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SPECTRAL PROPERTIES OF CERTAIN
NONSYMMETRIC SADDLE POINT MATRICES∗

JÖRG LIESEN† AND JUSTUS RAMME†

Abstract. We consider certain (real) nonsymmetric matrices in saddle point form, study their general Jordan
normal forms, and prove new conditions so that these matrices are diagonalizable with a real spectrum. For matrices
satisfying our conditions we show how to construct an inner product in which these matrices are selfadjoint. Our
approach generalizes previously published results in this area, which require stronger assumptions on the given saddle
point matrices and hence are less widely applicable.
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1. Introduction. Linear algebraic systems in saddle point form, i.e.,

(1.1) S
[
x1
x2

]
=

[
b1
b2

]
, where S :=

[
A BT

B −C

]
, A = AT ∈ Rn,n, C = CT ∈ Rm,m,

arise in numerous applications in science and engineering; see [1] for an extensive survey.
Often it is assumed that A is positive definite (A > 0) and that C is positive semidefinite
(C ≥ 0). By decomposing

S =

[
In 0

BA−1 Im

] [
A 0
0 −S

] [
In A−1BT

0 Im

]
,

where S := C+BA−1BT , it follows that S has n positive, rank(S) negative, andm−rank(S)
zero eigenvalues. Unless m is very small or S is highly rank-deficient, which is both rare in
practical applications, the saddle point matrix S is highly indefinite. This is an unfortunate
circumstance, since many iterative methods, and in particular Krylov subspace methods,
converge rather slowly for highly indefinite problems; see, e.g., [1, Section 9.2].

As one possible remedy it was suggested by several authors to multiply the second block
row in (1.1) by −1 and hence to consider the equivalent linear algebraic system

(1.2) A
[
x1
x2

]
=

[
b1
−b2

]
, where A :=

[
A BT

−B C

]
, A = AT ∈ Rn,n, C = CT ∈ Rm,m;

see [1, pp. 23–27]. The nonsymmetric matrix A can be written as

(1.3) A =

[
A 0
0 C

]
+

[
0 BT

−B 0

]
,

which is the splitting of A into its symmetric and skew-symmetric parts. If A > 0 and C ≥ 0,
then the symmetric part is positive semidefinite, and it immediately follows that the eigenvalues
of A have nonnegative real parts, i.e., Re(σ(A)) ≥ 0. Moreover, if A is nonsingular, then A
is (nonsymmetric) positive definite. We point out that the formulation of the problem with
the “natural” splitting into (1.3) with a positive semidefinite symmetric part is typical for
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discretized problems that arise from dissipative Hamiltonian DAE systems. This topic has
attracted a lot of attention in recent years; see, e.g., [8] and the references given therein.

Several authors have studied spectral properties of A. For example, a complete analysis
of σ(A) for the case A = ηIn and C = 0 is given in [6], and bounds for the eigenvalues of A
for the case A > 0 and C > 0 are given in [3]. Another line of work deals with conditions
for A so that this matrix is diagonalizable with a positive real spectrum. If this holds, then a
conjugate gradient method for A can be constructed. This method may converge faster than a
Krylov subspace method applied to the system with the symmetric indefinite matrix S.

In [2] the authors derived conditions for diagonalizability of A with a real spectrum for
the case A > 0 and C = 0; see in particular [2, Proposition 3.1]. The results from [2] were
extended to the case A > 0 and C ≥ 0 in [10]. Both approaches are based on the observation
that

(1.4) M(γ)A = ATM(γ), where M(γ) :=

[
A− γIn BT

B γIm − C

]
, γ ∈ R.

If the parameter γ can be chosen so thatM(γ) > 0, thenM(γ) defines an inner product
on Rn+m in which A is symmetric. This is a sufficient condition so that A is diagonalizable
with a real spectrum. A necessary condition forM(γ) > 0 is that λmin(A) > γ > λmax(C);
see [10, Theorem 2.2]. Consequently, any sufficient condition for diagonalizability of A with
a real spectrum derived in this way requires that λmin(A) > λmax(C). For a related line of
research on Krylov subspace methods with nonstandard inner products for matrices in saddle
point form, we refer to [4, 12, 15].

In this paper we study spectral properties of A, starting with general results about the
Jordan decomposition of A that are derived using the theory of indefinite linear algebra. In
particular, we give bounds for the sizes of the largest possible Jordan blocks that can occur in
the Jordan normal form of A, and we give examples of matrices A for which these bounds
are attained. We then present an alternative and direct approach to the spectral analysis of A
that avoids the detour via the matrixM(γ). In this way we are able to derive conditions for
diagonalizability of A with a real spectrum that generalize the previously published results. In
particular, we are able to replace the restrictive condition λmin(A) > λmin(C) by a condition
for the minimum distance of σ(A) and σ(C). Thus, our approach allows that σ(A) and σ(C)
interlace (though not intersect). We also explain how in this case an inner-product matrix for
A may be constructed, generalizing the construction with the matrixM(γ) that was given
in [2, 10].

2. General results about the Jordan decomposition of A. In order to analyze the
Jordan decomposition of A we will use results from the theory of indefinite linear algebra;
see [7] for a comprehensive treatment.

Let H ∈ Cn,n be Hermitian and nonsingular. A matrix M ∈ Cn,n is called H-selfadjoint
when

M = H−1MHH.

Note that A isM(γ)-selfadjoint ifM(γ) is nonsingular (see (1.4)), and if we define

J :=

[
In 0
0 −Im

]
,

then J = J T = J−1 and JA = ATJ , i.e., A is J -selfadjoint.
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For λ ∈ C and s ≥ 1 we denote by Js(λ) the Jordan block with eigenvalue λ of size s. If
Im(λ) > 0 and s ≥ 2 is even, we define

J̃s(λ) :=

[
J s

2
(λ) 0

0 J s
2
(λ)

]
.

With this notation we can state the following important result; see [7, Theorem 5.1.1].
THEOREM 2.1. If M ∈ Cn,n is H-selfadjoint, then there exists a nonsingular X ∈ Cn,n

such that M = X−1JX and H = XHPX , where

(2.1) J = diag
(
Jn1(λ1) . . . Jnα(λα), J̃nα+1(λα+1), . . . , J̃nβ (λβ)

)
is a Jordan normal form of A with

λj ∈ R, for j = 1, . . . , α, and Im(λj) > 0, for j = α+ 1, . . . , β.

Moreover,

P = diag
(
ε1I

r
n1
, . . . , εαI

r
nα , I

r
nα+1

, . . . , Irnβ

)
, where Irk =

0 . . . 1
... . .

. ...
1 . . . 0

 ∈ Rk,k,

and ε = {ε1, . . . , εα} is an ordered set of signs ±1 that is uniquely determined by M and H
up to permutation of signs corresponding to equal Jordan blocks.

The Jordan normal form (2.1) shows, in particular, that the non-real eigenvalues of an
H-selfadjoint matrix M appear in complex conjugate pairs and that the sizes of the Jordan
blocks with eigenvalue λ are equal to the sizes of the Jordan blocks with eigenvalue λ.

The next result is originally from [2, Proposition 2.3] and gives an upper bound for the
maximal number of non-real eigenvalues of the matrix A. We give an alternative proof based
on Theorem 2.1.

THEOREM 2.2. A matrix A as in (1.2) can have at most 2m non-real eigenvalues,
counting conjugates.

Proof. Since A is J -selfadjoint we have A = X−1JX and J = XHPX for some
nonsingular matrix X by Theorem 2.1. The matrices J and P are congruent, which shows
that P has exactly m negative and n positive eigenvalues. The non-real eigenvalues of A
are contained in the diagonal blocks J̃nj (λj), j = α + 1, . . . , β, in J , where nj ≥ 2. Each
complex conjugate pair of non-real eigenvalues of A thus corresponds to a diagonal block
Irnj ∈ Rnj ,nj , j = α + 1, . . . , β, in P . Each such matrix Irnj has at least one negative
eigenvalue (namely −1), which shows that there can be at most m such matrices and thus at
most 2m non-real eigenvalues of A, counting conjugates.

In the following result we characterize the largest Jordan block sizes that can occur in the
Jordan normal form of A.

THEOREM 2.3. If Js(λ) is a Jordan block of a matrix A as in (1.2), then s ≤ 2m+ 1 if
λ ∈ R, and s ≤ m if λ ∈ C \ R.

Proof. By Theorem 2.1 we have A = X−1JX and J = XHPX , where

J = diag(Jn1
(λ1), . . . , Jnα(λα), J̃nα+1

(λα+1), . . . , J̃nβ (λβ)),(2.2)
P = diag(ε1I

r
n1
, . . . , εαI

r
nα , I

r
nα+1, . . . , I

r
nβ

).(2.3)

The matrices Jnj (λj), j = 1, . . . , α, are the Jordan blocks of A corresponding to the real
eigenvalues. Each of them corresponds to a diagonal block εjIrnj of P . The matrix Irnj has
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exactly bnj2 c eigenvalues −1, and dnj2 e eigenvalues +1. If nj ≥ 2m+ 2, then bnj2 c ≥ m+ 1
and dnj2 e ≥ m+ 1, which means that regardless of the sign of εj , the matrix εjIrnj will have
at least m+ 1 negative eigenvalues. But this is a contradiction since P and J are congruent
and J has exactly m negative eigenvalues. Consequently, nj ≤ 2m+ 1.

The matrices J̃nj (λj), j = α+ 1, . . . , β, contain the Jordan blocks of A corresponding
to complex conjugate pairs of the non-real eigenvalues. Note that here the sizes of the
Jordan blocks are nj/2. If nj/2 ≥ m+ 1, then the diagonal of P contains a block Irnj with
nj ≥ 2m + 2. Now the same argument as above yields a contradiction, which shows that
nj/2 ≤ m.

As shown in the following example, the upper bound for the size of a real Jordan block of
A in Theorem 2.3 can be attained.

EXAMPLE 2.4. The matrix

X :=
1√
2

Im √
2
−Im

+

 Irm
0

Irm

 ∈ R2m+1,2m+1

is nonsingular and satisfies X2 = I2m+1, i.e., X = X−1. A tedious but straightforward
computation shows that

XJ2m+1(0)X−1 =
1

2

 Jm(0) + Jm(0)H
√

2em Jm(0)Irm − IrmJm(0)√
2eHm 0 −

√
2eH1

IrmJm(0)− Jm(0)Irm
√

2e1 Jm(0) + Jm(0)H

 =: A,

where A =

[
A BT

−B C

]
∈ R2m+1,2m+1 has the blocks

A :=
1

2

[
Jm(0) + Jm(0)T

√
2em√

2eTm 0

]
,

B :=
1

2

[
Jm(0)Irm − IrmJm(0) −

√
2e1
]
,

C :=
1

2
(Jm(0) + Jm(0)T ).

Here C is equal to the top m×m block of A, and thus the Cauchy interlacing theorem (see,
e.g., [9, Theorem 4.3.17]) implies that the eigenvalues of A and C are strictly interlacing.
Furthermore, the spectrum of C is given by σ(C) =

{
cos
(

πk
m+1

)
| k = 1, . . . ,m

}
; see,

e.g., [9, p. 82].
Using Theorem 2.1 we can prove the following characterization of the largest possible

non-diagonal part in the Jordan normal form of A.
THEOREM 2.5. IfA is as in (1.2), then there exists a nonsingular matrixX ∈ Cn+m,n+m

such that

X−1AX =

[
D 0
0 J

]
,

where D ∈ Rn+m−k,n+m−k is diagonal and J = diag(Js1(µ1) . . . Js`(µ`)) ∈ Ck,k consists
of Jordan blocks with sj ≥ 2, for j = 1, . . . , `, and

∑`
j=1 sj = k ≤ 3m.

Proof. As in the proof of Theorem 2.3 we start with the decompositionsA = X−1JX and
J = XHPX , where the matrices J and P satisfy (2.2) and (2.3), respectively. Without loss of
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generality we can assume that n1 = · · · = nγ = 1 for some γ ≤ α (these are the 1× 1 Jordan
blocks corresponding to real eigenvalues of A) and nγ+1, . . . , nα ≥ 2 (these are the larger
Jordan blocks corresponding to real eigenvalues). Moreover, we have nα+1, . . . , nβ ≥ 2.

We have to show that
∑β
j=γ+1 nj ≤ 3m. Since P and J are congruent and J has exactly

m negative eigenvalues, we know that P must also have exactly m negative eigenvalues. Since
the matrix Irnj has exactly bnj2 c eigenvalues −1 and dnj2 e eigenvalues +1, the number of
negative eigenvalues of P is given by

m =

 α∑
j=1

δj

+

 β∑
j=α+1

nj
2

 , where δj :=

{
bnj2 c if εj = 1,

dnj2 e if εj = −1.

Note that nj ≤ 2bnj2 c+ 1, for j = 1, . . . , β, and therefore

β∑
j=γ+1

nj ≤
β∑

j=γ+1

(
2bnj

2
c+ 1

)
= 2

 β∑
j=γ+1

bnj
2
c

+ (β − γ) ≤ 2m+ (β − γ).

For j = γ + 1, . . . , β we have nj ≥ 2, and hence,

β − γ ≤

 α∑
j=γ+1

δj

+

 β∑
j=α+1

bnj
2
c

 ≤ m,
which shows that

∑β
j=γ+1 nj ≤ 3m.

A construction similar to the one in Example 2.4 can be used to show that the case k = 3m
in Theorem 2.5 can be attained; see also Example 3.8 below. Furthermore, a closer inspection
of the proof of Theorem 2.5 shows that if k = 3m, then all eigenvalues of A have to be real
and J consists solely of Jordan blocks of size three. (This is due to the fact that each complex
conjugate pair of eigenvalues of A results in a diagonal block Irnj of even size in the matrix
P .)

3. Conditions for a real spectrum and diagonalizability of A. The goal of this section
is to derive conditions for the blocks A, B, and C so that the matrix A in (1.2) has a real
spectrum and is diagonalizable. Our derivations are based on the following two lemmas.

The first lemma is a special case of [14, Corollary 3.4]. We give a short proof for
completeness.

LEMMA 3.1. Let M = MT ∈ Rn,n and E ∈ Rn,n. Then every ν ∈ σ(M + E) satisfies

min
λ∈σ(M)

|λ− ν| ≤ ‖E‖2 .

Proof. If ν is an eigenvalue of M + E with corresponding eigenvector x, then

(M − νIn)x = −Ex.

If ν ∈ σ(M), then trivially minλ∈σ(M) |ν − λ| = 0 ≤ ‖E‖2. If ν /∈ σ(M), then M − νIn is
nonsingular, and we obtain

x = −(M − νIn)−1Ex.

Taking 2-norms yields ‖x‖2 ≤
∥∥(M − νIn)−1

∥∥
2
‖E‖2 ‖x‖2. Since M is symmetric, we

obtain
∥∥(M − νIn)−1

∥∥
2

= (minλ∈σ(M) |λ−ν|)−1, which yields the desired inequality.
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The second lemma was shown (under the assumption A > 0) in [2, Proposition 2.12]. It
is also an immediate consequence of the more abstract result in [7, Theorem 4.2.4].

LEMMA 3.2. If A as in (1.2) has a non-real eigenvalue, then any corresponding eigen-

vector x =

[
x1
x2

]
∈ Cn+m satisfies ‖x1‖2 = ‖x2‖2.

We can now state and prove the first main result of this section.
THEOREM 3.3. A matrix A as in (1.2) has a real spectrum if

‖B‖2 ≤
γA
2
, where γA := min

λ∈σ(A)
µ∈σ(C)

|λ− µ| .

Moreover, this bound is sharp in the sense that for every pair of matrices A = AT ∈ Rn,n
and C = CT ∈ Rm,m, there exists a B ∈ Rm,n with ‖B‖2 > γA/2 so that σ(A) is not real.
(In particular, if γA = 0, then there exists a B 6= 0 so that σ(A) is not real.)

Proof. Suppose thatA is as in (1.2) with ‖B‖2 ≤ γA/2. We assume thatA has a non-real
eigenvalue ν, and we will derive a contradiction.

Splitting A in the form (1.3) and using Lemma 3.1 we see that

min
η∈σ(diag(A,C))

|η − ν| ≤
∥∥∥∥[ 0 BT

−B 0

]∥∥∥∥
2

= ‖B‖2 ,

and therefore

(3.1) min
λ∈σ(A)

|λ− ν| ≤ ‖B‖2 or min
µ∈σ(C)

|µ− ν| ≤ ‖B‖2 .

Let us assume that the first inequality holds, and denote

λ̂ := argmin
λ∈σ(A)

|λ− ν| .

Then, by assumption,

γ2A
4
≥ ‖B‖22 ≥

∣∣∣λ̂− ν∣∣∣2 =
∣∣∣λ̂− Re(ν)

∣∣∣2 + Im(ν)2,

and Im(ν) 6= 0 implies that
∣∣∣λ̂− Re(ν)

∣∣∣ < γA/2. Using the definition of γA we obtain

γA ≤ min
µ∈σ(C)

∣∣∣λ̂− µ∣∣∣ ≤ min
µ∈σ(C)

(∣∣∣λ̂− Re(ν)
∣∣∣+
∣∣∣Re(ν)− µ

∣∣∣) < γA
2

+ min
µ∈σ(C)

|µ− ν| ,

which yields minµ∈σ(C) |µ− ν| > γA/2. Now let x =

[
x1
x2

]
be an eigenvector of A corre-

sponding to the eigenvalue ν, i.e.,

(3.2)
[
A BT

−B C

] [
x1
x2

]
= ν

[
x1
x2

]
.

The second block row can be rewritten as

−Bx1 + (C − νIm)x2 = 0.
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By Lemma 3.2 we know that ‖x1‖2 = ‖x2‖2 > 0, so without loss of generality we can
assume that ‖x1‖2 = ‖x2‖2 = 1. Then we get

‖−Bx1 + (C − νIm)x2‖2 ≥ ‖(C − νIm)x2‖2 − ‖Bx1‖2 ≥ min
µ∈σ(C)

|µ− ν| − γA
2
> 0,

which is a contradiction.
A contradiction starting from the second inequality in (3.1) can be shown analogously by

considering µ̂ := argminµ∈σ(C) |µ− ν| and then the first block row of (3.2). Consequently,
A cannot have a non-real eigenvalue.

In order to show that the bound for ‖B‖2 is sharp, letA=AT ∈ Rn,n andC=CT ∈Rm,m
be arbitrary. There exist orthogonal matrices XA ∈ Rn,n and XC ∈ Rm,m such that
XT
AAXA = diag(λ1, . . . , λn) and XT

CCXC = diag(µ1, . . . , µm). Let λj ∈ σ(A) and
µi ∈ σ(C) be such that |λj − µi| = γA. Define B̃ := [bkl] with bkl = 0 for (k, l) 6= (i, j),
and bij = c, where c > γA/2. Then B := XT

AB̃XC satisfies ‖B‖2 = ‖B̃‖2 = c > γA/2.
Furthermore, the eigenvalues of A coincide with the eigenvalues of the matrix

λ1
. . .

λj c
. . .

λn
µ1

. . .

−c µi
. . .

µm



.

Since (λj−µi)2
4 =

γ2
A
4 < c2, the matrix A has the non-real eigenvalues λj+µi

2 ±
√

γ2
A
4 − c2.

It is clear from the splitting (1.3) that if in addition to the assumptions in Theorem 3.3 we
have A > 0 and C ≥ 0, then σ(A) ⊂ [0,∞), i.e, A is (nonsymmetric) positive semidefinite.
If A is also nonsingular, then σ(A) ⊂ (0,∞), i.e., A is (nonsymmetric) positive definite.

Having discussed the realness of the eigenvalues ofA, we are now interested in conditions
guaranteeing that A is diagonalizable.

LEMMA 3.4. Let A be as in (1.2) with ‖B‖2 < γA/2. Let ν ∈ σ(A) (⊂ R by
Theorem 3.3), and let x ∈ Rn+m be a corresponding eigenvector. Then exactly one of the
following two cases holds:

1. If minλ∈σ(A) |λ− ν| < γA/2, then xTJ x > 0.
2. If minµ∈σ(C) |µ− ν| < γA/2, then xTJ x < 0.

Proof. First note that since ‖B‖2 < γA/2, the inequalities in (3.1) imply that

(i) min
λ∈σ(A)

|λ− ν| < γA
2

or (ii) min
µ∈σ(C)

|µ− ν| < γA
2
.

Only one of the cases can occur since we have

γA = min
λ∈σ(A)
µ∈σ(C)

|λ− µ| ≤ min
λ∈σ(A)
µ∈σ(C)

(|λ− ν|+ |ν − µ|) = min
λ∈σ(A)

|λ− ν|+ min
µ∈σ(C)

|µ− ν| .
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Assume that case (i) holds, and hence minµ∈σ(C) |µ− ν| > γA/2. Let x =

[
x1
x2

]
. Then the

second block row of (3.2) yields

x2 = (C − νIm)−1Bx1.

We obtain

‖x2‖2 ≤
1

minµ∈σ(C) |µ− ν|
‖B‖2 ‖x1‖2 <

2

γA

γA
2
‖x1‖2 = ‖x1‖2 ,

and hence

xTJ x = ‖x1‖22 − ‖x2‖
2
2 > 0.

The proof for case (ii) follows analogously.
We use Lemma 3.4 to prove the following result about the diagonalizability of A.
THEOREM 3.5. If A is as in (1.2) with ‖B‖2 < γA/2, then A is diagonalizable.
Proof. First note that σ(A) ⊂ R by Theorem 3.3. We will show that A cannot have a

Jordan block of size larger than one.
Let ν ∈ σ(A) and y ∈ ker((νIn+m − A)2) ⊂ Rn+m. Then it suffices to show that

y ∈ ker(νIn+m −A). The vector x := (νIn+m −A)y ∈ Rn+m satisfies

xTJ x = yT (νIn+m −A)TJ (νIn+m −A)y = yTJ (νIn+m − JATJ )(νIn+m −A)y

= yTJ (νIn+m −A)2y = 0,

where we used that A is J -selfadjoint. By Lemma 3.4, the vector x cannot be an eigenvector
of A (since in that case xTJ x 6= 0). But since x ∈ ker(νIn+m −A), we must have x = 0,
and therefore y ∈ ker(νIn+m −A).

We point out that if A is as in (1.2) with ‖B‖2 < γA/2, then Lemma 3.4 can be used to
show that A is even stably diagonalizable in the sense of [7, Section 9.2].

We will now illustrate Theorems 3.3 and 3.5 with several examples. The first example
shows that if A is as in (1.2) with ‖B‖2 = γA/2, then A has a real spectrum by Theorem 3.3
but A may or may not be diagonalizable.

EXAMPLE 3.6. Consider the matrices

A1 =

[
2 0
0 2

]
and A2 =

[
3 1
−1 1

]
.

The matrix A1 is diagonalizable even though ‖B‖2 = γA1
/2 = 0. On the other hand, the

matrix A2 with ‖B‖2 = γA2/2 = 1 has the Jordan normal form

J =

[
2 1
0 2

]
,

and hence A2 is not diagonalizable.
It is important to note that Theorems 3.3 and 3.5 for given symmetric matrices A and

C give conditions so that A has a real spectrum and is diagonalizable, respectively, for all
possible matrices B, as long as ‖B‖2 is small enough. As the following example shows, for
some particular matrices B, the condition for ‖B‖2 is not strict.

EXAMPLE 3.7. Consider the matrix

A =

 7 0 2
0 0 0
−2 0 2

 , where ‖B‖2 = 2 >
γA
2

= 1.
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Then σ(A) = {0, 3, 6}, and hence A is diagonalizable with a real spectrum even though
‖B‖2 > γA/2. By exchanging the last two rows and columns of A (which is a similarity
transformation), we obtain the matrix

Ã =

 7 2 0
−2 2 0
0 0 0

 =:

[
A1 0
0 0

]
.

For the matrix A1 we have ‖B‖2 = 2 < γA1
/2 = 5/2, and hence Theorems 3.3 and 3.5 are

applicable to A1, which also shows that A is diagonalizable with a real spectrum.
Suppose that A is as in (1.2) with ‖B‖2 < γA/2, so that A has a real spectrum and is

diagonalizable by Theorems 3.3 and 3.5. If we now increase the norm of the off-diagonal
block by considering βB for β > 1, then eventually the resulting matrix Aβ will have some
non-real eigenvalues and/or will no longer be diagonalizable. As the following example
illustrates, when considered as a function of (the increasing) β, the matrices Aβ first form at
least one Jordan block of size at least two, which then “splits” into complex conjugate pairs of
eigenvalues. This observation also indicates that in general the formation of a Jordan block
requires a “normwise smaller” off-diagonal block than the formation of a complex conjugate
pair of eigenvalues.

EXAMPLE 3.8. For the matrix

Aβ =

2 0 −β
0 −2 β
β −β 0

 , where ‖B‖2 =
√

2β and
γAβ

2
= 1,

we have σ(Aβ) = {0,
√

4− 2β2,−
√

4− 2β2}, and hence σ(Aβ) ⊂ R for all β ≤
√

2, and
Aβ is diagonalizable for all β <

√
2. Note that, in contrast to Example 3.7, there exists no

simultaneous permutation of rows and columns such that Aβ is a block diagonal matrix.
For any β >

√
2, the matrix Aβ has non-real eigenvalues, and for β =

√
2, the matrix

A√2 =

 2 0 −
√

2

0 −2
√

2√
2 −

√
2 0


has the Jordan normal form

J√2 =

0 1
0 1

0

 ,
which also gives an example of a largest possible Jordan block corresponding to a real
eigenvalue; see Theorem 2.3.

In the next two examples we illustrate our results using some larger-scale matrices from a
finite element discretization of a Stokes model problem and the time discretization of a mass-
spring-damper system. The main goal in the first example is to show the intriguing behavior
that has to be expected when analyzing the spectrum of nonsymmetric saddle point matrices.
The second example shows that in some problems the conditions for diagonalizability with
real eigenvalues are satisfied naturally for certain parameter choices (here the length of a time
step).

EXAMPLE 3.9. We consider the classical example of a steady horizontal flow in a channel,
which is driven by a pressure difference. Following [5, Section 5], this problem is modeled by
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0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.02 0.04 0.06 0.08 0.1 0.12

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.02 0.04 0.06 0.08 0.1 0.12

FIG. 3.1. The spectra of A and C from Example 3.9 for β = 1
4

(top) and β = 1 (bottom).

the equations

(3.3)

−∇2u+∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = [1− y2, 0]T on ∂Ω,

where Ω = (−1, 1)2. The discretization of (3.3) with stabilized finite elements is one of the
test problems implemented in IFISS [13]. Running the channel domain example in the IFISS
stokes_testproblem with the default parameters1 leads to a linear algebraic system
with the matrix

A =

[
A BT

−B βC

]
∈ R834,834,

where β > 0 is a stabilization parameter. The default parameter is β = 1/4, and we also use
β = 1. For these two parameters we obtain the following values, computed by MATLAB’s
eig and norm functions:

TABLE 3.1
Numerically computed values for the matrices in our model problem.

β λmin(βC) λmax(βC) λmin(A) λmax(A) ‖B‖2 γA/2
1
4 0 0.0156 0.0449 3.9515 0.2477 0.0147
1 0 0.0625 0.0449 3.9515 0.2477 0.0068

We observe that σ(A) and σ(βC) are strictly separated for β = 1/4 and that they interlace
for β = 1; see also Figure 3.1. In both cases ‖B‖2 > γA/2, and hence the results of Section 3
are not applicable. Indeed, a computation of σ(A) with MATLAB’s eig function shows that
A has non-real eigenvalues for both values of β.

In order to make the results from Section 3 applicable, we scale the off-diagonal blocks,
i.e., we consider the family of matrices

Aε =

[
A ε

‖B‖2
BT

− ε
‖B‖2

B βC

]
, ε ≥ 0.

1The default parameters for the channel domain test problem are: channel domain: unity; grid parameter: 4
(16x16 grid); Q1-P0-elements; stabilization parameter: 1

4
; uniform streamlines. All numerical results were computed

using MATLAB version R2023a on an Intel i5-1235U and 16 GB RAM.
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0 0.1 0.2 0.3

0

0.01

0.02

(a) β = 1
4

.

0 0.1 0.2 0.3

-0.02

0

0.02

(b) β = 1
4

.

0 0.1 0.2 0.3

0

0.01

0.02

(c) β = 1.

0 0.1 0.2 0.3

-0.02

0

0.02

(d) β = 1.

FIG. 3.2. Left: maximal imaginary part of the eigenvalues of Aε for β = 1
4

(top) and β = 1 (bottom).
Right: imaginary part of the eigenvalues of Aε for β = 1

4
(top) and β = 1 (bottom).

Note that the off-diagonal blocks of Aε have the 2-norm ε, so that Aε is diagonalizable with a
real spectrum when ε < γA/2.

In Figure 3.2 we display the maximum imaginary part of σ(Aε) for increasing values
of ε. We see that for both values of β, the eigenvalues of Aε stay real even when ε� γA/2.
Another interesting behavior can be observed for the parameter β = 1. The spectrum of Aε
becomes non-real at approximately ε = 0.15. For a small interval of slightly larger values
(approximately starting at ε = 0.19), all eigenvalues become real again, followed by a non-real
spectrum for all larger values of ε.

EXAMPLE 3.10. We consider a mass-spring-damper (MSD) system, which is a standard
example in model order reduction and also has been used, e.g., in [8, 11]. A detailed derivation
and physical interpretation of MSD systems can be found, e.g., in [16].

We consider g ≥ 2 masses which are connected in the following way (see Figure 3.3): For
i = 1, . . . , g− 1, the mass mi is attached to the mass mi+1 by a spring with spring coefficient
ki,i+1 and a damper with damping coefficient di,i+1. Additionally, for i = 1, . . . , g, the mass
mi is connected to the ground by a spring and a damper with spring and damping coefficients
κi and δi, respectively. The vibration of this system is described by a second-order differential
algebraic equation (DAE) of the form

Mẍ+Dẋ+Kx = f,

where the entries of x correspond to the displacement of the masses and f is an external force.
The matrices M ,K, and D corresponding to the masses, the stiffness, and the damping are
given by
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m1

f1

m2

f2

mg

fg
k1,2

d1,2

k2,3

d2,3

. . .

. . .

kg−1,g

dg−1,gκ1

δ1

κ2

δ2

κg

δg

FIG. 3.3. Illustration of a mass-spring-damper system.

M = diag(m1, . . . ,mg) ∈ Rg,g,
D = tridiag(−di−1,i, di−1,i + di,i+1 + δi, −di,i+1) ∈ Rg,g,
K = tridiag(−ki−1,i, ki−1,i + ki,i+1 + κi, −ki,i+1) ∈ Rg,g,

where we set d0,1 = dg,g+1 = k0,1 = kg,g+1 = 0. We assume that all parameters
mi, di−1,i, ki−1,i, κi, δi > 0 and hence that the matrices are symmetric positive definite.
The first-order formulation of the DAE is given by[

M 0
0 K

] [
v̇
ṗ

]
=

[
−D −K
K 0

] [
v
p

]
+

[
f
0

]
,

where we multiplied the second block row by the matrix K. A time discretization using the
implicit midpoint rule with uniform time steps tk, k = 0, 1, 2, . . . , of length τ > 0 yields a
sequence of linear algebraic systems of the form

A
[
vk+1

pk+1

]
= b(vk, pk, τ, tk), where A =

[
M + τ

2D
τ
2K

− τ2K K

]
.

Thus, each time step requires to solve a linear algebraic system with a nonsymmetric positive
definite saddle point matrixA of the form (1.2), where M + τ

2D > 0 and K > 0. The 2-norm
of the off-diagonal blocks of A is given by τ

2‖K‖2. This means that for any sufficiently small
step length τ > 0, it is guaranteed that the nonsymmetric matrixA will be diagonalizable with
real and positive eigenvalues (as long as the spectra of M + τ

2D and K do not intersect).
For a numerical illustration we consider g = 100, τ = 10−3, and the remaining pa-

rameters as in Table 3.2. For these parameters, the spectra of the matrices M + τ
2D and K

interlace (but do not intersect), which can be seen in Figure 3.4. Using MATLAB’s eig and
norm functions we compute γA/2 ≈ 0.0118 and τ

2 ‖K‖2 ≈ 0.005, so that γA/2 < τ
2 ‖K‖2.

Theorems 3.3 and 3.5 now imply that the matrix A is diagonalizable with real and positive
eigenvalues. (These are contained in the interval [2, 10].)

4. Finding an inner-product matrix for A. As shown in [10, Lemma 2.1], for any
(real) polynomial p, the matrix J p(A) is symmetric, and the matrix A is J p(A)-selfadjoint.
Thus, the condition J p(A) > 0 is sufficient for A to be diagonalizable with a real spectrum;
cf. [10, Corollary 3.2]. Necessary and sufficient conditions for positive definiteness of the
particular matrix

M(γ) =

[
A− γIn BT

B γIm − C

]
= J p(A), where p(z) := z − γ (see (1.4)),
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TABLE 3.2
Parameters for the MSD system.

mi = ki,i+1 = κi = di,i+1 = δi =

4 i ≤ 20

5 20 < i ≤ 40

6 40 < i ≤ 60

7 60 < i ≤ 80

8 80 < i

2

{
4 i = 1, g

2 else
5

{
10 i = 1, g

5 else

2 3 4 5 6 7 8 9 10

FIG. 3.4. The spectra of M + τ
2
D and K from Example 3.10.

were derived in [10, Theorem 2.2]; see also the earlier and closely related investigation
in [2, Section 3], which assumes that C = 0. One of the necessary conditions forM(γ) > 0 is
λmin(A) > γ > λmax(C), and hence any further condition on A derived in this way requires
that λmin(A) > λmax(C). Clearly, the conditions in Theorems 3.3 and 3.5 are more general
since they show that A can be diagonalizable with a real spectrum even when σ(A) and σ(C)
interlace.

The matrixM(γ) in [10] and the corresponding matrix in [2] were given without a strategy
for generalization. We will now explain how to obtain a polynomial p with J p(A) > 0 and
hence an inner product in which A is selfadjoint, for the case of interlacing σ(A) and σ(C).
Suppose that A is as in (1.2) with ‖B‖2 < γA/2 so that A is diagonalizable with a real
spectrum. Let ν1, . . . , νk ∈ R be the k ≤ n + m distinct eigenvalues of A. Then every
y ∈ Rn+m can be written as

y =

k∑
j=1

αjxj ,

where α1, . . . , αk ∈ R and xj ∈ ker(νjIn+m −A), for j = 1, . . . , k. By [7, Theorem 4.2.4],
the vectors x1, . . . , xk are pairwise orthogonal in the indefinite J -inner product. Therefore,
for any polynomial p,

yTJ p(A)y =

k∑
j=1

α2
jp(νj)x

T
j J xj .

By Lemma 3.4 we have either xTj J xj > 0 or xTj J xj < 0, depending on whether

(i) min
λ∈σ(A)

|λ− νj | <
γA
2

or (ii) min
µ∈σ(C)

|µ− νj | <
γA
2
,

respectively. Thus, if we choose a polynomial p such that

(4.1) p(νj) > 0 if νj satisfies (i) and p(νj) < 0 if νj satisfies (ii),
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then yTJ p(A)y > 0 holds for any nonzero y ∈ Rn+m, i.e., we have J p(A) > 0.
The essential observation to be made from (4.1) for the construction of a polynomial p that

satisfies J p(A) > 0 is that this polynomial must separate σ(A) and σ(C) in the sense that it is
positive close to σ(A) and negative close to σ(C). If the two spectra are strictly separated with
λmin(A) > λmax(C), as assumed in [10], then a polynomial of degree one that has its only
root between λmax(C) and λmin(A) works. This is just the result from [10, Corollary 3.1],
where it is suggested to use

p(z) = z − γ̂ with γ̂ =
λmin(A) + λmax(C)

2
.

In this notation, an inner-product matrix J p(A) with p(z) = z − λmin(A)/2 was considered
in [2, Proposition 3.1].

Here we can also deal with interlacing σ(A) and σ(C). For example, suppose that
the eigenvalues λj and µj of A and C, respectively, are contained in three interlacing and
non-intersecting intervals

[λn, λk], [µm, µ1], [λk+1, λ1],

where λn ≤ λk < µm ≤ µ1 < λk+1 ≤ λ1, for some k ∈ {1, . . . , n − 1}. Then the
polynomial

p2(z) =
(
z −

(
µm −

γA
2

))(
z −

(
µ1 +

γA
2

))
is negative (exactly) on the open interval (µm − γA/2, µ1 + γA/2). Hence it satisfies the
properties stated in (4.1), which implies that J p2(A) > 0.

In general, if the eigenvalues of C are contained in q ≥ 1 intervals that interlace the
eigenvalues of A, i.e.,

[λn, λrq+1], [µm, µ`q−1+1], . . . , [µ`2 , µ`1+1], [λr2 , λr1+1], [µ`1 , µ1], [λr1 , λ1],

then the polynomial

p2q(z) =

q∏
j=1

(
z −

(
µ`j −

γA
2

))(
z −

(
µ`j−1+1 +

γA
2

))
, where `q = m and `0 = 1,

satisfies the properties in (4.1) and hence leads to J p2q(A) > 0.
The following figure displays a sketch of this polynomial for q = 2:

λr2+1λn

µm µ`1+1

λr2 λr1+1

µ`1 µ1

λr1 λ1

p4

FIG. 4.1. Sketch of the polynomial p4.

Depending on the number and ordering of these intervals, there may be polynomials of smaller
degree than 2q that also separate σ(A) and σ(C) in the sense of (4.1). For example, if
λr2 = λn in the previous sketch, then the spectra can be separated by a polynomial of degree
3 (instead of 4); see Figure 4.2.
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µm µ`1+1

λn λr1+1

µ`1 µ1

λr1 λ1

p3

FIG. 4.2. Sketch of a polynomial of degree 3 which satisfies (4.1).

Note that the situation illustrated in Figure 4.2 occurs for the matrix A in Example 3.9
with β = 1; see the bottom plot in Figure 3.1. We summarize the previous considerations in
the following corollary.

COROLLARY 4.1. Let A be as in (1.2) with ‖B‖2 < γA/2, and suppose that the
eigenvalues of C are contained in q ≥ 1 intervals that interlace the eigenvalues of A. Then
there exists a polynomial p of degree at most 2q satisfying (4.1) and hence J p(A) > 0.

We point out that even when only considering separating polynomials of smallest possible
degree, these polynomials are not uniquely determined by (4.1) since the zeros can be placed
anywhere between the spectral intervals as long as their distances to the respective eigenvalues
of A and C is at least γA/2.

5. Concluding remarks. We have analyzed spectral properties of nonsymmetric saddle
point matrices A of the form (1.2). In addition to giving a complete analysis of the largest
possible Jordan block sizes of A that can occur, we have generalized the previously known
conditions for a real spectrum and diagonalizability of A. Moreover, we have extended the
approach in [2, 10] to find a nonstandard inner product in which A is selfadjoint.

For any matrix A that is diagonalizable with a real spectrum, our construction yields a
symmetric matrix J p(A) > 0 with respect to which A is selfadjoint and hence a conjugate
gradient method for solving linear algebraic systems with A. It is clear that this is a more
theoretical than practical result since the explicit construction of a polynomial that satisfies the
conditions in (4.1) requires rather precise knowledge about σ(A) and σ(C), and the degree
of such a polynomial is usually twice the number of the eigenvalue intervals of σ(C) which
interlace σ(A).
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