
‖y − yδ‖.

The motivation for this condition comes from the work of Hanke and Raus [9] for linear
ill-posed operator equations in Hilbert spaces of the form (1.1), where heuristic rules were
developed for the case when F is a bounded linear operator between the Hilbert spaces X and
Y . In their work, they compared the values of the exact error ‖xδα − x†‖2, where xδα denotes
the regularized solution obtained using the Tikhonov regularization method, and a multiple of
the residual ‖F (xδα)−y

δ‖2
α with respect to the regularization parameter α that has been suitably

chosen so that it minimizes ‖xδα−x†‖2. Although in reality the exact solution x† is not known
and hence the exact error is not computable, by using a posteriori error bounds for Tikhonov
regularization it can be derived that ‖xδα − x†‖2 ≈ 1√

α
. Thus, the term on the right-hand side

can serve as a surrogate for the actual error. In [9], the regularization parameter has been
chosen as α∗ = argminα>0

‖F (xδα)−y
δ‖2√

α
, and xα∗ has been used as an approximate solution.

Moreover, using a source condition of the form x† − x0 ∈ R((F ∗F )ν) for some ν > 0, it has
been shown that the rule admits error estimates of the form

(2.2) ‖xδα∗ − x
†‖ ≤ C

(
1 +

δ

δ∗

)
max{δ∗, δ}

2ν
(2ν+1) ,

where C is a suitable constant, δ∗ := ‖F (xδα∗) − y
δ‖, and δ = ‖yδ − y‖. We note that the

error estimate in (2.2) involves two quantities, namely δ∗ and δ. The value of δ∗ gives the
following test for this parameter choice rule: if δ∗ ≤ δ (or what is believed to be the noise
level δ), then one should be careful about the chosen parameter α(yδ, δ) since the factor δ

δ∗ is
large, causing (2.2) to blow up. On the contrary, if δ∗ ≥ δ, then this situation is not critical as
the magnitude of δ∗ determines the noise level. Therefore, the value of δ∗ should always be
monitored, and the computed approximation should be discarded if δ∗ is significantly smaller
than the expected noise level. Apparently, with additional conditions, the factor δ

δ∗ can be
removed, and we get optimal-order resembling convergence rates of the form

‖xδα∗ − x
†‖ ≤ Cmax{δ∗, δ}

2ν
(2ν+1) .
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In this paper, we will use the following assumption for the noise ‖y − yδ‖:
ASSUMPTION 1. There exists a constant κ, where 0 < κ < 1, satisfying

(2.3) ‖yδ − ỹ‖ ≥ κ‖yδ − y‖,

for any ỹ ∈ {F (x) : x ∈ S(yδ)}, where S(yδ) is the set {xδk : 0 ≤ k ≤ k∞} and where the
sequence xδk is defined by the method (1.4) using the data yδ .

The above assumption has been used in [7, 18, 27, 35] for the error analysis of the iterative
regularized Gauss-Newton method in both Banach spaces as well as in Hilbert space settings.
In these references, the above condition has been interpreted as follows: For the ill-posed
operator equation, due to the smoothing effect of the operator F, F (x) has a certain regularity.
On the other hand, the noisy data yδ, in general, are corrupted by random noise and hence
contain many high frequency components so that it may exhibit salient irregularity. The
condition (2.3) roughly means that subtracting any regular function of the form F (x) with
x ∈ S

(
yδ
)

from the noisy data yδ can not significantly remove the randomness of the noise.
Authors do agree with the fact that, in general, the monotonicity and continuity of the residual
function

∥∥F (xδk)− yδ∥∥may not be guaranteed (see [8]). But, during numerical computations,
it is possible to verify Assumption 1 by keeping track of the quantity

∥∥F (xδk)− yδ∥∥ with
respect to an increase in k. So, it can be concluded that if

∥∥F (xδk)− yδ∥∥ does not fall
below a very small number, then one can be confident that Assumption 1 holds. Also,
Assumption 1 is a slight modification of the following assumption that is used in [14] for
variational regularization: there exists a constant κ̃, with 0 < κ̃ < 1, satisfying

(2.4) ‖yδ − y − v‖ ≥ κ̃‖yδ − y‖,

for any v ∈ {F (x)− y : x ∈ D(F )}. In [12], for the case when Y is a Hilbert space and F is
a bounded linear operator, the following condition

‖Q(yδ − y)‖ ≥ σ‖yδ − y‖,

with σ > 0, has been used to quantify the randomness of the noise, where Q denotes the
orthogonal projection onto the orthogonal complement of the range of F . A weaker form of
this condition has been employed in [9]: there exists 0 < σ < 1 such that

(2.5) 〈yδ − y, v〉 ≤ (1− σ)‖yδ − y‖‖v‖

for all v ∈ {F (x) − y : x ∈ D(F )}. We note that (2.5) implies (2.4). In fact, by the
Cauchy-Schwarz inequality, we observe that

‖yδ − y − v‖2 = ‖v‖2 + ‖yδ − y‖2 − 2〈yδ − y, v〉
≥ ‖v‖2 + ‖yδ − y‖2 − 2(1− σ)‖yδ − y‖‖v‖
≥ ‖v‖2 + ‖yδ − y‖2 − (1− σ)

(
‖yδ − y‖2 + ‖v‖2

)
≥ σ‖yδ − y‖2,

with κ̃ = σ1/2.
Here, we also cite the thesis of Real (2021) [27], in which convergence results for

variational regularization and Landweber iteration under heuristic rules have been derived.
Throughout the thesis, condition (2.3) has been assumed in the convergence analysis. It has
also been mentioned that there is no way to verify such conditions in reality unless the exact
data y are accessible. Despite this, heuristic parameter choice rules are useful as long as there
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is a good understanding of the noise in a given problem. To be added is that random noise is a
desirable instance when using heuristic parameter choice rules. The least desirable instance
happens with a mildly ill-posed forward operator and smooth data noise. This is because
the noise condition tells us that the noise should be sufficiently “nonsmooth” (see [20, 21]).
We may say that Assumption 1 means that there does not exist overfitting for the noisy data.
During numerical computations, the quantity

∥∥F (xδk)− yδ∥∥ should be monitored with respect
to an increase in k to ensure that Assumption 1 holds [18, 27, 35]. However, the theoretical
verification of this assumption still remains an open question.

The following result deals with the well-definedness of the heuristic rule considered
in (2.1).

LEMMA 2.1. Suppose that Assumption 1 holds with yδ 6= y. Then there exist a finite
integer k∗ satisfying (2.1).

Proof. If k∞ is finite, then the result holds. Let us assume that k∞ = ∞. Using
Assumption 1 and the condition on αk given in (1.5), we get

θ(k, yδ) =
‖F (xδk)− yδ‖2

α2
k

≥ κ2‖y − yδ‖2

α2
k

→∞

as k →∞. This ensures the existence of a finite integer k∗, where the minimum of θ(k, yδ)
occurs.

3. Assumptions and well-definedness of the method. In this section, we will show the
well-definedness of the method. For this, we assume the following nonlinearity condition for
the operator F :

ASSUMPTION 2.
(i) The nonlinear operator F is Frèchet differentiable in a ball around the exact solution

Br(x
†) := {x ∈ X : ‖x− x†‖ < r} ⊂ D(F ) for some number r > 0.

(ii) The nonlinear operator F is properly scaled, i.e., there exist α0 > 0 such that
‖F ′(x†)‖ ≤ α0.

(iii) There exists constants K0 > 0 and K1 > 0 such that

(3.1) ‖(F ′(x)− F ′(x̃))w‖ ≤ K0‖x− x̃‖‖F ′(x̃)w‖+K1‖F ′(x̃)(x− x̃)‖‖w‖

for all x, x̃ ∈ Br(x†) and w ∈ X .

The nonlinearity condition given in Assumption 2(iii) has been used by various authors in
the literature (see [13, 17, 18, 19]). Using the fundamental theorem of integral calculus, it can
be shown that the following two inequalities are consequences of the nonlinearity condition
given in (3.1):

‖F (x)− F (x̃)− F ′(x̃)(x− x̃)‖ ≤ 1

2
(K0 +K1)‖x− x̃‖‖F ′(x̃)(x− x̃)‖(3.2)

and

‖F (x)− F (x̃)− F ′(x̃)(x− x̃)‖ ≤ 3

2
(K0 +K1)‖x− x̃‖‖F ′(x)(x− x̃)‖(3.3)

for all x, x̃ ∈ Br(x†). Now we consider a source condition that is needed for obtaining error
estimates for the method.
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ASSUMPTION 3. There exists v ∈ X and p > 0 such that

x0 − x† = (F ′(x†))pv.

In the above source condition, the fractional power (F ′(x†))p is defined by (see [30])

(F ′(x†))pv :=
sin pπ

π

∫ ∞
0

sp−1(F ′(x†) + sI)−1F ′(x†)v ds, v ∈ X.

In case when the operator F ′(x†) is a self-adjoint, the power (F ′(x†))p can be defined using
spectral theory (see [24]). For getting convergence rate for the method, the next proposition,
which is a generalization of the well-known interpolation inequality for self adjoint operators,
will be used, and its proof can be found in [26]:

PROPOSITION 3.1. Let B : X → X be linear monotone operator. Then, for s ≥ 0,

‖Bsx‖ ≤ c̃‖Bs+1x‖s/s+1‖x‖1/s+1,

where c̃ = s−s/(s+1) + s1/s+1 ≤ 2.

Proof. See [26] and also [31, Proposition 2.1].
For the simplicity of expression, we use the following notation throughout the paper:

rα(λ) =
α

(α+ λ)
, eδk = xδk − x†, e0 = x0 − x†, A = F ′(x†), and Aδk = F ′(xδk).

For the convergence analysis, we choose k̂ to be the first integer satisfying

(3.4) αk̂ ≤
c0δ

‖e0‖
< αk,

for 0 ≤ k < k̂, where c0 > 1 is an appropriate constant and α0 >
c0δ
‖e0‖ . The conditions on αk

given in (1.5) ensure the existence of k̂ satisfying (3.4).
In the following lemma, we show the well-definedness of the iterations defined in (1.4)

when they are terminated according to the stopping rule (3.4).
LEMMA 3.2. Let Assumption 2 be satisfied, and let {αk} be chosen according to (3.4). If

max{ 1
c0

+ 3γ(K0 +K1)‖e0‖, 5(K0 +K1)‖e0‖µ} < 1,

then

(3.5) ‖eδk‖ ≤ 2‖e0‖ and ‖Aeδk‖ ≤ γαk‖e0‖,

for 0 ≤ k ≤ k̂, where γ =
(1+ 1

c0
)µ

1−5(K0+K1)‖e0‖µ . Moreover, xδk ∈ Br(x†) for r > 2‖e0‖ and for

0 ≤ k ≤ k̂.
Proof. We prove (3.5) using induction. From the scaling condition, it is trivial for k = 0.

Now, we assume the result holds for some 0 < k < k̂, and we show that it holds for k + 1.
From the iteration defined in (1.4), we have

(3.6) xδk+1 = xδk − (αkI +Aδk)
−1(αk(x

δ
k − x0) + F (xδk)− yδ),
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which also implies

xδk+1 − x† = (xδk − x†)− (αkI +Aδk)
−1(αk(x

δ
k − x0) + F (xδk)− yδ)

= (αkI +Aδk)
−1{(αkI +Aδk)(x

δ
k − x†)− (F (xδk)− yδ − αk(xδk − x0)}

= (αkI +Aδk)
−1{αk(x0 − x†)− (F (xδk)− yδ −Aδk(xδk − x†))}

= rαk(A
δ
k)(x0 − x†)− (αkI +Aδk)

−1{F (xδk)− yδ −Aδk(xδk − x†)}.

Hence, we can write

xδk+1 − x† = rαk(A
δ
k)(x0 − x†)

− (αkI +Aδk)
−1{F (xδk)− y −Aδk(xδk − x†)}+ (αkI +Aδk)

−1(y − yδ).

From the above equation, we get

‖eδk+1‖ ≤ ‖rαk(Aδk)e0‖+ ‖(αkI +Aδk)
−1(y − yδ)‖

+ ‖(αkI +Aδk)
−1{F (xδk)− y −Aδk(xδk − x†)}‖.

Using Assumption 2 and (3.4), we have

‖eδk+1‖ ≤ ‖e0‖+
δ

αk
+

3

2

K0 +K1

αk
‖eδk‖‖Aeδk‖(3.7)

≤
(
1 +

1

c0

)
‖e0‖+

3

2

K0 +K1

αk
‖eδk‖‖Aeδk‖.

Using (3.5) and the induction hypothesis, we obtain

‖eδk+1‖ ≤
(
1 +

1

c0

)
‖e0‖+ 3γ(K0 +K1)‖e0‖2

≤
(
1 +

1

c0
+ 3γ(K0 +K1)‖e0‖

)
‖e0‖.

By the hypothesis of the lemma, we get

(3.8) ‖eδk+1‖ ≤ 2‖e0‖.

Thus, we have ‖eδk‖ ≤ 2‖e0‖ for all 0 ≤ k ≤ k̂, and if we choose r > 2‖e0‖, then it follows
that xδk ∈ Br(x†). Again from (3.6), it can be seen that

Aδke
δ
k+1 = Aδkrαk(A

δ
k)e0 −Aδk(αkI +Aδk)

−1{F (xδk)− yδ −Aδk(xδk − x†)}.

From the above equation, we get

‖Aδkeδk+1‖ ≤ αk‖e0‖+ ‖F (xδk)− yδ −Aδk(xδk − x†)‖.

Using (1.2) and (3.3), we can write

(3.9) ‖Aδkeδk+1‖ ≤ αk‖e0‖+
3

2
(K0 +K1)‖eδk‖‖Aeδk‖+ δ.

Using Assumption 2, we have

(3.10) ‖(A−Aδk)eδk+1‖ ≤ K0‖eδk‖‖Aeδk+1‖+K1‖eδk+1‖‖Aeδk‖.
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Note that

(3.11) ‖Aeδk+1‖ ≤ ‖Aδkeδk+1‖+ ‖(A−Aδk)eδk+1‖.

Now using (3.9) and (3.10) in (3.11), we get

‖Aeδk+1‖ ≤ αk‖e0‖+
3

2
(K0 +K1)‖eδk‖‖Aeδk‖

+ δ +K0‖eδk‖‖Aeδk+1‖+K1‖eδk+1‖‖Aeδk‖

≤ αk‖e0‖+
{
3

2
(K0 +K1)‖eδk‖+K1‖eδk+1‖

}
‖Aeδk‖

+ δ + 2K0µ‖eδk‖‖Aeδk+1‖.
(3.12)

This together with (3.5) implies

(1− 2µK0‖e0‖)‖Aeδk+1‖ ≤
(
1 +

1

c0

)
αk‖e0‖+ (3K0 + 5K1)‖e0‖‖Aeδk‖.

Thus, we get

‖Aeδk+1‖ ≤
1

1− 2µK0‖e0‖

{
1 +

1

c0
+ (3K0 + 5K1)γ‖e0‖

}
αk‖e0‖

≤

{
1 + 1

c0

1− 5(K0 +K1)‖e0‖µ

}
αk‖e0‖ ≤ γαk+1‖e0‖.

Hence,

‖Aeδk‖ ≤ γαk‖e0‖,

for all 0 ≤ k ≤ k̂.
LEMMA 3.3. Let the conditions of Lemma 3.2 be satisfied, and let the integer k̂ be chosen

as in (3.4). Then ‖F (xδ
k̂
)− yδ‖ ≤ Cδ, where C = 1 + 2γc0 with γ as in Lemma 3.2.

Proof. From Lemma 3.2 and Assumption 2, we have

‖F (xδ
k̂
)− yδ‖ ≤ ‖yδ − y‖+ ‖Aeδ

k̂
‖+ ‖F (xδ

k̂
)− y −Aeδ

k̂
‖

≤ δ + γαk̂‖e0‖+
K0 +K1

2
‖eδ
k̂
‖‖Aeδ

k̂
‖

≤ δ + γαk̂‖e0‖+ γ(K0 +K1)αk̂‖e0‖
2

≤ δ + γ(1 + (K0 +K1)‖e0‖)‖e0‖αk̂.

From the condition in Lemma 3.2, we have (K0 +K1)‖e0‖ < 1. Thus,

(3.13) ‖F (xδ
k̂
)− yδ‖ ≤ δ + 2γ‖e0‖αk̂.

Using (3.4) in (3.13), we get

‖F (xδ
k̂
)− yδ‖ ≤ Cδ,

where C = 1 + 2γc0.
In the following result, we prove the well-definedness of the heuristic rule given in (2.1)

and also obtain a lower bound for αk∗ .
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LEMMA 3.4. Let the conditions of Lemma 3.2 and Assumption 1 be satisfied. Then the
integer k∗ in the heuristic rule (2.1) is finite, and for this integer k∗, it holds that αk∗ ≥ c2δ

‖e0‖
with c2 := κc0

µC‖e0‖ , where C is as in Lemma 3.3.

Proof. From Lemma 3.3 and the definition of k∗ and k̂, it follows that

θ(k∗, y
δ) ≤ θ(k̂, yδ) =

‖F (xδ
k̂
)− yδ‖2

α2
k̂

≤ C
2δ2µ2

α2
k̂−1

≤ C
2µ2‖e0‖2

c20
.

Hence by Assumption 1 we have

κ2δ2

α2
k∗

≤ θ(k∗, yδ) ≤
C2µ2‖e0‖2

c20
,

which implies αk∗ ≥
κc0δ

µC‖e0‖
. Thus, we get the desired estimate with c2 = κc0

µC‖e0‖ .

For showing the well-definedness of the iterates given in (1.4) for 0 ≤ k ≤ k∗, we
introduce a new integer kδ∗ using the constant c2 involved in Lemma 3.4 in the following way:
Choose kδ∗ to be the first positive integer satisfying

(3.14) αkδ∗ ≤
c2δ

‖e0‖
< αk, 0 ≤ k < kδ∗.

From Lemma 3.4, it is evident that k∗ ≤ kδ∗ and 0 < c2 < 1. In the next result, we show
the well-definedness of the iterates xδk, for all 0 ≤ k ≤ kδ∗, by obtaining estimates for ‖eδk‖
and ‖Aeδk‖. The proof of the result is similar to the proof of Lemma 3.2. For the sake of
completeness, we provide a brief sketch of it here.

LEMMA 3.5. Let Assumption 2 and the conditions of Lemma 3.4 be satisfied, and let
{αk} be chosen according to (3.14). If

max{c2 +
3(K0 +K1)γ1

c2
‖e0‖,

5(K0 +K1)µ

c2
‖e0‖} < 1,

then

(3.15) ‖eδk‖ ≤
2‖e0‖
c2

and ‖Aeδk‖ ≤
γ1
c2
αk‖e0‖,

for 0 ≤ k ≤ kδ∗, where γ1 =
(1+ 1

c2
)µ

1− 5(K0+K1)‖e0‖µ
c2

. Moreover, xδk ∈ Br(x†) for r > 2‖e0‖
c2

.

Proof. We prove the result by an induction argument. For k = 0, the result is obvious.
Now let us assume that it holds for some 0 ≤ k < kδ∗, and we will prove it for k+1. From (3.7)
and (3.14), we have

‖eδk+1‖ ≤ ‖e0‖+
δ

αk
+

3

2

K0 +K1

αk
‖eδk‖‖Aeδk‖

≤
(
1 +

1

c2

)
‖e0‖+

3

2

K0 +K1

αk
‖eδk‖‖Aeδk‖.

Using the induction hypothesis, we get

‖eδk+1‖ ≤
(
1 + c2 +

3(K0 +K1)γ1
c2

‖e0‖
)
‖e0‖
c2

.
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Thus, using the condition of the lemma, we obtain

‖eδk+1‖ ≤
2

c2
‖e0‖.

Hence, we have ‖eδk‖ ≤ 2
c2
‖e0‖ for all 0 ≤ k ≤ kδ∗, and if we choose r > 2

c2
‖e0‖, then

xδk ∈ Br(x†). From (3.12), we get

‖Aeδk+1‖ ≤ αk‖e0‖+
{
3

2
(K0 +K1)‖eδk‖+K1‖eδk+1‖

}
‖Aeδk‖+ δ +K0‖eδk‖‖Aeδk+1‖

≤ αk‖e0‖+
3K0 + 5K1

c2
‖e0‖‖Aeδk‖+ δ +

2K0‖e0‖
c2

‖Aeδk+1‖

≤
(
1 +

1

c2

)
αk‖e0‖+

3K0 + 5K1

c2
‖e0‖‖Aeδk‖+

2K0‖e0‖
c2

‖Aeδk+1‖.

Thus, we find

‖Aeδk+1‖ ≤
1

1− 2µK0‖e0‖
c2

{
1 +

1

c2
+

3K0 + 5K1

2
γ1‖e0‖

}
αk‖e0‖

≤

{
1 + 1

c2

1− 5(K0+K1)‖e0‖µ
c2

}
αk‖e0‖ ≤ γ1αk+1‖e0‖ ≤

γ1
c2
αk+1‖e0‖.

As a consequence,

‖Aeδk‖ ≤
γ1
c2
αk‖e0‖, for all 0 ≤ k ≤ kδ∗,

where γ1 =
(1+ 1

c2
)µ

1− 5(K0+K1)‖e0‖µ
c2

.

4. Some crucial estimates. In this section, we obtain some estimates that will be useful
for proving the main result of the paper.

LEMMA 4.1. Let the conditions of Lemma 3.4 be satisfied. Then,

‖eδk+1 − rαk(A)e0‖ ≤ C2‖e0‖
{
‖eδk‖+

‖Aeδk‖
αk

}
+

δ

αk
,(4.1)

‖Aeδk+1 −Arαk(A)e0‖ ≤ C3‖e0‖
{
‖Arαk(A)e0‖+ ‖Aeδk‖

}
+ 2δ(4.2)

for all 0 ≤ k < kδ∗, where C2 = max{K0, C1} with

C1 = K1 +
3

c2
(K0 +K1) and C3 = max{ 4

c2
K0, 2K1(1 +

1

c2
) +

2K0

c2
}.

Proof. From the iterative method, we write

eδk+1 = rαk(A)e0 + (rαk(A
δ
k)− rαk(A))e0

− (αkI +Aδk)
−1(F (xδk)− yδ +Aδk(x

δ
k − x†)).

(4.3)

Using Assumption 2 and (1.2), we get

‖eδk+1 − rαk(A)e0‖ ≤ ‖(rαk(Aδk)− rαk(A))e0‖
+ ‖(αkI +Aδk)

−1(F (xδk)− yδ +Aδk(x
δ
k − x†))‖

≤ ‖(rαk(Aδk)− rαk(A))e0‖

+
1

αk

(
3

2
(K0 +K1)‖eδk‖‖Aeδk‖+ δ

)
.

(4.4)
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Note that

(rαk(A
δ
k)− rαk(A))e0 = αk(αkI +Aδk)

−1(A−Aδk)(αkI +A)−1e0.

Thus,

‖(rαk(Aδk)− rαk(A))e0‖ ≤ ‖αk(αkI +Aδk)
−1(A−Aδk)(αkI +A)−1e0‖

≤ ‖(A−Aδk)(αkI +A)−1e0‖.

Again from Assumption 2, we have

‖(A−Aδk)(αkI +A)−1e0‖ ≤ K0‖eδk‖‖A(αkI +A)−1e0‖+K1‖Aeδk‖‖(αkI +A)−1e0‖

≤ K0‖eδk‖‖e0‖+
K1

αk
‖e0‖‖Aeδk‖.

Therefore,

‖(rαk(Aδk)− rαk(A))e0‖ ≤ K0‖eδk‖‖e0‖+
K1

αk
‖e0‖‖Aeδk‖.

From (4.4), we get

‖eδk+1 − rαk(A)e0‖ ≤ K0‖eδk‖‖e0‖+
K1

αk
‖e0‖‖Aeδk‖

+
1

αk

(
3

c2
(K0 +K1)‖e0‖‖Aeδk‖+ δ

)
≤
{
K0‖eδk‖+

1

αk

(
K1 +

3

c2
(K0 +K1)

)
‖Aeδk‖

}
‖e0‖+

δ

αk
.

Denoting C1 = K1 +
3
c2
(K0 +K1), we obtain

‖eδk+1 − rαk(A)e0‖ ≤ ‖e0‖
{
K0‖eδk‖+

C1
αk
‖Aeδk‖

}
+

δ

αk

≤ C2‖e0‖
{
‖eδk‖+

1

αk
‖Aeδk‖

}
+

δ

αk
,

where C2 = max{K0, C1}. Applying the operator A on both sides of (4.3), we get

‖Aeδk+1 −Arαk(A)e0‖ ≤ ‖A(rαk(Aδk)− rαk(A))e0‖
+ ‖A(αkI +Aδk)

−1(F (xδk)− yδ +Aδk(x
δ
k − x†))‖.

(4.5)

Note that for any v ∈ X,

‖A(αkI +Aδk)
−1v‖ ≤ ‖Aδk(αkI +Aδk)

−1v‖+ ‖(A−Aδk)(αkI +Aδk)
−1v‖.

Using Assumption (2) and (3.15), we obtain

‖A(αkI +Aδk)
−1v‖

≤ ‖Aδk(αkI +Aδk)
−1v‖+ ‖(A−Aδk)(αkI +Aδk)

−1v‖
≤ ‖v‖+K0‖eδk‖‖Aδk(αkI +Aδk)

−1v‖+K1‖Aδkeδk‖‖(αkI +Aδk)
−1v‖

≤ ‖v‖+K0‖eδk‖‖v‖+
K1

αk
‖Aδkeδk‖‖v‖,(4.6)
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for any v ∈ X. Also, from the condition of Lemma 3.5, we have 2
c2
(K0 + K1)‖e0‖ ≤ 1.

Hence, we get

‖Aδkeδk‖ ≤ ‖Aeδk‖+ ‖(A−Aδk)eδk‖ ≤ (1 + (K0 +K1)‖eδk‖)‖Aeδk‖

≤
(
1 +

2

c2
(K0 +K1)‖e0‖

)
‖Aeδk‖

≤ 2‖Aeδk‖.(4.7)

Using (4.7) in (4.6) and the condition of Lemma 3.5, for any v ∈ X, we obtain

‖A(αkI +Aδk)
−1v‖ ≤ ‖v‖+K0‖eδk‖‖v‖+

2K1

αk
‖Aeδk‖‖v‖

≤ ‖v‖+ 2

c2
K0‖e0‖‖v‖+

2γ1K1

c2
‖e0‖‖v‖

≤
(
1 +

2

c2
(K0 +K1γ1)‖e0‖

)
‖v‖

≤ 2‖v‖.(4.8)

Now, including (4.8) in (4.5), we have

‖Aeδk+1 −Arαk(A)e0‖
≤ ‖A(rαk(Aδk)− rαk(A))e0‖+ 2‖F (xδk)− yδ +Aδk(x

δ
k − x†)‖

≤ ‖A(rαk(Aδk)− rαk(A))e0‖+ (K0 +K1)‖eδk‖‖Aeδk‖+ 2δ

≤ ‖A(rαk(Aδk)− rαk(A))e0‖+
2(K0 +K1)

c2
‖e0‖‖Aeδk‖+ 2δ.(4.9)

Note that

(4.10) ‖A(rαk(Aδk)− rαk(A))e0‖ ≤ ‖A(αkI +Aδk)
−1(A−Aδk)rαk(A)e0‖.

Again making use of (4.8) in (4.10), we have

(4.11) ‖A(rαk(Aδk)− rαk(A))e0‖ ≤ 2‖(A−Aδk)rαk(A)e0‖.

In view of Assumption 2, we have

‖(A−Aδk)rαk(A)e0‖ ≤ K0‖eδk‖‖Arαk(A)e0‖+K1‖Aeδk‖‖rαk(A)e0‖

≤ 2

c2
K0‖e0‖‖Arαk(A)e0‖+K1‖e0‖‖Aeδk‖.(4.12)

Using (4.12) in (4.11), we get

(4.13) ‖A(rαk(Aδk)− rαk(A))e0‖ ≤
4

c2
K0‖e0‖‖Arαk(A)e0‖+ 2K1‖e0‖‖Aeδk‖.

Now from (4.13) and (4.9), we have

‖Aeδk+1 −Arαk(A)e0‖

≤ 4

c2
K0‖e0‖‖Arαk(A)e0‖+ 2K1‖e0‖‖Aeδk‖+

2(K0 +K1)

c2
‖e0‖‖Aeδk‖+ 2δ

≤
{

4

c2
K0‖Arαk(A)e0‖+

(
2K1

(
1 +

1

c2

)
+

2K0

c2

)
‖Aeδk‖

}
‖e0‖+ 2δ.
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Let C3 = max{ 4
c2
K0, 2K1

(
1 + 1

c2

)
+ 2K0

c2
}. Then, we conclude that

‖Aeδk+1 −Arαk(A)e0‖ ≤ C3
{
‖Arαk(A)e0‖+ ‖Aeδk‖

}
‖e0‖+ 2δ.

LEMMA 4.2. Let the assumptions of Lemma 3.5 hold. Let

max{C3(µ+ 1)‖e0‖, (C4 + 1)C3‖e0‖} < 1 and (K0 +K1)‖e0‖ < c2.

Then,

‖Aeδk‖ ≤ C4 {‖Arαk(A)e0‖+ δ} ,(4.14)

‖Arαk(A)e0‖ ≤ C6
{
‖F (xδk)− yδ‖+ δ

}
,(4.15)

for 0 ≤ k ≤ kδ∗, where

C4 = max

{
(µ+ 1)(1 + C3)‖e0‖
1− C3(1 + µ)‖e0‖

,
2(µ+ 1)

1− C3(1 + µ)‖e0‖

}
and

C6 =

(
1 +

c2
c2 − (K0 +K1)‖e0‖

)
C5 with

C5 = max

{
1

1− (C4 + 1)C3‖e0‖
,

2 + C3C4‖e0‖
1− (C4 + 1)C3‖e0‖

}
and C3 is as in Lemma 3.5.

Proof. From (4.2), it follows that

‖Aeδk+1‖ ≤ (1 + C3)‖e0‖‖Arαk(A)e0‖+ 2δ + C3‖e0‖‖Aeδk‖
≤ (1 + C3)‖Arαk(A)e0‖+ 2δ + C3‖e0‖‖Aeδk‖.

Denoting σk := (1 + C3)‖e0‖‖Arαk(A)e0‖ + 2δ and ηk :=
‖Aeδk‖

(1+C3)‖e0‖‖Arαk (A)e0‖+2δ , we
get

ηk+1 ≤
σk
σk+1

+ C3‖e0‖
σk
σk+1

ηk.

Using (1.5), we can easily show that

‖Arαk(A)e0‖ ≤ µ‖Arαk+1
(A)e0‖.

Now, note that

σk
σk+1

=
(1 + C3)‖e0‖‖Arαk(A)e0‖+ 2δ

(1 + C3)‖e0‖‖Arαk+1
(A)e0‖+ 2δ

≤ µ+ 1.

Thus, we have

ηk+1 ≤ 1 + µ+ C3‖e0‖(1 + µ)ηk.

From the scaling condition ‖A‖ ≤ α0, we have

‖Ae0‖ ≤ 2‖Arα0(A)e0‖ ≤
1 + µ

1− C3‖e0‖(1 + µ)
‖Arα0(A)e0‖

≤ 1 + µ

1− C3‖e0‖(1 + µ)
(‖Arα0

(A)e0‖+ 2δ) .
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Hence, we find η0 ≤ 1+µ
1−C3‖e0‖(1+µ) . Now, applying the induction hypothesis, we get

ηk ≤
1 + µ

1− C3‖e0‖(1 + µ)
,

for all 0 ≤ k ≤ kδ∗. Thus,

‖Aeδk‖ ≤
1 + µ

1− C3(1 + µ)‖e0‖
{(1 + C3)‖e0‖‖Arαk(A)e0‖+ 2δ} .

Alternately, one can write

‖Aeδk‖ ≤ C4 {‖Arαk(A)e0‖+ δ} ,

where C4 = max
{

(1+µ)(1+C3)‖e0‖
1−C3(1+µ)‖e0‖ ,

2(µ+1)
1−C3(1+µ)‖e0‖

}
. Now again from (4.2), it follows that

(1− C3‖e0‖)‖Arαk(A)e0‖ ≤ ‖Aeδk+1‖+ C3‖e0‖‖Aeδk‖+ 2δ.

Combining this with (4.14), we get

(1− C3‖e0‖)‖Arαk(A)e0‖ ≤ ‖Aeδk+1‖+ C3‖e0‖{C4 (‖Arαk(A)e0‖+ δ)}+ 2δ.

Hence,

(1− (1 + C4)C3‖e0‖)‖Arαk(A)e0‖ ≤ ‖Aeδk+1‖+ (C3C4‖e0‖+ 2)δ.

Equivalently,

‖Arαk(A)e0‖ ≤
1

1− (C4 + 1)C3‖e0‖
{
‖Aeδk+1‖+ (C3C4‖e0‖+ 2)δ

}
.

Hence, we get

(4.16) ‖Arαk(A)e0‖ ≤ C5(‖Aeδk+1‖+ δ),

where C5 = max
{

1
1−(C4+1)C3‖e0‖ ,

2+C3C4‖e0‖
1−(C4+1)C3‖e0‖

}
.

Now, using Assumption 2 and Lemma 3.5, we obtain

‖Aeδk+1‖ ≤ ‖F (xδk+1)− yδ‖+ ‖F (xδk+1)− y −Aeδk+1‖+ δ

≤ K0 +K1

2
‖eδk+1‖‖Aeδk+1‖+ ‖F (xδk+1)− yδ‖+ δ

≤ K0 +K1

c2
‖e0‖‖Aeδk+1‖+ ‖F (xδk+1)− yδ‖+ δ.

Thus, (
1− (K0 +K1)‖e0‖

c2

)
‖Aeδk+1‖ ≤ ‖F (xδk+1)− yδ‖+ δ.

Hence,

(4.17) ‖Aeδk+1‖ ≤
c2

c2 − (K0 +K1)‖e0‖
(‖F (xδk+1)− yδ‖+ δ).
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Combining (4.16) and (4.17), we get

‖Arαk(A)e0‖ ≤ C5
{

c2
c2 − (K0 +K1)‖e0‖

(‖F (xδk+1)− yδ‖+ δ) + δ

}
.

Denoting C6 =
(
1 + c2

c2−(K0+K1)‖e0‖

)
C5, we obtain

‖Arαk(A)e0‖ ≤ C6(‖F (xδk+1)− yδ‖+ δ).

Using the relation ‖Arαk+1
(A)e0‖ ≤ ‖Arαk(A)e0‖, we get

‖Arαk+1
(A)e0‖ ≤ C6

{
‖F (xδk+1)− yδ‖+ δ

}
,

for 0 < k ≤ kδ∗. Using Assumption 2 and the fact that 0 < c2 < 1, we find

‖Ae0‖ ≤
1

c2 − (K0 +K1)‖e0‖
(‖F (x0)− yδ‖+ δ) ≤ C6(‖F (x0)− yδ‖+ δ).

Therefore, by ‖Arα0
(A)e0‖ ≤ ‖Ae0‖, we note that (4.15) holds for k = 0.

In the following result, we obtain an estimate for ‖eδk‖ for all 0 ≤ k ≤ kδ∗.
LEMMA 4.3. Let Assumption 3 and the assumptions of Lemma 3.5, Lemma 4.1, and

Lemma 4.2 be satisfied. Let kδ∗ be the integer chosen according to the stopping rule (3.14),
and let ‖e0‖C8(µ+ 1)2 < 1. Then,

‖eδk‖ ≤ C10

{
‖v‖
(
‖F (xδk)− yδ‖+ δ

‖v‖

)p/p+1

+
‖F (xδk)− yδ‖+ δ

αk

}
,

for 0 ≤ k ≤ kδ∗, where

C10 = max
{
c̃ C9C6p/p+1, C9(1 + C6)

}
with C9 =

C8(µ+ 1)2

1− ‖e0‖C8(µ+ 1)2
and

C8 = max{C7, C2} with C7 = 1 + C4C2‖e0‖.

Here, C2 is as in Lemma 4.1, and C6 and C4 are as in Lemma 4.2.
Proof. From (4.1) and (4.14), it follows that

‖eδk+1‖ ≤ ‖rαk(A)e0‖+ C2‖e0‖
{
‖eδk‖+

C4(‖Arαk(A)e0‖+ δ)

αk

}
+

δ

αk

≤ ‖rαk(A)e0‖+ C2‖e0‖‖eδk‖+
C2C4‖e0‖‖Arαk(A)e0‖

αk
+ (1 + C4C2‖e0‖)

δ

αk

≤ ‖rαk(A)e0‖+ C7
‖Arαk(A)e0‖+ δ

αk
+ C2‖e0‖‖eδk‖,

where C7 = 1 + C4C2‖e0‖. Denoting C8 := max{C7, C2}, we get

(4.18) ‖eδk+1‖ ≤ C8(θk + ‖e0‖‖eδk‖),

where θk = ‖rαk(A)e0‖ +
‖Arαk (A)e0‖+δ

αk
. Using (1.5), it is easily seen that the inequality

θk ≤ (µ+ 1)2θk+1 holds. Diving both sides of equation (4.18) by θk+1, and denoting

`k =
‖eδk‖
θk

, we get

`k+1 ≤ C8(µ+ 1)2 + ‖e0‖C8(µ+ 1)2`k.
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The scaling condition ‖A‖ ≤ α0 implies ‖e0‖ ≤ 2‖rα0
(A)e0‖ ≤ 2θ0. Therefore, we get

`0 ≤ 2 ≤ C8(µ+ 1)2

1− ‖e0‖C8(µ+ 1)2
.

Thus, using induction, we can conclude that

`k ≤
C8(µ+ 1)2

1− ‖e0‖C8(µ+ 1)2
,

for 0 ≤ k ≤ kδ∗. Thus, we have

‖eδk‖ ≤
C8(µ+ 1)2

1− ‖e0‖C8(µ+ 1)2
θk

= C9
{
‖rαk(A)e0‖+

‖Arαk(A)e0‖+ δ

αk

}
, for 0 ≤ k ≤ kδ∗,

(4.19)

where C9 = C8(µ+1)2

1−‖e0‖C8(µ+1)2 .

Now, we estimate ‖rαk(A)e0‖. In view of Assumption 3 and Proposition 3.1, we have

‖rαk(A)e0‖ = ‖rαk(A)Apv‖ = ‖Aprαk(A)v‖
≤ c̃‖Ap+1rαk(A)v‖p/p+1‖rαk(A)v‖1/p+1

≤ c̃‖Arαk(A)e0‖p/p+1‖rαk(A)‖1/p+1‖v‖1/p+1

≤ c̃‖v‖1/p+1‖Arαk(A)e0‖p/p+1.

Using (4.15), we get

(4.20) ‖rαk(A)e0‖ ≤ c̃‖v‖1/p+1

(
C6
{
‖F (xδk)− yδ‖+ δ

})p/p+1

.

Therefore, from (4.19), (4.15), and (4.20) we obtain

‖eδk‖ ≤ C9
(
c̃‖v‖1/p+1

(
C6
{
‖F (xδk)− yδ‖+ δ

})p/p+1

+
C6
{
‖F (xδk)− yδ‖+ δ

}
+ δ

αk

)
≤ C10

{
‖v‖
(
‖F (xδk)− yδ‖+ δ

‖v‖

)p/p+1

+
‖F (xδk)− yδ‖+ δ

αk

}
,

where C10 = max
{
c̃ C9C6p/p+1, C9(1 + C6)

}
. Hence, we conclude that

‖eδk‖ ≤ C10

{
‖v‖
(
‖F (xδk)− yδ‖+ δ

‖v‖

)p/p+1

+
‖F (xδk)− yδ‖+ δ

αk

}
,

for 0 ≤ k ≤ kδ∗.
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5. Main result. Now we prove main result of the paper.
THEOREM 5.1. Let the assumptions of Lemma 4.3 be satisfied, and let the stopping index

k∗ be chosen according to the stopping rule (2.1). Then,

‖xδk∗ − x
†‖ ≤ ξ‖v‖

(
δ∗ + δ

‖v‖

) p
p+1

,

where ξ = C10
(
1 + τµ(1+κ−1)

C
p
p+1
11

)
with C10 as in Lemma 4.3 and C11 = 1

((K0+K1)‖e0‖+1)C4 ,

δ = ‖y − yδ‖, and δ∗ = ‖F (xδk∗)− y
δ‖.

Proof. Lemma 3.4 ensures that k∗ ≤ kδ∗. Taking k = k∗ in Lemma 4.3 and using the
definition of θ(k, yδ), we obtain

‖xδk∗ − x
†‖ ≤ C10

{
‖v‖
(‖F (xδk∗)− yδ‖+ δ

‖v‖

)p/p+1

+
‖F (xδk∗)− y

δ‖+ δ

αk∗

}

≤ C10

{
‖v‖
(
δ∗ + δ

‖v‖

)p/p+1

+ θ(k∗, y
δ)

1
2 +

θ(k∗, y
δ)

1
2

κ

}

≤ C10

{
‖v‖
(
δ∗ + δ

‖v‖

)p/p+1

+ (1 + κ−1)θ(k∗, y
δ)

1
2

}
.(5.1)

Now, we estimate θ(k∗, yδ). Let kδ be the integer satisfying

‖F (xδkδ)− y
δ‖ ≤ τδ < ‖F (xδk)− yδ‖, 0 ≤ k < kδ,

where τ = max{C, 2 + C4((K0 +K1)‖e0‖+ 1)} with constants C and C4 as in Lemma 3.3
and Lemma 4.2, respectively. Lemma 3.3 ensures that kδ is well-defined and kδ ≤ k̂ ≤ kδ∗.
Using Assumption 2 and Lemma 3.2, we note that

‖F (xδkδ−1)− y
δ‖ ≤ ‖F (xδkδ−1)− y −Ae

δ
kδ−1‖+ δ + ‖Aeδkδ−1‖

≤ K0 +K1

2
‖eδkδ−1‖‖Ae

δ
kδ−1‖+ δ + ‖Aeδkδ−1‖

≤ ((K0 +K1)‖e0‖+ 1) ‖Aeδkδ−1‖+ δ.

Making use of the inequality τδ ≤ ‖F (xkδ−1)− yδ‖ and (4.14) we get

τδ ≤ ((K0 +K1)‖e0‖+ 1)C4 {‖Arαk(A)e0‖+ δ}+ δ

≤ ((K0 +K1)‖e0‖+ 1)C4‖Arαk(A)e0‖+ {((K0 +K1)‖e0‖+ 1)C4 + 1}δ.

As τ ≥ 2 + C4((K0 +K1)‖e0‖+ 1), we conclude from the above inequality that

δ ≤ ((K0 +K1)‖e0‖+ 1)C4‖Arαk(A)e0‖.

Using the source condition as given in Assumption 3, it follows that

δ ≤ ((K0 +K1)‖e0‖+ 1)C4‖Arαk(A)Apv‖
≤ ((K0 +K1)‖e0‖+ 1)C4‖Ap+1rαkAv‖
≤ ((K0 +K1)‖e0‖+ 1)C4‖v‖(αkδ−1)p+1.
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Therefore,

(αkδ−1)
p+1 ≥ δ

((K0 +K1)‖e0‖+ 1)C4‖v‖
.

Let us denote C11 = 1
((K0+K1)‖e0‖+1)C4 . We get αp+1

kδ−1 ≥
C11δ
‖v‖ , which implies

αkδ−1 ≥
(
C11
‖v‖

) 1
p+1

δ
1
p+1 .

Thus, we have

(5.2)
δ

αkδ−1
≤ ‖v‖

(
δ

C11‖v‖

) p
p+1

.

Using (1.5) and (5.2) with the fact that 0 < C11 < 1, we find

δ

αkδ
≤ µδ

αkδ−1
≤ µ‖v‖

(
δ

C11‖v‖

) p
p+1

≤ µ‖v‖

C
p
p+1

11

(
δ + δ∗
‖v‖

) p
p+1

.

Thus, by the definition of θ(k∗, yδ), we have

(5.3) θ(k∗, y
δ) ≤ θ(kδ, yδ) =

‖F (xδkδ)− y
δ‖2

α2
kδ

≤ τ2δ2

α2
kδ

≤ τ2µ2‖v‖2

C
2p
p+1

11

(
δ + δ∗
‖v‖

) 2p
p+1

.

Combining (5.1) and (5.3) we get

‖xδk∗ − x
†‖ ≤ C10

{
‖v‖
(
δ∗ + δ

‖ν‖

)p/p+1

+ (1 + κ−1)
τµ‖v‖

C
p
p+1

11

(
δ + δ∗
‖v‖

) p
p+1

}
.

Denoting ξ = C10
(
1 + τµ(1+κ−1)

C
p
p+1
11

)
, we arrive at

‖xδk∗ − x
†‖ ≤ ξ‖v‖

(
δ∗ + δ

‖v‖

) p
p+1

.

REMARK 5.2. The obtained error bound in Theorem 5.1 is order optimal if the quantity
δ∗ = ‖F (xδk∗)− y

δ‖ is of the order of the noise level δ, and in that case, the error estimate
obtained in Theorem 5.1 is of the same order as the one obtained in [22] under the stopping
rule (1.7).
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