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STABILITY AND SENSITIVITY OF DARBOUX TRANSFORMATION WITHOUT
PARAMETER

�
M. ISABEL BUENO

�
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Abstract. The monic Jacobi matrix is a tridiagonal matrix which contains the parameters of the three-term
recurrence relation satisfied by the sequence of monic polynomials orthogonal with respect to a measure. Darboux
transformation without parameter changes a monic Jacobi matrix associated with a measure � into the monic Jacobi
matrix associated with ����� . This transformation has been used in several numerical problems as in the computation
of Gaussian quadrature rules. In this paper, we analyze the stability of an algorithm which implements Darboux
transformation without parameter numerically and we also study the sensitivity of the problem. The main result of
the paper is that, although the algorithm for Darboux transformation without parameter is not backward stable, it is
forward stable. This means that the forward errors are of similar magnitude to those produced by a backward stable
algorithm. Moreover, bounds for the forward errors computable with low cost are presented. We also apply the
results to some classical families of orthogonal polynomials.
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1. INTRODUCTION. Let 
 be an absolutely continuous measure on the real line, that
is, ��
�������������� , where � is a weight function. Suppose that���� ��� ��� �!
 ����#"�$&% for ')(+* %
where, if 
 is a positive measure, then ������� is a monotonically increasing function while, if 

is a signed measure, then ������� is a function of bounded variation. Let us consider a sequence
of monic polynomials ,.- ��/ orthogonal with respect to the measure 
 , i.e.,

1. ��02143.0.04�5- � �6��' % for '7(8* 9
2. : � - � -<;=��
>��? �4@ ;BA � ; % ? �4@ �>C�D* 9

This sequence of monic orthogonal polynomials ,E- � / satisfies a three-term recurrence
relation

��- � �5���6�D- ��FHG �����HIKJ ��FHG - � �5���LINM � - �4O
G ����� % ')(8* %
- O
G �����6�&* % -LP4�����6�RQ�9

In matrix notation,
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where -U�
����
�
-HP �5���- G �5���-����5���

...

�����
� and

T��
������
�
J G Q * * 9 9 9M G J � Q * 9 9 9* M � J
	 Q 9 9 9* * M�	 J
� 9 9 9
...

...
...

...
. . .

�������
� 9(1.1)

The matrix T is said to be the monic Jacobi matrix associated with ,.- ��/ .
In the context of applications, it is interesting to study how the monic Jacobi matrixT changes when the measure 
 is multiplied by a polynomial, i.e., � �5������
 ����� % with � �5���

a polynomial. The Darboux transformation without parameter, in the case of semi-infinite
tridiagonal matrices, is the process that allows us to obtain the monic Jacobi matrix associated
with �S��
 . It has been shown [8, 9, 3] that the Darboux transform of a semi-infinite tridiagonal
matrix T can be computed as follows: 1)compute the ��� factorization without pivoting ofT , where the main diagonal elements of � are one, 2) multiply the factors � and � in reverse
order, i.e., ��� . Notice, as pointed out in [8, 17], that this algorithm is an infinite version of
one step of the ��� algorithm. But the finite version of our algorithm presents a significant
difference: once the factors � and � have been multiplied, a one rank matrix must be added.
In practice, we will not add this one rank matrix but delete the last row and column of the
output matrix.

More generally, the Darboux transformation without parameter and with shift multiplies
the measure by any polynomial of degree one, ��� � I�������
 . The Darboux transformation
(with parameter) can also be considered [13, 14]. It is just the inverse process of Darboux
transformation without parameter. We will not study these kinds of transformations in this
paper although in fact they are very interesting.

In the fields of Numerical Analysis, Approximation Theory, Differential Equations and
Orthogonal Polynomials, the Darboux process has been used in different ways. For instance,
Golub and Kautsky [12, 17], as well as Galant [9], applied Darboux transformation with shift
to the calculation of Gaussian quadratures, in particular, to those with multiple free and fixed
knots. Taking into account that the eigenvalues of any leading principal submatrix of a monic
Jacobi matrix coincide with the zeros of the orthogonal polynomial of degree equal to the
order of the submatrix, the knots of the quadratures can be calculated as the eigenvalues of
some Jacobi matrices. A. Grünbaum and L. Haine have used Darboux transformation without
parameter to obtain Krall polynomials from classical families of orthogonal polynomials in
the context of the bispectral problem ([13] and [14]). It is important to mention a recent paper
by Gautschi [11] in which the relation of the Darboux process with orthogonal polynomials
and Gaussian quadratures is treated in a modern and affable manner.

Considering the importance given in the literature to the Darboux transformation without
parameter, it seems to be necessary to give an answer to the following questions: 1) Is the
natural algorithm previously described for computing the Darboux transform without param-
eter of a monic Jacobi matrix numerically stable?; 2) what can we say about the conditioning
of the problem? In fact, the answers to these questions are not trivial. Consider, for instance,
that Darboux transformation without parameter is related to ��� factorization without pivot-
ing which is not a backward stable algorithm. To our knowledge, no formal error analysis of
any algorithm to compute the Darboux transformation without parameter has been presented
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so far. However, it should be noticed that in references [8], [10] and [17] some assertions on
the stability of the computation of shifted Darboux transformation have been made. These
assertions are based on a few numerical experiments and are not conclusive.

The aim of this work is to develop a general and formal analysis of the stability of the
usual algorithm to compute the Darboux transformation without parameter in its unshifted
version, as well as to give bounds on the forward errors computable with low cost. The study
of the sensitivity of the unshifted Darboux transformation without parameter will play a key
role in this analysis. The main conclusion we present is that the usual algorithm to compute
the Darboux transformation without parameter is forward stable, i.e., the forward errors are of
similar magnitude to those produced by a backward stable algorithm. No need to say that this
result does not imply that the forward errors are small, therefore it is important to introduce
computable bounds for the forward errors. We have chosen to develop a componentwise
error analysis because in many cases small componentwise forward errors are obtained in
the computation of Darboux transformation without parameter. A normwise error analysis is
also possible. We have not included it to keep the paper concise. The stability properties of
Darboux transformation with shift are different and more difficult to understand. The authors
are presently studying this question.

The structure of the paper is the following. In Section 2, some basic notions about or-
thogonal polynomials, kernel polynomials and Darboux transformation without parameter are
given. This section is addressed to those who are not specialists in these aspects. In Section
3, a description of the algorithm is presented as well as the notation used in the paper and
some numerical experiments with classical orthogonal polynomials. The analysis of stability
is done in Section 4 where Theorem 4.3 is the most important result. The conditioning of the
problem is analyzed in Section 5 where accurate bounds are given for two componentwise
condition numbers of the unshifted Darboux transformation without parameter: with respect
to small relative perturbations of each entry of the matrix and perturbations associated with
the backward error. Moreover, a relation between both condition numbers is proven from
which the forward stability can be deduced. Furthermore, it is shown that these condition
numbers for '�� ' monic Jacobi matrices can be computed in Q � ' flops. This result cannot
be significantly improved since Darboux process has �#��'�� Q.� inputs and � '���� outputs.
Some special cases are studied in Section 6. In particular, diagonally dominant tridiagonal
matrices and tridiagonal matrices with positive subdiagonal are considered. In Section 7, we
study from a theoretical point of view the uniparametric families of classical orthogonal poly-
nomials (Laguerre and Bessel) in terms of their condition numbers for the unshifted Darboux
transformation without parameter. We prove that the condition number of Laguerre polyno-
mials is bounded by 3 independently on the order of the monic Jacobi matrix or the parameter
� which defines the particular sequence of polynomials. In the case of Bessel polynomials,
we show that the corresponding condition number is bounded by a quadratic polynomial in' when the parameter is positive. In Section 8, symmetric Darboux transformation is studied
and compared with the monic one. It is shown that in the case of positive measures supported
in �5* % $ � both transformations produce backward and forward errors of similar magnitude.
Finally, in Section 9, a wide sample of numerical experiments showing the reliability of the
stability and sensitivity analysis is presented.

2. DARBOUX TRANSFORMATION AND ORTHOGONAL POLYNOMIALS. In
this section, we give some basic notions about Darboux transformation without parameter and
its relation with orthogonal polynomials. Readers specialized in orthogonal polynomials can
skip straight to Section 3.

Consider a linear functional with real values 	 defined on the linear space of polynomials
with real coefficients. Then, 	 is said to be quasi-definite if there exists a sequence of monic
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polynomials ,E- ��/ orthogonal with respect to 	 , i.e.,
� If - � �����6� � � � � I � �4O
G � ��O
G I&9 9 9EI � G � I � P % then � � � Q ,
� � 0 143 0.0 � - � � �+' % for '7(8* %� 	�� - � % - ; �6�&? �4@ ; A � ; % ? �4@ � C�&*#9

Because of Boas’s and Duran’s Theorems [1, 7], we can assure that 	 has an integral
representation, i.e., there exist a Borel measure 
 and a weight function � such that

	������6� � �
� ��
 � � �

�H�5���<���5��� �!�H9
Furthermore, ,E- � / satisfies a three-term recurrence relation,

- �!FHG �5���6� ��� � J ��FHG � - � ����� �)M � - �4OVG �5��� % ')(+* %(2.1)

- OVG �5���6�D* % - P �����6�RQ % M �7C��* % � ' 9
In particular, M � � * when 
 is a positive measure.

Recall from (1.1) that, associated with the sequence of monic polynomials ,.- ��/ , there
exists the monic Jacobi matrix, T . But, if we consider a positive measure 
 , it is possible
to construct a sequence of orthonormal polynomials with respect to 
 . In this case, the cor-
responding tridiagonal matrix is also symmetric and it is called Jacobi matrix. For the sake
of clarity, we will refer to the Jacobi matrix as symmetric Jacobi matrix and we will use the
notation T�� to denote it.

T�� �
������
�

J G � M G * * 9 9 9� M G J � � M�� * 9 9 9* � M�� J 	 � M 	 9 9 9* * � M�	 J
� 9 9 9
...

...
...

...
. . .

�������
� 9(2.2)

It is interesting to point out the following properties [5].

PROPOSITION 2.1. The eigenvalues of the leading principal submatrix of T of order '
are the zeros of the orthogonal polynomial - � . The same holds for T�� .

PROPOSITION 2.2. Let 
 be a positive measure supported in a subset of the real line
containing infinitely many points. If ,E- ��/ denotes the sequence of monic polynomials or-
thogonal with respect to 
 , then the zeros of - � are in the convex hull of the support of the
measure for any ' .

COROLLARY 2.3. Let T � be a Jacobi matrix associated with a positive measure 
 sup-
ported in an interval contained in � * % $ � . Then, T � is a symmetric positive definite matrix.

2.1. Darboux transformation and kernel polynomials. In the sequel, we will consider
the modification � 	 of the linear functional 	 .

Given a quasi-definite linear functional 	 , the linear functional � 	 [5] is given by

�	� 	 �2�
����� � 	=���
���6� � � ���H�5���H�����������L9
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If ,E- ��/ is the sequence of monic polynomials orthogonal with respect to 	 and - � � *�� C�* % for all '&( * , then � 	 is a quasi-definite linear functional. The polynomials orthogonal
with respect to � 	 are the so-called kernel polynomials associated with ,.- � / [5].

There is a close relation between the monic Jacobi matrix associated with � 	 and the
monic Jacobi matrix associated with 	 . In fact, the first one can be obtained from the second
one by the application of the so-called Darboux transformation without parameter.

DEFINITION 2.4. Given a monic Jacobi matrix T , consider the tridiagonal matrix T G
such that

T � ��� %
T G � ��� %

where T&� ��� denotes the ��� factorization without pivoting of T in such a way that the
elements of the main diagonal of � are ones. We say that T G is the Darboux transform ofT and the process that generates T G from T is the so-called Darboux transformation without
parameter.

In the sequel, for the sake of simplicity, we will refer to Darboux transformation without
parameter as Darboux transformation.

THEOREM 2.5. [3] Let 	 be a quasi-definite linear functional and ,E- � / the corre-
sponding sequence of monic orthogonal polynomials. If - � �5* � C� * % for all ' ( * , then the
Darboux transform of T is the monic Jacobi matrix associated with � 	 .

The previous result was already known by Galant and Gautschi although, in [9], Galant
gives a simpler result which is valid only for the case when the linear functional is given
in terms of a positive measure. In [10], Gautschi presents the same result but he did not
formulate it in matrix form.

In order to compute the Darboux transformation in practice, it is necessary to give an
equivalent result to Theorem 2.5 in the finite case. Recall that a monic Jacobi matrix is a
semi-infinite matrix. The next result is a trivial consequence of Theorem 2.5. We introduce
the following shorthand notation: for any matrix � , � � denotes the '�� ' leading principal
submatrix of � .

COROLLARY 2.6. [3] Let 	 be a quasi-definite linear functional and ,E- � / the cor-
responding sequence of monic orthogonal polynomials. If - � � *�� C� * % for all ' ( * andT � � � � � � denotes the LU factorization without pivoting of the leading principal submatrix
of order ' of T , then ��T G � ��O
G � � � � � � � �4OVG is the leading principal submatrix of order ' � Q
of the monic Jacobi matrix associated with � 	 .

REMARK 2.1. Notice that from a monic Jacobi matrix of order ' , Darboux transforma-
tion only provides a monic Jacobi matrix of order ' �8Q .

3. ALGORITHM AND NUMERICAL EXPERIMENTS. In the next section, we
will analyze the stability of an algorithm which implements Darboux transformation numeri-
cally. Our analysis is based on the special structure of monic Jacobi matrices. In this section
we start with a careful description of the algorithm that implements Darboux transformation
and also introduce the notation used in the rest of the paper. In Subsection 3.1 some im-
portant remarks on the input and output of this algorithm are given. Finally some numerical
experiments are presented in Subsection 3.2. From now on all the results refer to leading
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principal submatrices of monic Jacobi matrices or symmetric Jacobi matrices. Since we are
interested in the numerical analysis of the algorithm that implements Darboux transformation
and symmetric Darboux transformation, we have to restrict ourselves to finite matrices.

Let us consider the ' � ' monic Jacobi matrix,

T � �
������
�
J G Q * ����� *M G J � Q ����� ** M�� J 	 ����� *
...

...
...

. . .
...* * ����� M �4O
G J �

�������
� 9(3.1)

For the sake of simplicity, we use the following notation

T �5J % M ��� �UT � %
J � � J G % 9 9 9 % J � ��� % MR� � M G % 9 9 9 % M �4OVG ��� 9

The same kind of notation is considered for symmetric Jacobi matrices,

T � � J % � M ��� � � T � � � �
������
�

J G � M G * ����� *� M G J � � M�� ����� ** � M � J 	 ����� *
...

...
...

. . .
...* * ����� � M �4O
G J �

�������
� 9(3.2)

In the rest of the paper it is assumed that all the monic or symmetric Jacobi matrices
we consider have a unique ��� factorization without pivoting, and that M
	 C� * % for all � ,
according to the results summarized in the previous section.

Taking into account Corollary 2.6, the finite version of Darboux transformation includes
the following steps.

Matrix description of Darboux transformation of order ' .

1. ��� factorization without pivoting of T � J % M � .T � J % M � � ���
where

��

�����
�
� � ����� � ���� � ����� � �� ��� ����� � �
...

...
����� ...

...� � ����� ������� �

������
��� ��


�������
�

 � � �!��� � ��  � �!��� � �� � �!��� � �
...

...
�!��� ...

...� � �!���  �"��� �� � �!��� �  �

� ������
� #(3.3)

2. Multiplication of � times � . $
T�� ���

3. Deletion of the last row and column of

$
T which gives the matrix � T G � �4OVG .
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Notice that � T G � ��O
G is an ��' � Q.� � ��' � Q.� monic Jacobi matrix. In the sequel, T � � % 1���� �� T G � �4OVG , where

T � � % 1 � �
��������
�

� G Q * ����� * *1 G � � Q ����� * ** 1 � � 	 ����� * *
...

...
...

. . .
...

...* * * ����� � �4O � Q* * * ����� 1 �4O � � �4O
G

���������
�

(3.4)

and

� � � � G % 9 9 9 % � ��O
G � � % 1 � � 1 G % 9 9 9 % 1 �4O � � � 9
The following MATLAB code computes the ��� factorization without pivoting ofT �5J % M � :
ALGORITHM 3.1. Given a monic Jacobi matrix T �5J % M ��� � � � � , this algorithm com-

putes the ��� factorization without pivoting of T � J % M � .
u(1)=B(1)
for i=1:n-1

l(i)=G(i)/u(i)
u(i+1)=B(i+1)-l(i)

end
Although the previous algorithm is not our main goal and it appears implicitly in the

algorithm that computes Darboux transformation, for the sake of clarity, we give it explicitly
since we will refer to it.

The following algorithm computes the Darboux transform of a monic Jacobi matrix,T �5J % M � :
ALGORITHM 3.2. Given a monic Jacobi matrix T �5J % M ��� � � � � , this algorithm com-

putes its Darboux transform of order ' � Q , T � � % 1���� � � �4O
G � � � �4O
G � .
u(1)=B(1)
for i=1:n-2

l(i)=G(i)/u(i)
b(i)=u(i)+l(i)
u(i+1)=B(i+1)-l(i)
g(i)=u(i+1)l(i)

end
l(n-1)=G(n-1)/u(n-1)
b(n-1)=u(n-1)+l(n-1)

The computational cost of Algorithm 3.2 is
� ' ��� flops.

3.1. Input, output and matrix notation. In order to compute the �5' � QE� � �5' �DQ.�
leading principal submatrix of the Darboux transform of T �5J % M � , Algorithm 3.2 only needs
the vectors J ��Q �!' � Q.� and M , i.e, the element J � is not needed. Therefore, Algorithm 3.2
has � �5' �8QE� input parameters

J	��� � J G % J � % 9 9 9 % J ��O
G � % M � � M G % M � % 9 9 9 % M �4O
G �
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and � ' ��� output parameters

� � � � G % � � % 9 9 9 % � �4O
G � % 1 � � 1 G % 1 � % 9 9 9 % 1 �4O � � 9
We also observe that, in order to compute T � � % 1�� , we do not need to compute the com-

plete ��� factorization of T � J % M � . In fact, we just need to compute
� � G % � � % 9 9 9 % � �4OVG � and� � G % � � % 9 9 9 % � ��O
G � . Therefore, it can be said that Darboux transformation is a function depending

on the parameters J � and M . Hence, in order to study the backward error or the perturbation
theory related with Darboux transformation, we only have to consider these parameters.

Although this is precise from a mathematical point of view, we think that it is not intu-
itive. Therefore, we will frequently use the matrix description of the Darboux process in the
statements of the theorems appearing in the backward error analysis and in the perturbation
theory of Darboux transformation as if the input parameters were J and M . It is clear from
the discussion above that, in these theorems, J � and

� � do not play any role.

3.2. Numerical Experiments. Now we show a few numerical experiments in which we
apply Algorithm 3.2 for computing the Darboux transformation to some classical families of
orthogonal polynomials. These experiments present a typical behaviour which illustrates why
the structured stability analysis presented in this paper is needed. Recall [5] that a sequence
of orthogonal polynomials is said to be classical if it satisfies a linear second order differential
equation with polynomial coefficients

� � ������� � � I � G ������� � I � P �5����� I���� �&* %
where � P��5��� , � G ����� and � � ����� are polynomials of degrees at most 0, 1 and 2, respectively and
� C�U* , i.e., for each integer 'K(&* , the corresponding classical orthogonal polynomial - � is
an eigenfunction of a second order differential operator � � ������� � � I � G ������� � I � P�������	 with
� �
� � , the corresponding eigenvalue.

In particular, we consider Jacobi, Laguerre and Bessel polynomials. Both Laguerre and
Bessel polynomials are uniparametric families while Jacobi polynomials are a biparametric
family, i.e., we can obtain different sequences of Laguerre or Bessel polynomials by varying
the value of one parameter while the family of Jacobi polynomials depends on two parame-
ters. The differences among these three families are related to the measures with respect to
which they are orthogonal as well as to the features of the corresponding symmetric Jacobi
matrices (3.2).

1. Jacobi polynomials are orthogonal with respect to a positive measure supported in�
� Q % Q � . The corresponding symmetric Jacobi matrix is not positive definite.

2. Laguerre polynomials are orthogonal with respect to a positive measure supported
in �5* % $ � . The corresponding symmetric Jacobi matrix is positive definite.

3. Bessel polynomials are orthogonal with respect to a signed measure. Therefore, the
symmetric Jacobi matrix does not exist.

Notice that Bessel polynomials are the only ones among the classical families that are
orthogonal with respect to a signed measure [5].

In the following experiments we compare the output of Algorithm 3.2 in the floating
point arithmetic of MATLAB 5.3 ( �7� Q!9 Q!Q � Q2* O
G
� ) with the output computed by MAPLE.
More precisely, exact values of the outputs ��	 and 1�	 (see (3.4)) are calculated by MAPLE,
and then these expressions are rounded numerically to � � decimal digits of precision.

In this section,
��=� � �� G % 9 9 9 % �� �4O
G � and

�1 � � �1 G % 9 9 9 % �1 ��O � � denote the quantities computed
by MATLAB and � � � � G % 9 9 9 % � �4OVG � , 1K� � 1 G % 9 9 9 % 1 �4O � � denote the quantities computed by
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MAPLE. In the next tables the following quantities are shown: the componentwise forward
errors of � and 1��� 3 � � ������
	 G
��� �4O
G 


����� � � � �� �� � ������� % ��� 3E1 � ������
	 G
��� �4O ��� ���� 1 � � �1 �1 � ������ %(3.5)

and the normwise forward errors of � and 1 ,��� ��� � � � � �� �� T � � % 1 � � % ��� �=1 ��� 1 � �1 �� T � � % 1 � � 9(3.6)

REMARK 3.1. In the previous definition, we use the max norm both for vectors and
matrices, i.e.,

����� �������	 ,�� � ��� ��� / % if v is a vector %
� � � �������	 @  ,�� � � � %"! ��� / % if A is a matrix 9

In the next tables T denotes the monic Jacobi matrix which is the input of Algorithm
3.2, while � and � denote the factors of the ��� factorization of T . We include the results
obtained along with the spectral condition numbers of the matrices involved in the process1.
We also include # � � � � �$����� 	 ,�� � 	 � / where

� 	 denotes the entry of � in the position ��� I Q % ��� .
1. Results for Laguerre Polynomials with parameter Q�%4QE* .

n=10 n=50 n=100

forb Q!9�& Q2* O
G
� Q�9 & QE* O
G
� Q�9 & � QE* OVG��
forg ��9 Q!Q Q2* O
G
� � 9 Q'& QE* OVG�� � 9 �(& QE* OVG��

FORb Q!9 )(& Q2* O
G+* & 9�,�) QE* OVG.- � 9 /�, QE* OVG.-
FORg Q!9�& � Q2* O
G
� Q�9 /0& QE* OVG�� Q�9 / � QE* OVG��
maxL QE* &!* QE*!*1 �!��TV� &�9 � Q2* * � 9 � � Q2* � � Q�9 �() QE* G+23-1 �!��� � &�94, Q2* * � QE* � � � Q2* G.25-1 �!� � � Q!Q�9 ) & �#9 / � Q2* � 9 ��)

2. Results for Jacobi polynomials with parameters Q % � Q�% � .
n=10 n=50 n=100

forb Q!9 / � Q2* O
G
� �#9 Q�, QE* OVG�� � 9�, � QE* OVG��
forg ,49 Q � Q2* O
G
� ,�9 ) QE* O
G
� Q�9 �0, QE* OVG.2

FORb Q!9 � � Q2* O
G
� �#9 Q�QBQE* OVG�� � 9 � � QE* OVG��
FORg � 9�&�Q Q2* O
G
� ,�9 / QE* O
G
� Q�9 � � QE* OVG.2
maxL Q!9 Q6& Q!9 Q�) Q!9 �1 �!��TV� ��9 / � Q2* 	 �#9 Q�, Q2* G+2 ��9�& QE* 	 P1 �!��� � � 9 ) Q � 9 � � � 9 �1 �!� � � � 9 * � Q2* 	 ,�9 *�, Q2* G+2 � QE* 	 P

1The spectral condition numbers of the matrices 7 , � and 	 have been computed making use of the variable
precision arithmetic of the Symbolic Math Toolbox of MATLAB.
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3. Results for Bessel polynomials with parameter Q�% � .
n=10 n=50 n=100

forb � 9�, Q2* O
G+2 � 9 * � Q2* OVG � Q!9 *(& Q2* OVG 	
forg

� 9 ) � QE* OVG�� Q�9 � � Q2* OVG.2 Q!9 �(& Q2* OVG.2
FORb Q�9 Q�Q=QE* OVG�� Q�9 Q�Q Q2* OVG�� Q!9 Q!QBQ2* OVG��
FORg Q�9 �() QE* OVG.* Q�9 �() Q2* OVG.* Q!9 � ) Q2* OVG.*
maxL * 9 � � * 9 � � *#9 � �1 � ��TL� Q!9�& � Q2* � � 9 � � Q2* *3- Q�9 & � Q2* G+-5*1 � � � � Q�9 � � Q�9 � � Q�9 � �1 � � � � Q!9�&�) Q2* � � 94, Q2* *5- Q�9 & / Q2* G+-5*

From the previous results, the following remarks arise. The numerical computation of
normwise forward errors shows that Algorithm 3.2 applied to the previous specific examples
produces relative forward errors

� � �<� . This is also the case for componentwise forward errors
except in the case of Bessel polynomials, where a moderate dependence on the dimension of
the problem appears. On the other hand, it is well known that ��� factorization without
pivoting is not backward stable, in general, especially when the growth factor is large [16,
Lemma 9.6]. But, even for small growth factors, large forward errors may appear in the � ,� factors, because the usual bound of the normwise condition number of ��� factorization is
(see [16, section 9.11] )

� � TL� � � � O
G � � � � O
G � � � T � � 9
This bound, � � TL� , on the condition number of ��� factorization can be improved
in an almost optimal way [19] to � ����� D diagonal

1 ��� � � � � 1 �!� � � for the � factor and1 �!��� ��� ����� D diagonal
1 ��� � � � � for the � factor. The values of 1 �!��TV� , 1 �!��� � and 1 �!� � � ap-

pearing in the three examples above show that all of them have one of the factors � or �
ill-conditioned and, then, large forward errors should be expected in the � or � factor. More-
over, in two of the examples (Laguerre and Jacobi), since not all the entries

� 	 of the matrix� are, in absolute value, less than one, pivoting is neccesary to ensure the backward stabil-
ity of ��� factorization. Finally, the second step of the algorithm (multiplication ��� ) is not
backward stable either.

These facts imply that large errors should be expected, but they are not observed in the
experiments we have shown for Laguerre, Jacobi and Bessel polynomials. Therefore, our
goal is to develop a structured analysis of stability that explains these and other examples. It
is important to stress that, although in the three specific examples discussed in this section,
and in many others, the forward errors of Darboux transformation are of the order of machine
precision, this is not always the case. For instance, in Section 9 some examples are presented
for which the Darboux transformation of Bessel polynomials is computed with very large
forward errors. Therefore, accurate bounds which allow us to estimate the magnitude of the
forward error have to be developed.

The previous remarks show that the analysis of the stability of Algorithm 3.2 is not trivial,
one of the main reasons being that the structure of the mathematical problem does not allow
the use of pivoting.

4. BACKWARD ERROR ANALYSIS. In this section we assume that the elements of
the monic Jacobi matrix T � J % M � are real floating point numbers. This assumption may seem
unsuitable for the problems we are dealing with. Consider, for instance, the three examples
discussed in the previous section. In these examples the elements of T �5J % M � are computed
by using well known formulas for the classical families of orthogonal polynomials (see Sec.
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7). Therefore, some rounding errors are neccesarily present in the input parameters J , M of
Algorithm 3.2. If these errors on the input change significantly the exact value of Darboux
transformation, then the errors produced specifically by Algorithm 3.2 may not govern the
overall forward errors. However, as we will show in Section 5 (see Remark 5.5), the forward
errors coming from small relative componentwise perturbations of J and M , are of the same
magnitude as the forward errors coming from Algorithm 3.2 applied to floating point num-
bers. Thus our assumption on the input being floating point numbers can be done without
spoiling the applicability of our analysis and simplifies somewhat the subsequent develop-
ments.

In the stability analysis, we use the standard model of floating point arithmetic:� � �5� op ��� � ��� op � � ��Q INA�� � � op �Q I�� % � A � % � � ��� � %
where � and � are floating point numbers , op � I % � %��4% % and � is the unit roundoff of the
machine. Moreover, we assume that� � � � ���6� � �<� Q IKA��6� � �Q I�� % � A � % � � ����� 9

In the sequel, given a matrix � , then � � � denotes the matrix whose entries are the absolute
values of the entries of � .

We start giving a stability result for ��� factorization without pivoting of monic Jacobi
matrices. Although more general results for tridiagonal matrices are given in [16], the fol-
lowing theorem improves slightly those results taking into account that the elements in the
superdiagonal are ones.

THEOREM 4.1. Let Algorithm 3.1 be applied to the monic Jacobi matrix T � J % M � of
order ' . Then the computed factors

�� % �� satisfyT �5J I	� J % M&I	� M �6� �� �� % � � J ��� � � ��� ��1�� �� � � % � � M �
� � � M � 9
Proof. For the computed quantities, we have

�� 	L� M 	�� 	 ��Q INA�	 � % � A�	5��� �69
Therefore, � M 	 � �� 	 �� 	5�
� � M 	 � � , which proves the theorem for the entries in the subdiagonal,M . On the other hand,

�� 	 � Q I��!	 � �&J 	 � �� 	 OVG % � ��	5��� �69
Then, � J 	 � �� 	 � �� 	 OVG ��� � �� 	 � � , which proves the theorem.

Next we consider the second step of Darboux transformation, i.e., multiplication of �
and � . The proof of the following theorem is immediate.

THEOREM 4.2. Let � and � be matrices as those appearing in (3.3). Let T � � % 1 � � ���
be the exact product of � times � , where the notation in Section 3 is used. Let T � �� % �1�� be the
computed product of � times � , then� � � ����
� � � �� � % and � 1 � �1 �
� � � �1 � %
which, in matrix notation, implies:T � �� I	� �� % �1 I	� �1�� � ��� % with � � ������ � � ���� and � � �1 ��� � � �1 � 9
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Next we give the stability result for Darboux transformation.

THEOREM 4.3. Given a monic Jacobi matrix of order ' , T � J % M � , let T � � % 1 � be its
Darboux transform of order ' � Q . If T � �� % �1�� , �� and

�� are the matrices computed by Algorithm
3.2, then T �5J I	� J % M�I	� M �6� �� �� % � � J ��� � � ��� ��1
� �� � � % � � M ��� � � M � %

T � �� I	� �� % �1 I	� �14�6� � �� �� � �4OVG % � � �� ��� � � ���� % � � �1 �
� � � �1 � 9
Proof. It is enough to consider Theorems 4.1 and 4.2.

Notice that Theorem 4.3 asserts that the computed Darboux transform T � �� % �1 � is almost
the exact Darboux transform of T � J I � J % M I � M � . Therefore, we conclude that the
Algorithm 3.2 will be componentwise stable in the mixed forward-backward sense [16, p. 7]
if � �� 	 �!� � �3� J 	
� � % Q � � �N' .

In the particular case when the monic Jacobi matrix T �5J % M � is associated with a posi-
tive measure supported on � * % $ � , Algorithm 3.2 is componentwise stable. The next lemma
proves this assertion.

LEMMA 4.4. Let T �5J % M � be a monic Jacobi matrix of order ' associated with a positive
measure supported on �5* % $ � . Then, the ��� factorization of T � J % M � is componentwise
backward stable.

Proof. Since T � J % M � is associated with a positive measure, M
	 � * % � �RQ ��' �8Q!9
Then, there exists a diagonal matrix � such that T � �5J % � M �6� � T � J % M � � OVG . Moreover,T � � J % M � is positive definite because the measure is supported in �5* % $ � . If T �5J % M � �����
denotes the unique ��� factorization of T � J % M � , taking into account that

T � � J % � M � � � � � � OVG�� ��� ��1�� � ��� � � ��O
G�� � %
we have

� 	 � * and, subsequently,
� 	 � * , for all �B( Q . Therefore, since J 	 � � 	
I � 	 O
G %� 	 �8J 	�9

REMARK 4.1. Laguerre polynomials are orthogonal with respect to a positive measure
supported on �5* % $ � but not Jacobi and Bessel polynomials. Next we show that the ��� factor-
ization of the monic Jacobi matrix associated with Jacobi polynomials is not componentwise
backward stable. From Theorem 4.1,� � J 	 �� J 	 � � � � �� 	3�� J 	 � % � � M 	 �� M 	 � � � 9
Then, if “errback” denotes ����� 	 	 G � � ,�Q % ������ �

� � � � / , for Jacobi polynomials with parameters Q ,
and � Q'% � , considered in previous section, we get

n=10 n=50 n=100 n=400 n=1000

errback ,49 *0, Q2* � Q!9 � � QE* � �#9 & Q2* � Q!9 * � QE* � � 9 � � QE* �
The previous results show that Darboux transformation is not componentwise stable for

Jacobi polynomials. However, the forward errors obtained for parameters Q % � Q�% � are of
order � (see table in Subsection 3.2). Therefore, to explain these errors it is necessary to find
the componentwise condition number with respect to the kind of perturbations suggested by
the backward error analysis.
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5. CONDITIONING. From now on we analyze the sensitivity of Darboux transfor-
mation under perturbations of the initial data, i.e., the monic Jacobi matrix T �5J % M � . We
consider two kinds of perturbations:

� Perturbations associated with the backward error found in Theorem 4.3.
� Relative componentwise perturbations in J and M , i.e., � � J � � �'� J � and � � M � �
��� M � , with small � .

In both cases, the superdiagonal of ones stays unperturbed.

We measure the sensitivity of the problem by the notion of componentwise relative con-
dition number. In fact, since we consider two different kinds of perturbations, we define two
different condition numbers.

DEFINITION 5.1. Let T � � % 1�� be the Darboux transform of order �5' � Q.� of a monic
Jacobi matrix of order ' , T �5J % M � , and T � �4I � � % 1 I � 1 � be the Darboux transform of order��' �7Q.� of the monic Jacobi matrix of order ' , T � J I � J % M I � M � . Let T �5J % M �6� ��� be
the unique ��� factorization of T �5J % M � . The componentwise relative condition number of the
Darboux transformation of the monic Jacobi matrix T �5J % M � with respect to perturbations
associated with backward errors is defined as

���������
	��
	�� � ������� 
����������� ��! " � �$#�%& � ��� ')( &* ( & ��� �
���� ',+ &* + &

���� � �.- ' � -�/ * - �10�2 + 	 � �3- � - ' �4-�/ * - �4- � #
DEFINITION 5.2. Let T � � % 1�� be the Darboux transform of order �5' � Q.� of a monic

Jacobi matrix of order ' , T �5J % M � , and T � �4I � � % 1 I � 1 � be the Darboux transform of order��' ��Q.� of the monic Jacobi matrix of order ' , T � JUI � J % MDI � M � . The componentwise
relative condition number of the Darboux transformation of the monic Jacobi matrix T �5J % M �
with respect to perturbations in components is defined as

5 � 'V� 6 ��T � J % M � � � �87 � �9;: P=<?>�@ � ������ � ���� � � �� � � ���� % ���� � 1 �� 1 � ���� � � � � J �
� ��� J � % � � M �
� �'� M � � 9
REMARK 5.1. In the two previous definitions ����� �BA ����CEDGF9 DGF

��� % ��� CIH3F9 H�F
���KJ denotes

����� � ���� � � G� � G ���� % 9 9 9 % ���� � � �4OVG� � �4O
G
���� % ���� � 1 G� 1 G

����2% 9 9 9 % ���� � 1 �4O �� 1 �4O �
���� � 9

It is well known that the forward errors produced by an algorithm can be bounded by the
backward error times the condition number. Taking into account Definition 5.1 and Theorem
4.3, it is easy to get the following bound for the forward error produced by the algorithm that
implements Darboux transformation.

LEMMA 5.3. Let T � � % 1 � and T � �� % �14� be, respectively, the exact and the computed Dar-
boux transform of T �5J % M � from Algorithm 3.2, then

������ 
 ����� � � � �� �� � ����� %
���� 1 � � �1 �1 � ���� � � � ��Q I 5 � 'V� � � T �5J % M � � �HI � � � � � 9

Notice that one has to be added to 5 � 'V� � ��T � J % M � � because Theorem 4.3 is a mixed
forward-backward error result.
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In the next subsection we give some auxiliary results that are necessary to find explicit
expressions for reliable bounds for the condition numbers given by Definitions 5.1 and 5.2. In
Subsection 5.2 we obtain those expressions as well as a relation between both bounds, which
essentially shows that 5 � 'V� 6�� T �5J % M � � and 5 � 'V� � � T �5J % M � � are of similar magnitude.

5.1. Auxiliary results. This section contains some lemmas that are necessary to prove
some of the most important results of this paper. Readers who are not interested in technical
details can skip straight to Subsection 5.2.

Let T �5J % M � and T � JRI � J % MUI � M � be monic Jacobi matrices such that the corre-
sponding ��� factorization without pivoting exist and let

T �5J % M �6� ��� %
T � J I�� J % M&I�� M �6� ���>I	� � � � �+I�� � ��9

Moreover, the corresponding Darboux transforms are denoted by T � � % 1 � and T � � I � � % 1 I
� 1���9

Taking into account Algorithm 3.1 and Subsection 3.1, it must be remembered that, for
the perturbed matrix,

� G I	� � G �DJ G I�� J G %(5.1)

� � I	� � � � M � I	� M �� � I	� � � %�� �RQ ��' �8Q %(5.2)

� � F<G I�� � � FHG �&J � FHG I	� J � F<G � � � ��� � � %�� �UQ ��' � � 9(5.3)

Moreover, taking into account Algorithm 3.2

� � I	� � � � � � I�� � � I � � I�� � � %�� � Q ��' �8Q %(5.4)

1 � I � 1 � � � � � FHG I	� � � FHG � � � � I	� � � � %�� �RQ ��' ����9(5.5)

Our first goal is to find expressions for the elements �
� � and �

� � in terms of the ele-
ments of � J and � M . The following two lemmas are particular instances of lemmas given
in [2]. The proofs of both results are trivial. In the rest of the section second order terms in
� are not considered because the condition numbers 5 � 'V� � � T �5J % M � � and 5 � 'V� 6=� T �5J % M � �
are defined in the limit ��� * .

REMARK 5.2. In the sequel, we assume that any term containing
� P , � P , M P or J=P is

zero. Moreover, �
� P=� � � P=� � J=P=� � M P �&*#9

LEMMA 5.4. The following result is correct to first order

�
� � � � � � � M �M � � � � �� ��� %�� � Q ��' �8Q %(5.6)

�
� � � � J � � � � � OVG %�� � Q ��' � Q�9(5.7)
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LEMMA 5.5. The following recurrence relation is obtained to first-order:

�
� � � � J � � � M � OVG� � O
G I � � OVG� � O
G � � � O
G %�� �UQ ��' �8Q!9

Proof. The result is obtained immediately by substituting (5.6) into (5.7).

In Lemma 5.6 an explicit expression for �
� � is obtained from the recurrence relation

given in the previous lemma.

LEMMA 5.6. The following expression is correct to first order.

�
� � � � J � � � M � OVG� � O
G I � O
G�

	 	 G
�
� J 	 � � M 	 O
G� 	 OVG �

� O
G� 	 	
�  �  %�� �UQ �!' �8Q!9

Proof. The result is obtained by induction on the expression given in Lemma 5.5.

Our next aim is to find expressions of the elements � � � and � 1 � in terms of �
� � .

LEMMA 5.7. The following equations are correct to first order.

� � � � � � � I	� � � %�� �UQ ��' �8Q %
� 1 � � � � � � � FHG I � � FHG � � � %�� �RQ ��' � � 9

Proof. From (5.4), the first result is obtained straightforwardly. On the other hand, taking
into account (5.5), the second result is obtained to first order.

From Lemma 5.7 it is possible to obtain an expression for CED FDGF and CIH3FH�F in terms of C � F� F .
In the sequel, for any number � ,

A � � � � �� 9
LEMMA 5.8.

A � � � � �
� � I � � A M � I � � � � �� � I � � A � � %�� �UQ ��' �8Q %(5.8)

AE1 � � � Q I � �
� � F<G � A J � FHG I � Q � � �

� � FHG � � A M � �)A � � � %�� �RQ ��' ����9(5.9)

Proof. From Lemma 5.7 and taking into account that � � � � � I � � ,
A � � � � �

� � I � � A � � I � �
� � I � � A � � 9(5.10)
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Then, considering the expression for �
� � in terms of �

� � given in Lemma 5.4

A � � � � �
� � I � � A � � I � �

� � I � � �5A M � � A � � � %
and (5.8) follows in a straightforward way.

From Lemma 5.7 again and taking into account that 1 � � � � � � FHG , we get

AE1 � ��A � � FHG INA � � �&A � � FHG IKA M � � A � � 9(5.11)

Then, from Lemma 5.5, it is possible to express AE1 � only in terms of A � � ,
AE1 � ��A M � I � Q I � �

� � FHG � A J � FHG � � �
� � FHG �5A M � � A � � � � A � �

and the result follows.

In order to find an explicit expression for 5 � 'V� � � T �5J % M � � and 5 � 'V� 6 ��T �5J % M � � , it is
necessary to find bounds for � A � � � and � AE1 � � . We first consider the perturbations associated
with the backward error appearing in the definition of 5 � 'V� � ��T � J % M � � .

LEMMA 5.9. Let us assume that � � J � � � �'� � � � , and � � M � � � ��� M � � hold for � � Q �' � Q . Then, to first order,

� A � � ��� � �� Q I ���� � � O
G� � ���� I � O
G�

	 	 G
� Q I ���� � 	 O
G� 	

���� � � OVG� 	 	
���� �  �  F<G ����

�� 9(5.12)

Or equivalently

� A � � ��� � �� Q I � � O
G�

	 	 G
� O
G� 	 	

���� �  �  FHG ����
�� 9(5.13)

Proof. From Lemma 5.6, we get

�
� �
� � � � J �� � � � M � O
G� � � � OVG I

� O
G�

	 	 G
�
� J 	� 	 � � M 	 O
G� 	 � 	 O
G �

� O
G� 	 	
�  �  FHG %

which implies (5.12). Some extra calculations lead us to the second result.
DEFINITION 5.10. For k=1:n-1,

5 � 'V� � � � � ��� �RQ I ���� � � O
G� � ���� I � O
G�

	 	 G
� Q I ���� � 	 O
G� 	

���� � � OVG� 	 	
���� �  �  FHG ���� � Q I � � O
G�

	 	 G
� O
G� 	 	

���� �  �  FHG ���� 9
Now we get bounds for A � � and AE1 � taking into account the perturbations associated with

the backward error given in Theorem 4.3.
LEMMA 5.11. Let us assume that � � J � � � �'� � � � , and � � M � ��� ��� M � � hold for � � Q��' � Q . Then, to first order,

� A � � ��� � � ���� � �
� � I � � ���� I ���� � � � � �� � I � � ���� 5 � 'V� � � � � � � %�� � Q ��' � Q %
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� AE1 � ��� � � Q I ���� Q � � �
� � FHG ���� � Q I 5 � 'V� � � � � � � � %�� � Q ��' � � 9

Proof. The results are easily obtained from (5.13) and Lemma 5.8.

REMARK 5.3. For the sake of simplicity, we denote by 5 � 'V� � � � � � and 5 � 'V� � ��1 � � the
bounds for � A � � � and � AE1 � � divided by � , i.e.,

5 � 'V� � � � � � � � ���� � �
� � I � � ���� I ���� � � � � �� � I � � ���� 5 � 'V� � � � � � %(5.14)

5 � 'V� � ��1 � � � �UQ I ���� Q � � �
� � FHG ���� ��Q I 5 � 'V� � � � � � ��9(5.15)

We consider now perturbations in components as in Definition 5.2 and obtain the corre-
sponding lemmas similar to Lemmas 5.9 and 5.11.

DEFINITION 5.12. For k=1:n-1,

5 � 'V� 6 � � � ��� � ���� Q I � � OVG� � ���� I ���� � � O
G� � ���� I � O
G�

	 	 G
� ���� Q I � 	 O
G� 	

���� I ���� � 	 O
G� 	
���� � � OVG� 	 	

���� �  �  FHG ���� 9
LEMMA 5.13. Let us assume that � � J � �
� ��� J � � , and � � M � ��� ��� M � � hold for � � Q �' �8Q . Then, to first order, � A � � ��� � 5 � 'V� 6 � � � � 9
Proof. The proof is similar to the proof of Lemma 5.9.

LEMMA 5.14. Let us assume that � � J � � � ��� J � � and � � M � � � �'� M � � hold for � � Q �' �8Q . Then, to first order,� A � � ���	� � ���� � �
� � I � � ���� I ���� � � � � �� � I � � ���� 5 � 'V� 6�� � � � � %

� AE1 � ��� � � ���� Q I � �
� � FHG ���� I ���� Q � � �

� � FHG ���� � Q I 5 � 'V� 6 � � � � � � 9
Proof. The proof is similar to the proof of Lemma 5.11.

REMARK 5.4. Considering the bounds obtained in the previous lemma, we denote by5 � 'V� 6 � � � � and 5 � 'V� 6 ��1 � � the bounds for � A � � � and � AE1 � � divided by � .

5 � 'V� 6 � � � � � � ���� � �
� � I � � ���� I ���� � � � � �� � I � � ���� 5 � 'V� 6 � � � � %(5.16)

5 � 'V� 6 � 1 � ��� � ���� Q I � �
� � FHG ���� I ���� Q � � �

� � FHG ���� � Q I 5 � 'V� 6 � � � � � 9(5.17)
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5.2. Condition numbers and relation between their magnitudes. In this subsection,
we give explicit expressions for accurate bounds for the condition numbers 5 � 'V� � � T �5J % M � �
and 5 � 'V� 6�� T �5J % M � � , prove that both bounds are of similar magnitude and, finally, we also
show how to compute the bounds of the condition numbers with cost O(n) flops. From the
fact that both bounds for the condition numbers are of similar magnitude, the forward stability
of Algorithm 3.2 is also deduced.

Taking into account Definitions 5.1 and 5.2 and the results of Subsection 5.1, given a
monic Jacobi matrix T �5J % M � ,5 � 'V� � � T �5J % M � � � ������, 5 � 'V� � � � �4OVG � % ������
	 G � �4O � , 5 � 'V� � � � � � % 5 � 'V� � � 1 � � /!/ %(5.18)

5 � 'V� 6 � T �5J % M � � � ������, 5 � 'V� 6 � � �4OVG � % ������
	 G � �4O � , 5 � 'V� 6�� � � � % 5 � 'V� 6 ��1 � � /�/ %(5.19)

where 5 � 'V� � � � � � and 5 � 'V� � � 1 � � have been defined in (5.14) and (5.15), respectively, as well
as 5 � 'V� 6 � � � � and 5 � 'V� 6 ��1 � � have been defined in (5.16) and (5.17), respectively.

We have not been able to prove that the inequalities appearing in (5.18) and (5.19)
are sharp, i.e., that there exist perturbations fulfilling the conditions of Definitions 5.1 and
5.2 for which the inequalities in Lemmas 5.11 and 5.14 become equalities. Therefore,
we have not found expressions for the true condition numbers of Darboux transformation,5 � 'V� � ��T � J % M � � and 5 � 'V� 6 � T � J % M � � . We will denote the bounds appearing in (5.18) and
(5.19) by

� 5 � 'V� � � T �5J % M � � � ��������, 5 � 'V� � � � �4O
G � % ������
	 G � ��O � , 5 � 'V� � � � � � % 5 � 'V� � ��1 � � /�/(5.20)

� 5 � 'V� 6 � T �5J % M � � � ��������, 5 � 'V� 6 � � �4O
G � % ������
	 G � ��O � , 5 � 'V� 6 � � � � % 5 � 'V� 6 � 1 � � /!/(5.21)

Numerical experiments in Section 9 show that � 5 � 'V� � � T �5J % M � � is an accurate up-
per bound for 5 � 'V� � ��T �5J % M � � and that it really reflects the sensitivity of the problem.
Therefore it is fair to think of � 5 � 'V� � ��T �5J % M � � and � 5 � 'V� 6 � T �5J % M � � as condition num-
bers. We would also like to comment that in some cases in which the signs of

� � and� � have special relations, it is easy to see that 5 � 'V� � � T �5J % M � � � � 5 � 'V� � � T �5J % M � � and5 � 'V� 6 � T � J % M � �)� � 5 � 'V� 6 ��T �5J % M � � . Finally, it is interesting to note that explicit ex-
pressions for the true condition numbers of the general tridiagonal ��� factorization without
pivoting have been found in [2].

The following Lemma will allow us to prove that the bounds � 5 � 'V� � ��T � J % M � � and� 5 � 'V� 6 ��T � J % M � � are of similar magnitude.

LEMMA 5.15.Q
�
5 � 'V� 6 � � � � � 5 � 'V� � � � � � � � 5 � 'V� 6�� � � � %�� �RQ ��' �8Q %

Q
�
5 � 'V� 6 � 1 � � � 5 � 'V� � ��1 � � � � 5 � 'V� 6 � 1 � � % � �RQ ��' ����9

Proof. In order to prove that 5 � 'V� 6 � � � � � � 5 � 'V� � � � � � , just apply the triangular in-
equality to 5 � 'V� 6 � � � � . On the other hand, for any number � , � Q I � ��( Q � � ��� . Apply this
inequality to 5 � 'V� 6�� � � � to prove that 5 � 'V� � � � � � ��� 5 � 'V� 6 � � � � .
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From Lemma 5.11, an alternative expression for 5 � 'V� � ��1 � � can be obtained.

5 � 'V� � ��1 � �6�UQ I ���� Q � � �
� � FHG ���� I ���� Q � � �

� � FHG ���� 5 � 'V� � � � � � 9(5.22)

For any number � , � QBI � � � � I � Q � � � 9 Apply this result as well as the triangular
inequality to 5 � 'V� 6 ��1 � � to prove that 5 � 'V� 6�� 1 � � � � 5 � 'V� � ��1 � � . Compare the bound of5 � 'V� 6 � 1 � � with (5.22).

We can also get the following alternative expression for 5 � 'V� 6 � 1 � �
5 � 'V� 6 ��1 � � � ���� Q I � �

� � FHG ���� I ���� Q � � �
� � FHG ���� I ���� Q � � �

� � FHG ���� 5 � 'V� 6 � � � ��9(5.23)

Then, taking into account that for any � , � Q I � �EI � Q � � � ( � and � Q I � �4( Q � � � � as
well as (5.23), it is easy to prove that � 5 � 'V� 6�� 1 � � ( 5 � 'V� � ��1 � � .

As a consequence of the previous lemma, we obtain the following theorem which is one
of the most important results in this paper.

THEOREM 5.16. Given a monic Jacobi matrix T �5J % M � ,Q
� � 5 � 'V� 6�� T �5J % M � � � � 5 � 'V� � � T �5J % M � � � ��� 5 � 'V� 6 ��T � J % M � � 9

REMARK 5.5. As we have already remarked, the numerical experiments in Section 9
show that the bounds � 5 � 'V� � � T �5J % M � � and � 5 � 'V� 6 ��T �5J % M � � really reflect the sensitivity
of the Darboux transformation. Therefore, from Theorem 5.16, we can deduce the forward
stability of Algorithm 3.2 to compute the unshifted Darboux transform of a monic Jacobi
matrix T �5J % M � . From Lemma 5.3

������ 
 ����� � � � �� �� � ����� %
���� 1 � � �1 �1 � ���� � � � � � 5 � 'V� � ��T �5J % M � �<I�Q � I � � � � � �

� � � ��� 5 � 'V� 6 � T �5J % M � �HI&Q � I � � � � ��9
The meaning of the above inequality is that the componentwise forward errors produced by
Algorithm 3.2 are of the same order of magnitude as those produced by a componentwise
backward stable algorithm. According to the definition appearing in [16, p.9], this means
that Algorithm 3.2 is forward stable. Thus, the forward errors in Algorithm 3.2 are the “best
one could expect” from the sensitivity of the problem.

Moreover, Theorem 5.16 guarantees that the stability analysis we have developed re-
mains valid when the inputs of Algorithm 3.2, J and M , are not floating point numbers
(recall the comments in the first paragraph of Section 4) but they are computed with com-
ponentwise errors of order � . In this case, the first order overall relative componentwise
forward errors in the computation of the Darboux transformation are the sum of two terms:
� � 5 � 'V� 6 ��T �5J % M � � coming from the errors in J and M , plus � ��Q I � 5 � 'V� � � T �5J % M � � �
coming from the errors produced by Algorithm 3.2. Thus a sensible overall error bound
is � � ��Q I � 5 � 'V� � ��T � J % M � � � , which implies that, up to inessential numerical factors,� 5 � 'V� � ��T � J % M � � is the quantity governing the forward errors.
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The argument above can be trivially extended to the case in which J and M are computed
with componentwise forward error bounded by a known constant times � .

For practical purposes, it is important to prove that � 5 � 'V� � � T �5J % M � � can be computed
with low cost.

LEMMA 5.17. The quantities 5 � 'V� � � � � � % � � Q �<'�� Q , defined in Definition 5.10
satisfy the following recurrence relation

5 � 'V� � � � G �6�UQ % 5 � 'V� � � � � � � Q I ���� � � O
G� � ���� ��Q I 5 � 'V� � � � � O
G � � 9
Proof. It suffices to substitute the last expression appearing in Definition 5.10 in the

previous equation.
Then, taking into account (5.14), (5.15) and (5.20) as well as Lemma 5.17, the cost

to compute � 5 � 'V� � ��T �5J % M � � is Q � ' � � � flops. Notice that, since the Algorithm 3.2 has
� �5' ��QE� input parameters and � ' � � output, it is not possible to find a method to estimate
the forward errors with computational cost less than

� ��'L� .
6. PARTICULAR CASES. Next we apply the results obtained in Section 5 to two

special kinds of monic Jacobi matrices:
1. Monic Jacobi matrices with positive M , i.e., corresponding to polynomials orthogo-

nal with respect to a positive measure.
2. Monic Jacobi matrices diagonally dominant by rows and columns.

For the monic Jacobi matrices with positive M , we prove that the condition number5 � 'V� � ��T � J % M � � only depends on the quotients
����� �� ����� ��� since

��� � � O � �� � F � � ��� � Q and
����� �� � F � � ��� � Q

for all ! . For monic Jacobi matrices diagonally dominant by rows and columns, however, we

prove that
����� �� ���	� ��� �RQ for any ! and the condition number depends on the other two kinds of

quotients. Then, we conclude that for monic Jacobi matrices diagonally dominant by rows
and columns with positive M , Darboux transformation is very well conditioned and small
forward errors are obtained. Moreover, from Lemma 4.4, Darboux transformation is also
componentwise mixed forward-backward stable in this case.

6.1. Monic Jacobi matrix associated with a positive measure. Consider the special
case when a monic Jacobi matrix T � J % M � is associated with a positive measure. Then,M � � * % � � (DQ�9 Since M � � � � � � ,

� � and
� � have the same sign. Therefore,���� � � � � �� � I � � ���� � Q % ���� � �

� � I � � ���� �DQ %
and the expressions for 5 � 'V� � � � � � and 5 � 'V� � ��1 � � can be bounded in the following way:

5 � 'V� � � � � � ��� I � � OVG�

	 	 G
� O
G� 	 	

���� �  �  FHG ���� %(6.1)

5 � 'V� � � 1 � � Q I ���� Q � � �
� � FHG ����


�
� I � � O
G�

	 	 G
� O
G� 	 	

���� �  �  FHG ����
�
 9(6.2)



ETNA
Kent State University 
etna@mcs.kent.edu

M. Isabel Bueno and Froilán M. Dopico 121

Equations (6.1) and (6.2) show that in the case of positive measures, 5 � 'V� � ��T � J % M � � is

bounded by a function of the ratios
��� � �� ����� ��� . Thus, if

��� � �� ���	� ��� � Q % � ! ,

5 � 'V� � � T � J % M � � � ������, � ' � � % � ' � , / 9
6.2. Diagonally dominant monic Jacobi matrices. Assume that the monic Jacobi ma-

trix T �5J % M � is diagonally dominant by rows and columns simultaneously.
Then,

� J  � � Q % � J  � � � M  �OVG � % for all ! ( Q %(6.3)

� �  � � Q % � �  � � � M  � % for all ! ( Q %(6.4)

As an immediate consequence of (6.4)� �  �!� ���� M  �  ���� " Q % ! ( Q�9(6.5)

Moreover, from (6.4) and (6.5),���� �  �  FHG ���� " Q % ! ( Q!9(6.6)

Then,

5 � 'V� � � � � � ��� � �8Q and 5 � 'V� � � 1 � � � � � I&Q!9
Therefore, the elements 1 � % � �UQ ��' � � are computed by Algorithm 3.2 with a “small”

forward error. On the other hand,

5 � 'V� � � � � �6� ���� � �
� � I � � ���� ID� � � �8QE� ���� � � � � �� � I � � ���� 9(6.7)

In the special case when
� � and

� � have the same sign for any � , i.e., when the measure
is positive,

5 � 'V� � � � � � � � � 9
Then, under this restraint, the whole matrix T � �� % �14� is computed by Algorithm 3.2 with a
“small” forward error. This also means that Darboux transformation is very well-conditioned
for matrices associated with positive measures that are diagonally dominant by rows and
columns.

7. BOUNDS FOR THE CONDITION NUMBER OF SOME FAMILIES OF
CLASSICAL ORTHOGONAL POLYNOMIALS. This section has a marked theoretical
orientation. Some analytic considerations relative to the value of the condition number of
Darboux transformation of classical families of orthogonal polynomials are presented. This
allows us to explain the good results obtained in the numerical experiments appearing in Sub-
section 3.2 for Laguerre and Bessel polynomials. We show that for Laguerre polynomials,
independently of the value of the parameter � or the order ' of the corresponding monic
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Jacobi matrix, the condition number 5 � 'V� � ��T � J % M � � is bounded by 3. This means that Dar-
boux transformation for Laguerre polynomials is stable (see Lemma 4.4) and besides small
forward errors are produced by Algorithm 3.2. For Bessel polynomials and positive values of
the parameter � , we prove that the condition number of Darboux transformation is bounded
by a quadratic polynomial in ' . Moreover, for sufficiently large values of � � � , we prove that� 5 � 'V� � ��T �5J % M � � tends to 3. We also make some remarks about numerical experiments
applied to Bessel polynomials with negative values of � in which � 5 � 'V� � � T � J % M � � takes
large values. The analytical behaviour of the condition number of Jacobi polynomials has
not been studied. Based on numerical experiments, we can say that 5 � 'V� � � T �5J % M � � is not
large. For example, for monic Jacobi matrices of order 100, we have not found examples in
which � 5 � 'V� � ��T � J % M � � is larger than QE* 2 by using direct search methods [16, Chapter 26].
Moreover, for sufficiently large values of one of the parameters defining the Jacobi polyno-
mials it can be shown that � 5 � 'V� � � T �5J % M � � tends to 3 as it occurs with Bessel polynomials.
We have also found an example for which the corresponding monic Jacobi matrix has no ���
factorization, ( � � Q', and �7� � * ).

The following lemma gives an expression for the elements
� � in terms of the values of

the orthogonal polynomials evaluated at zero. Later on we will apply this result to classical
families of orthogonal polynomials.

LEMMA 7.1. Let T ����� be the ��� factorization without pivoting of the semi-infinite
monic Jacobi matrix T associated with the sequence of monic orthogonal polynomials ,.- � / .
Then

� � � � - � �5* �- � O
G � *�� % for all � 9
Proof. The result is obtained by induction on � , taking into account the three-term recur-

rence relation that ,.-<; / satisfies (see (2.1)). Since - G � *��6� � J G and - P � *�� � Q ,
� G �DJ G � � - G �5* �- P �5* � 9

Assume that
� � � ��� F � P �

� F�� � � P � for � � ' . Then, taking into account the three-term
recurrence relation again

- ��FHG � *��6� � J �!FHG - � �5* � �)M � - �4OVG � *�� 9
Dividing the previous expression by - � �5*�� and applying the induction hypotheses,

� - ��FHG �5*��- � � *�� �DJ ��FHG � M �� � �DJ ��FHG � � � � � �!FHG 9
7.1. Laguerre Polynomials. Laguerre polynomials constitute a uniparametric family.

For every value of the parameter, the corresponding sequence of polynomials is orthogonal
with respect to a positive measure supported in �5* % $ � . Therefore, the results obtained in
Section 6.1 can be applied to them.
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Monic Laguerre polynomials of parameter � � � Q satisfy the following three-term
recurrence relation:

�����FHG �5���6� ��� � J����FHG � ���� ����� �)M��� �����O
G �5��� % '7(+* %(7.1)

���P �����6�UQ % ��� OVG �����6��* %
where

J��� � ��' I � �8Q % M��� �&' ��' I � � 9(7.2)

LEMMA 7.2.

���� � *�� � � � QE� � ��

	 	 G ����I � � % for all ' 9
Proof. The result is obtained by induction on ' and taking into account (7.1) and (7.2).
Taking into account Lemmas 7.1 and 7.2 as well as the expression of

�  in terms of M  
and

�  , in the next lemma we give an explicit expression of
�  and

�  in terms of ! and the
parameter � .

LEMMA 7.3. For Laguerre polynomials

�  � ! I � % �  � !�% for all ! 9
Our aim in this section is to give a tight bound of 5 � 'V� � ��T � J % M � � when T � J % M � is the' � ' monic Jacobi matrix associated with Laguerre polynomials of parameter � . We give

an explicit expression of 5 � 'V� � � � � � and 5 � 'V� � � 1 � � (recall Definition 5.10, (5.14), (5.15)
and (5.20)) taking into account Lemma 7.3 that will allow us to obtain that bound. It is
straightforward to obtain

�  �  FHG � !! I�Q I � %
�  �  I �  � !

� ! I � % �  � �  �  I �  � �

� ! I � 9(7.3)

LEMMA 7.4. For � ( Q ,
5 � 'V� � � � � � � � � I �� I � 9

Proof. By induction on � , we prove that� OVG�

	 	 G
� OVG� 	 	

���� �  �  F<G ���� � � �8Q
� I � 9

Then, taking into account Definition 5.10, the result is obtained.

LEMMA 7.5.

5 � 'V� � � � � � � �
� � I � I � � �

� I � % 5 � 'V� � � 1 � � � � � I �� I � 9
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Proof. It suffices to consider (5.14), (5.15), Lemma 7.4 as well as (7.3) to obtain the
results.

THEOREM 7.6. Let T �5J % M � be the monic Jacobi matrix of order ' associated with
Laguerre polynomials of parameter � . Then

5 � 'V� � ��T �5J % M � � ��� 9
Proof. Taking into account Lemma 7.5, it can be shown in a straightforward way that5 � 'V� � � � � � � � and 5 � 'V� � ��1 � � � � for all � and � . Then, considering (5.18), the result is

obtained.
As a consequence of the developments in this section, we can assert that the errors pro-

duced by Algorithm 3.2 are optimal in the case of Laguerre polynomials. In the first place, it
is componentwise stable in the mixed forward-backward sense (see Theorem 4.3 and Lemma
4.4) and in the second place, Lemma 5.3 and Theorem 7.6 guarantee that the forward error is
less than

� � I � � � � � . Moreover, these results are independent of ' .

7.2. Generalized Bessel polynomials. Bessel polynomials are orthogonal with respect
to a signed measure. Bessel polynomials of parameter � satisfy the following three-term
recurrence relation:

�
���FHG ����� � �5� �)J����FHG � �

�� ����� � M��� �
��4OVG �5��� % '7( Q %(7.4)

�
�P �����6� Q % �

� G �5���6�&� I �
� I � 9

Moreover,

J��� � � � �� � ' I � ��� � ' I � ���!� % M��� � � � ' �5' I � �� ��' I � � � � � ' �8Q I � ��� � ' I�Q6I � � 9(7.5)

LEMMA 7.7.

�
�� � *�� � �

�
� � �	 	 � F<G ����I � � %�� ( *#9

Proof. The result is obtained by induction on � and taking into account (7.4) and (7.5).
In the next lemma we give explicit expressions for

�  and
�  in terms of ! and the param-

eter � . This is again a simple consequence of Lemma 7.1.
LEMMA 7.8.

�  � � �#� ! I � �� � ! �+Q I � ��� � ! I � � % �  � � !� � ! I � ��� � ! I�Q6I � � % for all ! 9
In order to estimate a bound for 5 � 'V� � ��T � J % M � � , where T � J % M � is the monic Jacobi

matrix of order ' associated with Bessel polynomials of parameter � , it is necessary to bound
the quotients ���� � �

� � F<G ���� % ���� � �
� � I � � ���� % ���� � � � � �� � I � � ���� 9
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This can easily be done for positive values of the parameter � .

LEMMA 7.9. If � � * , then
��� � F� F �	�

��� � Q for any � ( Q .
Proof. Considering Lemma 7.8, we get���� � �

� � F<G ���� � ���� � � � � � I � I � �� � � I � � � � I&Q I � �
���� 9(7.6)

Then,
��� � F� F �	�

��� � Q if and only if

� � I � � � � I�Q.�LI � � � � I&QE�� � � I � ��� � I�Q I � � (8* and
� � � I � � I�Q.�� � � I � � � � I&Q I � � ( *#9

But it is easy to see that both inequalities are true for any � ( Q and � � * .

Then, taking into account Lemma 7.9, if T � � % 1�� denotes the Darboux transform of order' �)Q of the monic Jacobi matrix of order ' associated with Bessel polynomials of parameter
� � * ,

5 � 'V� � � � � � � ���� � �
� � I � � ���� I ���� � � � � �� � I � � ���� � � � �8QE� % 5 � 'V� � � 1 � � � � � I&Q!9(7.7)

LEMMA 7.10. If � � * , then ���� � �
� � I � � ���� � � 9

Proof. Taking into account Lemma 7.8
� �

� � I � � � � � � � Q I � �
� � � �8� � � I&QE� � � � � 9(7.8)

Then, it is easy to prove the lemma.

LEMMA 7.11. If � � * , then ���� � � � � �� � I � � ���� ��� � 9
Proof. In a similar way to the proof of the previous lemma, we get���� � � � � �� � I � � ���� � � ID� � � I&QE� � I � � �� � I&� � � I&QE� � I � � 9(7.9)

Then, the result follows straightforwardly.

Considering Lemmas 7.10 and 7.11 as well as (7.7) , it is easy to get a bound for5 � 'V� � � T � J % M � � when T � J % M � is the ' � ' monic Jacobi matrix associated with Bessel
polynomials of parameter � .
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THEOREM 7.12. Let T �5J % M � be the monic Jacobi matrix of order ' associated with
Bessel polynomials of parameter � � * . Then,

5 � 'V� � � T � J % M � � � � ' � � )�' I & 9
When the parameter � is negative, it is possible to find examples in which� 5 � 'V� � ��T �5J % M � � is very large. For example, for � � � ) � % , and ' �RQE*!* ,� 5 � 'V� � ��T �5J % M � � � � 9 � � ��Q2* G+- . For more details, see Section 9.

Things are completely different if we consider � � � sufficiently large.
THEOREM 7.13. Let T �5J % M � be the monic Jacobi matrix of order ' associated with

Bessel polynomials of parameter � . Then,

7�� �
�
:�� � 5 � 'V� � ��T �5J % M � �6� � % 7 � �

�
: O � � 5 � 'V� � � T � J % M � �6� �

Proof. Notice from (7.6), (7.8) and (7.9), that

7 � �
�
:��

���� �  �  FHG ���� �&* % 7�� �
�
:��

���� �  �  I �  ���� ��* % 7 � �
�
:��

���� �  � �  �  I �  ���� �RQ %
and the same results are obtained when considering the limit � � � $ 9 Then, taking into
account (5.14), (5.15) and Definition 5.10,

7�� �
�
:�� 5 � 'V� � � � � � � Q % 7�� �

�
:�� 5 � 'V� � ��1 � � � �

and the result is obtained in a straightforward way.

8. DARBOUX TRANSFORMATION FOR SYMMETRIC POSITIVE DEFINITE
JACOBI MATRICES. In this section we analyze the symmetric Darboux transformation.
If we consider a positive measure 
 supported in �5* % $ � , apart from the corresponding monic
Jacobi matrix T (see (1.1)), we can consider the symmetric Jacobi matrix T � (see (2.2)).
Moreover, this matrix is positive definite and, therefore, its Cholesky factorization exists.
In [17], it is proven that the following transformation (symmetric Darboux transformation)
computes the symmetric Jacobi matrix associated with �S��
 ,

T � � � � � % � T G � � � � � � %
where ��� � denotes the Cholesky factorization of T � .

It is well known that the usual algorithm to compute the Cholesky factorization is a
normwise backward stable algorithm and that, for tridiagonal matrices, it is componentwise
backward stable [16]. On the other hand, numerical experiments show that, for finite matrices,
the spectral condition number of T � � J % � M � , 1 � � T ���5J % � M � � , can be much smaller than1 � � T � J % M � � . Here the notation introduced in Section 3 is used. For instance, in the next
table we show both condition numbers for Laguerre Polynomials with parameter Q�%4QE* ; '
denotes the order of the matrix.

n=10 n=50 n=1001 �!� TL� &�9 � QE* * � 9 � � Q2* � � Q�9 �() QE* G+23-1 ����T � � �#9 & / Q2* � / 9 � Q2* 	 � 9 � Q2* �
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Then, it is natural to ask whether, in the case of positive measures supported in �5* % $ � , we
can expect to compute the corresponding symmetric Jacobi matrix associated with �S��
 with
higher accuracy than the monic Jacobi matrix. In this section we show that this is not true.
In fact, both algorithms are mixed forward-backward stable and the corresponding condition
numbers have similar magnitudes (Theorem 8.15) which implies that similar forward errors
must be expected.

Let T �5J % M � (see (3.1)) be the ' � ' monic Jacobi matrix associated with a positive
measure 
 . Consider the corresponding symmetric Jacobi matrix, T �.�5J % � M � . Both matrices
are similar. In fact, there exists a diagonal matrix D such that

T � J % M �6� � � T�� �5J % � M � � � O
G %
where

� ��� % ��� � 
 Q �<� Q %� � 	 O
G 	 G M  % � ( � 9
Assume that the measure 
 is supported in � * % $ � . Then, T � � J % � M � is a positive definite

matrix and, therefore, the corresponding Cholesky factorization exists. Moreover, let us con-
sider the symmetric Darboux transformation applied to the section of order ' of T �.�5J % � M � ,
i.e.,

T ���5J % � M �6� ��� � %
T � � � % � 1 � � � � � � � �4O
G 9

It is obvious that T � � � % � 1 � is also a positive definite tridiagonal matrix. This matrix corre-
sponds to the �5' �8Q.� � ��' �8QE� leading principal submatrix of the symmetric Jacobi matrix
associated with ���!
 [12, 17]. In the sequel, we denote the symmetric Jacobi matrices byT �.�5J %�� � assuming that the entries of � are all positive.

The MATLAB code that computes Cholesky factorization of T � � J %�� � is

ALGORITHM 8.1. Given a symmetric positive definite Jacobi matrix T � � J %�� � � � � � � ,
this algorithm computes its Cholesky factorization.
l(1,1)=sqrt(B(1))
for i=1:n-1

l(i+1,i)=C(i)/l(i,i)
l(i+1,i+1)=sqrt(B(i+1)-l(i+1,i)ˆ2)

end
The following algorithm computes the symmetric Darboux transform of a symmetric

Jacobi matrix, T�� � J %�� � .
ALGORITHM 8.2. Given a positive definite symmetric Jacobi matrix T � � J %�� � � � � � � ,

this algorithm computes its symmetric Darboux transform of order ' � Q , T � � � % 5 � �� � �4O
G � � � �4O
G � .
l(1,1)=sqrt(B(1))
for i=1:n-2

l(i+1,i)=C(i)/l(i,i)
b(i)=l(i,i)ˆ2 + l(i+1,i)ˆ2
l(i+1,i+1)=sqrt(B(i+1)-l(i+1,i)ˆ2)
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c(i)=l(i+1,i+1)l(i+1,i)
end
l(n,n-1)=C(n-1)/l(n-1,n-1)
b(n-1)=l(n-1,n-1)ˆ2 + l(n,n-1)ˆ2

The computational cost of Algorithm 8.2 is ,.' � Q!Q flops which is almost twice the cost
of Algorithm 3.2.

The next lemma states the relation between the elements of a monic Jacobi matrix and
the associated symmetric Jacobi matrix. This lemma will be used when proving that the
condition numbers of Darboux transformation and symmetric Darboux transformation are of
similar magnitude.

LEMMA 8.1. Let T � J % M � �
$
�
$
� be the ��� factorization without pivoting of T � J % M � ,

and let T�� � J %�� � � � � � � � � � � M � be the Cholesky factorization of T��.� J %�� � . Then,

� 	�	 � �
$
� 	 % � �RQ ��' % � 	 F<G @ 	 � � $

� 	 % �<� Q ��' � Q %
where

$
� 	 denotes the element of

$
� in position ��� % ��� ,

$
� 	 denotes the element of

$
� in position � � IQ % ��� , and

� 	�	 and
� 	 FHG @ 	 denote the elements of � in positions � � % ��� and � � I Q % ��� , respectively.

8.1. Backward error analysis. The following three results are equivalent to Theorems
4.1, 4.2 and 4.3 obtained for Darboux transformation, but since the matrix T � �5J %�� � is posi-
tive definite, perfect componentwise stability is obtained. Recall that a similar result was ob-
tained for monic Jacobi matrices associated with positive measures supported in �5* % $ � (see
Lemma 4.4 and Theorem 4.3). In this section, it is assumed that the elements of T �.� J %�� � are
real floating point numbers. Similar remarks to those appearing at the beginning of Section 4
and Remark 5.5 remain valid in this case.

THEOREM 8.2. Let T��.� J %�� � be a positive definite Jacobi matrix of order ' . If
�� is the

factor computed by Algorithm 8.1, then

T �.�5J I	� J %�� I	� � �6� �� �� � % � � J ��� � � I � � � I � 	Q ��� � ��� � � � � 	 � J � % � � � ��� � � � � 9
Proof. For the computed quantities, we get

�� G G � Q I�� G �6� � J G % � � G ��� � %
and then, � J G � �� �G G ���U� � � I � � � �� �G G 9
For �<� � ��' �8Q ,

�� 	�	 ��Q I�� 	 � ��� J 	 � �� �	 @ 	 OVG ��Q I A�	 �� Q I�� 	 � % � � 	 � % � A 	 � % � � 	 ��� � %
�� �	 	 � Q I � ��	#I�� �	 � ��Q I���	 � ��J 	 � �� �	 @ 	 O
G ��Q INA�	 � %

J 	 � �� �	 @ 	 O
G � �� �	 	 � �� �	 @ 	 O
G A 	 I �� �	�	 � � � 	 I�� 	 I � � 	 � 	 I�� �	 I�� �	 � 	 � 9



ETNA
Kent State University 
etna@mcs.kent.edu

M. Isabel Bueno and Froilán M. Dopico 129

Then, we get� J 	 � �� �	 @ 	 OVG � �� �	 	 ��� �� �	 @ 	 O
G � I �� �	 	 � � � I � � � I � 	 � �U� � � I � � � I � 	 ��� �� �	 @ 	 O
G I �� �	 	 ��9
Finally, for �<� Q ��' � Q

�� 	 FHG @ 	<� � 	�� 	 	 ��Q INA�	 � % and � � 	 � �� 	�	 �� 	 FHG @ 	 ��� � � � 	5� 9
Previous results show that

T��.�5J I	� J %�� I	� � �6� �� �� � % � � J ��� � � � I � � � I � 	 � � ��� ��1
� �� �� � ��� % � � � �
� � � � � 9
But � ��� ��1�� �� �� � ����� � J �EI � � J ��� � J � ID� � � I � � � I � 	 ��� � � �!1
� �� �� � � � 9
Therefore, � � � ��1�� �� �� � � �
� � J �Q � � � � � � � � � 	
and the result follows easily.

For the second step of symmetric Darboux transformation, i.e., T �.� � % 5 � � ��� � � � �4OVG % we
get the following result.

LEMMA 8.3. Let � be a bidiagonal lower triangular matrix, and let T � � � % 5 � � � � � be
the exact product of � � times � . Let T�� � �� % �5 � be the computed product of � � times � . Then,� � � ������ � �Q � � � ���� % and � 5 � �5 ��� � � �5 � %
which in matrix notation implies that

T � � �� I	� �� % �5 I	� �5 �6�R� � � � � % � � ����
� � �Q � � � ���� % � � �5 �
��� � �5 � 9
Proof.

�� � ��Q I�� � � � � �� � ��Q INA � �HI � �� F<G @ � � Q I�� � � % � � � � % � A � � % � � � ��� �69
Then, � �� � � � ���� � � �� FHG @ � ����� �3� �� � �EI � ���� I � �� FHG @ � � %
which means that � � � � �� � �
� � �3� �� � � I � � � � � � � � �� � � I � � � � �� � � �
and the result follows in a straightforward way.

On the other hand,

�5 � ��Q I�� � �6� � � FHG @ � � � FHG @ � FHG % � � � ��� � 9
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Therefore, taking into account Theorem 8.2 and Lemma 8.3, it is easy to prove the main

stability result for the symmetric Darboux transformation.

THEOREM 8.4. Given a positive definite symmetric Jacobi matrix of order ' , T �.�5J %�� � ,
let T��.� � % 5 � be its symmetric Darboux transform of order ' �UQ . If T �.� �� % �5 � and

�� are the
matrices computed by Algorithm 8.2, then

T � �5J I	� J %�� I	� � �6� �� �� � % � � J ��� � � I � � � I � 	Q ��� � ��� � � � � 	 � J � % � � � ��� � � � � %
T � � �� I�� �� % �5 I	� �5 �6� � �� � �� � �4OVG % � � �� ��� � �Q � � � ���� % � � �5 ��� � � �5 � 9

Notice that we have shown that the symmetric Darboux transformation is componentwise
stable in the mixed forward-backward sense.

8.2. Conditioning of symmetric Darboux transformation. In this section we define
the corresponding componentwise relative condition number with respect to perturbations in
components associated with the symmetric Darboux transformation and a sharp bound for it
is obtained. Notice that, in this case, Theorem 8.4 guarantees that this is also the condition
number associated with the backward errors. This fact simplifies the analysis compared with
Section 5.

DEFINITION 8.5. Let T � � � % 5 � be the symmetric Darboux transform of order '�� Q of
a symmetric Jacobi matrix of order ' , T � �5J %�� � , and T � � � I � � % 5 I � 5 � be the Darboux
transform of order ' � Q of the symmetric Jacobi matrix of order ' , T � �5JDI�� J %�� I�� � � .
The componentwise relative condition number of the symmetric Darboux transformation of
the matrix T �.� J %�� � with respect to perturbations in components is defined as

5 � 'V��� � T�� �5J %�� � � � � 7 � �9�: P <?> @ � ������ � ���� � � ���� � ���� % ���� � 5 �� 5 � ������ � � � J ��� ��� J � % � � � ��� ��� � � � 9
Considering the previous definition and Theorem 8.4 it is possible to bound the forward

error in terms of the condition number.

LEMMA 8.6. Let T � � � % 5 � and T � � �� % �5 � be, respectively, the exact and the computed
symmetric Darboux transform of T � � J %�� � from Algorithm 8.2. Then,

������ 
 ����� � � � �� �� � ����� %
���� 5 � � �5 �5 � ���� � � � � ��Q I 5 � 'V� ��� T � � J %�� � � �<I � � � � � 9

To get an explicit expression for 5 � 'V� � � T�� �5J %�� � � , similar developments to those in
Section 5 are presented. Consider a positive definite perturbation of a symmetric positive
definite Jacobi matrix T��.� J %�� � , T�� �5J I � J %�� I � � � , and suppose that � and � I � �
are the corresponding Cholesky factors. We omit most of the proofs since they are similar to
those in Section 5.
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LEMMA 8.7. The following results are correct to first order.

�
� � FHG @ � � � � FHG @ � � � � �

� � � � � ���� ��� � %�� �RQ ��' �8Q!9
�
� ��� � � J �

�
� ��� � � � @ � O
G� ��� �

� � @ � O
G %�� �UQ ��' �8Q!9
From the previous lemma, we get to first order,

�
� ���
� ��� � � J �

�
� ���� � � �� @ � O
G� ���� �

� � � OVG
� � O
G � � � � O
G @ � O
G� � O
G @ � O
G � 9(8.1)

LEMMA 8.8. The following expressions for relative variations are correct to first order.

A � G G � A J G
� %

A � ��� � � J �
�
� ���� � � �� @ � OVG� ���� A � � OVG I � OVG�

	 	 G
�
� J 	
�
� �	 @ 	 �

� �	 @ 	 O
G� �	 	 A � 	 O
G�� � O
G� 	 	
� � F<G @  � � FHG @  FHG %�� � Q �!' �>Q!9

LEMMA 8.9. Let us assume that � � J � � � ��� J � � and, � � � � � � ��� � � � hold for � � Q �' �8Q . Then, to first order,

� A � ��� �
�	� �� Q� I � � �� @ � OVG�
� �� � I � O
G�

	 	 G
� Q
� I �

� �	 @ 	 O
G
�
� �	 	 � � O
G� 	 	

� � FHG @  � � FHG @  FHG
�� 9

REMARK 8.1. The bound for � A � ��� � given in the previous lemma can also be expressed
in the following way:

� A � ��� ���	� 
� Q� I � � OVG�

	 	 G
� OVG� 	 	

� � FHG @  � � F<G @  FHG
�
 9(8.2)

DEFINITION 8.10. For � �UQ ��' � Q
5 � 'V� ��� � ��� ��� � Q

� I �
� O
G�

	 	 G
� O
G� 	 	

� � FHG @  � � FHG @  F<G 9
The following lemma gives a recursive formula to compute 5 � 'V� � � � ��� � 9
LEMMA 8.11. For � �RQ ��' � Q ,
5 � 'V� �.� � G G � � Q

� % 5 � 'V��� � � ��� � � Q
�

� Q I � �� @ � OVG� ���� � I � �� @ � OVG� �� � � Q I 5 � 'V� �.� � � O
G @ � OVG � � 9
LEMMA 8.12. The following equations are correct to first order,

� � � � � � ��� � � ��� I � � � FHG @ � � � � FHG @ � %�� �RQ ��' � Q %
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� 5 � � � � FHG @ � � � � FHG @ � FHG I � � FHG @ � FHG � � � FHG @ � %�� �RQ �!' ����9
LEMMA 8.13.

A � � � �
� �� FHG @ �� �� � I � �� F<G @ � A � � I �

� ���� � � �� FHG @ �� ���� I � �� FHG @ � A � ��� %�� � Q ��' � Q %
A 5 � � � �� FHG @ � FHG I � �� FHG @ �

�
� �� FHG @ � FHG A J � FHG I � Q � � �� FHG @ �� �� FHG @ � FHG � �5A � � �)A � � � � % � �RQ ��' ����9

Then, taking into account Remark 8.1 and Lemma 8.13, we obtain the following result,

THEOREM 8.14. Let us assume that � � J � � � �'� J � � , � � � � � � ��� � � � hold for � � Q �' � Q . Then, to first order,

� A � � ��� ��� �
� �� F<G @ �� ���� I � �� FHG @ � I � � � ���� � � �� FHG @ � �� ���� I � �� FHG @ � 5 � 'V���.� � ��� ��� %�� � Q �!' � Q %

� A 5 � ��� ��� Q� I � �� FHG @ �
�
� �� F<G @ � F<G I

����� Q �
� �� FHG @ �� �� FHG @ � FHG

����� ��Q I 5 � 'V��� � � ��� � ��� %�� �RQ �!' ����9
Let us define

5 � 'V���.� � � ��� � �
� �� FHG @ �� ���� I � �� FHG @ � I � � � ���� � � �� FHG @ � �� ���� I � �� FHG @ � 5 � 'V��� � � ��� � %

i.e., 5 � 'V����� � � � is the bound for � A � � � divided by � . In a similar way,

5 � 'V� � � 5 � ��� � Q
� I

� �� FHG @ �
�
� �� FHG @ � FHG I

����� Q �
� �� FHG @ �� �� FHG @ � FHG

����� � Q I 5 � 'V� � � � ��� � �
denotes the bound for � A 5 � � divided by � .

Then, taking into account Definition 8.5,

5 � 'V��� � T��.�5J %�� � � � ������, 5 � 'V� �.� � �4O
G � % ������
	 G � ��O � , 5 � 'V���.� � � � % 5 � 'V� ��� 5 � � /!/ 9(8.3)

We have not been able to prove that the inequality appearing in (8.3) is sharp, i.e., that there
exist perturbations fulfilling the conditions of Definition 8.5 for which the inequalities in
Theorem 8.14 become equalities. Therefore, we have not found expressions for the true con-
dition number of the symmetric Darboux transformation, 5 � 'V� � ��T � �5J %�� � � . We will denote
the bound appearing in (8.3) by

� 5 � 'V� �.��T � �5J %�� � � � ��������, 5 � 'V���.� � �4O
G � % �������	 G � �4O � , 5 � 'V���.� � � � % 5 � 'V� � � 5 � � /!/ 9(8.4)

Now, let us compare � 5 � 'V� �.� T ���5J %�� � � ( � � � M ) and � 5 � 'V� � � T �5J % M � � as defined
in (5.20). Taking into account Lemmas 5.3 and 8.6, it is obvious that the condition numbers



ETNA
Kent State University 
etna@mcs.kent.edu

M. Isabel Bueno and Froilán M. Dopico 133

control the forward errors. Then, the comparison of both condition numbers implies the com-
parison of the respective forward errors obtained from the application of Darboux transforma-
tion to a monic Jacobi matrix T �5J % M � and the application of the symmetric Darboux trans-
formation to the symmetric Jacobi matrix associated with T � J % M � when the corresponding
measure is positive and supported in �5* % $ � . We have not expressions for 5 � 'V� � � T ���5J %�� � �
or 5 � 'V� � � T � J % M � � . Therefore, we are forced to compare the bounds � 5 � 'V� �.� T ���5J %�� � �
and � 5 � 'V� � � T � J % M � � . We have performed numerical experiments similar to those appear-
ing in Section 9 in the case of the symmetric Darboux transformation. These experiments
have shown that � 5 � 'V���.��T � � J %�� � � is an accurate approximation of the true condition num-
ber 5 � 'V���.� T�� �5J %�� � � as well as � 5 � 'V� � ��T �5J % M � � is an accurate approximation of5 � 'V� � � T � J % M � � .

THEOREM 8.15. Let T � J % M � and T � � J %�� � ( � � � M ) be, respectively, the monic
and the symmetric Jacobi matrices associated with a family of polynomials orthogonal with
respect to a positive measure supported in �5* % $ � . ThenQ

� � 5 � 'V� � ��T � J % M � � � � 5 � 'V���.� T�� �5J %�� � � ����� 5 � 'V� � ��T �5J % M � ��9
Proof. Taking into account Lemma 8.1, an alternative expression for 5 � 'V� � � � � � and5 � 'V��� � 5 � � is

5 � 'V� ��� � � �6� �
� �

� � I � � I � � � � � � �� � I � � 
� Q I � � O
G�

	 	 G
� O
G� 	 	

�  �  F<G
�

%

5 � 'V� � � 5 � �6� Q
� I

� �
�
� � FHG I ���� Q � � �

� � F<G ����

�
�
� I �

� O
G�

	 	 G
� O
G� 	 	

�  �  F<G
�
 9

Now we compare the previous expressions with (5.14) and (5.15) and it is trivial to obtainQ
�
5 � 'V� � � � � � � 5 � 'V� � � � � � ��� 5 � 'V� � � � � ��9

On the other hand, taking into account that for any number � , � Q I � ����� I � Q � ���
5 � 'V� � � 5 � � � 5 � 'V� � � 1 � ��9

Moreover, since � Q I � �2I � Q � � �4( � % for any � %
5 � 'V��� � 5 � � ( Q

�
5 � 'V� � � 1 � ��9

REMARK 8.2. Taking into account the previous theorem as well as Lemmas 5.3 and 8.6,
we can say that

� The bounds for the condition numbers � 5 � 'V� �.��T � �5J %�� � � and � 5 � 'V� � ��T � J % M � �
are of similar magnitude.

� The bounds for the componentwise forward errors associated with Darboux trans-
formation and symmetric Darboux transformation are of similar magnitude.

� Moreover, both algorithms are stable in the mixed forward-backward sense, as it has
been shown in Theorem 4.3, Lemma 4.4, and Theorem 8.4.
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Previous remarks let us assert that, in the case of positive measures supported in �5* % $ � ,
the accuracy with which Darboux transformation computes T �5J % M � is the same as the accu-
racy with which symmetric Darboux transformation computes T �.�5J %�� � .

On the other hand, notice that the computational cost of Algorithm 8.2 is , ' ��Q!Q flops
while the computational cost of Algorithm 3.2 is

� ' � � flops. Taking into account Lemma
8.11 and the definition of � 5 � 'V���.��T � �5J %�� � � , the cost of computing � 5 � 'V���.��T � � J %�� � � isQ�)!' � �(& flops compared with the Q � ' � � � flops of computing � 5 � 'V� � � T � J % M � � . This leads
us to think that, unless one needs specifically the parameters of the recurrence relation that
the orthonormal polynomials satisfy, non-symmetric Darboux transformation is more efficient
than symmetric.

9. NUMERICAL EXPERIMENTS. Finally, we conclude with a set of numerical ex-
periments. In Section 5 we studied thoroughly the conditioning of the unshifted Darboux
transformation without parameter. The main result of that section states that Algorithm 3.2 for
computing Darboux transformation is forward stable based on the fact that � 5 � 'V� � � T �5J % M � �
and � 5 � 'V� 6�� T �5J % M � � are of similar magnitude (Theorem 5.16 and Remark 5.5). Neverthe-
less, we just compare the bounds for the true condition numbers and the reader could doubt
the reliability of our result. For this reason, we include this section with a variety of numerical
experiments supporting our assertion of forward stability. Moreover, these experiments show
that � 5 � 'V� � � T �5J % M � � is a good approximation of the true condition number because it will
be seen that � ��Q I � 5 � 'V� � ��T � J % M � � � is a reliable measure of the componentwise forward
errors (recall Lemma 5.3).

In the first set of experiments we compare the forward errors obtained in two ways: 1)
applying Algorithm 3.2 to certain monic Jacobi matrices and comparing with the exact results,
2) perturbing randomly each entry J 	 or M 	 to

$
J 	 or

$
M 	 in such a way that � J 	 � $

J 	 ���$& � � J 	 � ,� M 	 � $
M 	 ���$& � � M 	 � , applying the algorithm exactly to the perturbed data and comparing with

the exact results. The experiments have been done using MATLAB 5.3 ( �&� Q!9 Q!Q Q2* O
G
� ).
In order to simulate an exact application of the algorithm we have used the variable precision
arithmetic of the Symbolic Math toolbox of MATLAB using �

�
decimal digits of precision.

We have analyzed the following cases:
1. Monic Jacobi matrices of dimension Q2*�* �7Q2*!* associated with Bessel polynomials

with parameter � � � Q2*#Q'% , I � � , where � � Q � �!* . In the table below, this
experiment is denoted by “Bessel”.

2. Monic Jacobi matrices of dimension Q2*�* �7QE*!* associated with Jacobi polynomials
with parameters � � � Q�)�%4Q2* I � , �>� � � ) I � �3%4QE* , where � � Q � �!* . In the table
below, this experiment is denoted by “Jacobi”.

3. Monic Jacobi matrices of dimension Q2*!* � Q2*�* associated with Laguerre polynomi-
als with parameter � � � Q�)0%�Q2* I � , where � � Q � �!* . In the table below, this
experiment is denoted by “Laguerre”.

4. Monic Jacobi matrices of dimension Q2*!* �>QE*!* whose elements in diagonals J andM are normally distributed random numbers. We have also considered �!* different
matrices. In the table below, this experiment is denoted by “Random1”.

5. Monic Jacobi matrices of dimension Q2*�* � Q2*�* whose elements in diagonal J andM are normally distributed random numbers multiplied by Q2* 2 ����� � � � where 3 � 'V�!'
denotes a normally distributed random number. We have also considered ��* different
matrices. In the table bellow, this experiment is denoted by “Random2”.

In the second set of experiments we compare the forward error produced by Algorithm
3.2 with the bound � ��Q I � 5 � 'V� � � T �5J % M � � � in the cases considered in the first set of exper-
iments.
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We denote by � #)Q the vector with the maximum componentwise forward errors obtained
in the way 1) and � # � denotes the vector with the forward errors obtained in the way 2). More
precisely the maximum componentwise forward error is ������, ��� 3 � % ��� 321 / where

��� 3 � and��� 3E1 were defined in (3.5).

Bessel Jacobi Laguerre Random1 Random2�����
� � #)QE� � 9 � Q2* � � 9 )0, Q2* O
G 	 � 9 � � Q2* O
G
� � 9 * � Q2* O
G G Q!9 � � Q2* O
G 	�����L� � #7Q.� � 9 ��/ Q2* OVG�� / 9 ) � Q2* O
G
� ��9 Q6& Q2* O
G
� ��9�& � Q2* O
G+2 ��9 Q�/ Q2* O
G
������
� � # �!� ��9�&�) QE* � Q!9 * � Q2* O
G G / 9 � / Q2* O
G+2 � 9 * � Q2* O
G P � 9 / ) Q2* O
G ������L� � # ��� � 94, � Q2* OVG.2 Q!9 *0, Q2* O
G � � 9 � � Q2* O
G+2 � 9�&�Q Q2* O
G � � 9 � / Q2* O
G+2�����V� � #)Q!94% � # ��� �#9 ) � & 9 � � ,�9 *�* � � 9�, � QE* O
G Q�9�, � QE* OVG
mean � � #)Q!94% � # �!� �#9 Q � Q2* O
G � 9 / � Q2* O
G � 9 � Q QE* O � �#9 �() QE* O � & 9 )0& QE* O ���� �<� � #7Q�9�% � # �!� � 9 � � Q2* O � Q!9 ��* Q2* O � ��9�& � QE* O � Q�9 � Q=QE* O � �#9 Q � QE* O 	

The fifth row of the previous table shows that the forward errors produced by Algo-
rithm 3.2 are, at most, a little larger than the errors produced by perturbing the data, and
the sixth and seventh rows show that frequently they are smaller. This means that Algo-
rithm 3.2 is forward stable, as predicted by the theory in Section 5. It is also interesting to
note that the experiment with Bessel polynomials offers a wide range of values of the for-
ward errors

�
� 9 ��/ Q2* OVG�� % ��9 �NQE* � � . In fact, when the parameter takes negative values, i.e.,, � ) � % , % � , �0% , % � �(/(% , / , we obtain the following results:

Bessel � =-94/7 � =-73/7 � =-38/7� #7Q ,49 * � Q2* G ��9 �!* Q2* � � 94,4QBQ2* O �� # � Q!94,�/ Q2* G ��9�&�) Q2* � ,49 �(& Q2* O 	
These results show that Algorithm 3.2 is forward stable even in the presence of large

forward errors. This is remarkable because the analysis in Section 5 just leads to first order
error bounds (Lemma 5.3). One could think that these results for the componentwise forward
errors can be improved noticeably by considering normwise forward errors. However, al-
though the errors in norm are certainly smaller, they are very far from being of order machine
precision. In the following table we include normwise forward errors (3.6) denoted by # ' Q
and # ' � , respectively, for Bessel polynomials with parameters , � ) � %(, % � , �0%(, % � �(/(% , / :

Bessel � =-94/7 � =-73/7 � =-38/7# ' Q � 9 )0& QE* O 	 � 9 � � Q2* O 	 Q�9 � � QE* O -# ' � � 9 Q � QE* O 	 � 9�& � Q2* O 	 �#9 � � QE* O *
In spite of the results obtained in the above experiments, it still remains to be verified

that the bound � 5 � 'V� � � T � J % M � � for the true condition number really reflects the sensitivity
of the problem and, therefore, it is a useful bound for the forward error. In the following table
we compare the bound for the forward error (obtained from Lemma 5.3) and the real forward
errors. Again we consider the examples used above. Here� # � � ������, ��� 3 � % ��� 3E1 /� ��Q I � 5 � 'V� � ��T � J % M � � � 9

Bessel Jacobi Laguerre Random1 Random2������, � # / 3.69 Q�9 /(/ Q2* O
G 1.46 & 9 *() / Q2* O
G � 9 Q � Q2* O
G
mean , � # / &�9 / � Q2* OVG ,49 ��) Q2* O � �#9 Q6/ QE* OVG Q!9 � � QE* O
G Q!94, � Q2* O
G�����
, � # / ��9 ) QE* O � Q!9 ) / Q2* O � & 9 Q6) QE* OVG & 9 � Q2* O � Q!9�& � Q2* O �
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The results in this table show that � 5 � 'V� � � T �5J % M � � is a good approximation of5 � 'V� � ��T � J % M � � since the bound � � Q I�� 5 � 'V� � ��T � J % M � � � is just a little larger than the
forward errors produced by Algorithm 3.2 in a wide set of examples.

The presence of values of
� # slightly larger than Q can be explained by the fact that the

errors coming from computing the input data J and M have not been taken into account, and
although they are of the same magnitude (see Remark 5.5), the forward error bound can be
increased by a factor � .

10. Acknowledgements. The authors thank Prof. Juan Manuel Molera and Prof. Fran-
cisco Marcellán for their suggestions and comments to improve this paper.

REFERENCES

[1] R. P. BOAS, The Stieltjes moment problem for functions of bounded variation, Bull. Amer. Math. Soc., 45
(1939), pp. 399–404.

[2] M. I. BUENO AND F. M. DOPICO, Stability and sensitivity of tridiagonal �
	 factorization without pivoting,
to appear in BIT.
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