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Abstract. We study the support of the equilibrium measure for weights defined on arcs of the unit circle and on
intervals of the compactified real line. We provide several conditions to ensure that the support of the equilibrium
measure is one interval or one arc.
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1. Introduction. In recent years, equilibrium measures with external fields have found
an increasing number of applications in a variety of areas ranging from diverse subjects such
as orthogonal polynomials, weighted Fekete points, numerical conformal mappings, weighted
polynomial approximation, rational and Pade approximation, integrable systems, random ma-
trix theory and random permutations. We refer the reader to the references [1, 2, 4, 7, 8, 12,
13, 14, 16, 17, 19, 20, 21] and those listed therein for a comprehensive account of these
numerous, vast and interesting applications.

1.1. Potential-theoretic preliminaries and definitions. With a compact set ����� and
lower semi-continuous external field 	�
���
������������ , we set ��
������! "�#�$	&% and call � a
weight associated with 	 , provided the set�(')
��+*-,/.0��
1�2�3,4%6587!9
has positive logarithmic capacity. With an external field 	 (or a weight � ), we associate the
weighted energy of a Borel probability measure : on � as;�< �=:"%>� ?!@2?A@CBEDGF HI J �LK I �2� J %��2�=K#%4M :N� J % M :N�=K#%�O
The equilibrium measure in the presence of an external field 	 , is the unique probability
measure : < on � minimizing the weighted energy among all probability measures on � .
Thus, ; < �P: < %>�8Q/REST* ; < �P:"%6
&:U.WVX�Y�Z%�94�
where VX�[�Z% denotes the classVX�[�Z%N�\*]:U
&: is a Borel probability measure on �^94O
For more details on these topics we refer the reader to the seminal monograph of E. B. Saff
and V. Totik [17]._
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The determination of the support ` < of the equilibrium measure : < is a major step in
obtaining the measure. As described by Deift [8, Chapter 6], information that the support
consists of acb H

disjoint closed intervals, allows one to set up a system of equations for
the endpoints, from which the endpoints may be calculated. Knowing the endpoints, the
equilibrium measure may be obtained from a Riemann-Hilbert problem or, equivalently, a
singular integral equation. It is for this reason that it is important to have a priori conditions
on the external field 	 to ensure that the support is an interval or the union of a finite number of
intervals. We refer the reader to the references [3, 4, 5, 6, 9, 10, 11, 15, 17, 18] for an account
of advances on the equilibrium measure and support problem for one or several intervals.

In this present paper, we study supports of equilibrium measures for a general class of
weights on the compactified real line and unit circle and present several conditions on the
associated external field to ensure that the support of the associated equilibrium measure is
one interval or one arc.

In order to present our main results, we find it convenient to introduce some needed
notation and definitions.

DEFINITION 1.1. Let de 
f� ehg *i�j9 denote the compactified real line. It is a topological
space which is isomorphic to the unit circle k . We will think of � as l)� , that is, we agree
that mon�� for any mo. e .

Let pZ��qr. de ��prstq . Then
; 
��vuNpZ��qxwU� de denotes an interval which is open,

closed, or half open, and has endpoints p and q . We define y q>��p��h
��z�[ph�{q2%}| , �3q>��p~%2
��yfpZ�{qC��| , �[qN�}p��"
��x�YpZ��q���| , y q>��p)%Z
��\yfpZ��q2%�| .
Let now �>����. e

be two angles,
I ���\� I n��&�1O We define � u=�(�#�Tw to be the arcu=�������{�-���!w~�jk , where we go from ����� to �-��� in a counterclockwise direction. If �W�L�L���&�1�

let � u=�(�#��w to be the full circle C. If �0�U�L���&�1� or ���j� , then let � uP�>����w be the single point���! "�P����% . Finally, if 7�s�������s8�&� and
; �tuP�>����w then define �; to be � u=�(�#��w .

We say that ���=�L% , ��. de is a weight on de , if

(1.1) �2�P��%$
f� ���� �¡T¢ �£¤¢ ��%I H �L� I � I � I � H
is a weight on k .

REMARK 1. We note that this definition of weights on the real line is more general
than the one given in [17] or [18], since we do not assume the existence of

B R¥Q I � I ���P�L%
as
I � I 
�� . However, since 	�
���� B¥D¦F �=��% is bounded from below,

I � I ���=�U% must be
bounded from above. In addition, studying weights on the compactified real line via weights
on the unit circle k allows us to deduce several results on the supports of the equilibrium
measure :¨§ on the line via a general result for : < on the circle (see Theorems 2.1, 2.3 and
2.4).

In the next subsection, we describe the relation between the weighted energy problem onde and on k .

1.2. Connection between the equilibrium problem on de and on k . We will make
use of the Cayley transform between de and k as follows.

de�© �«ª�¤
¬�0
�� �z�L��tl�� .­k
defines a bijection between de and C. The inverse isk © �­ª��
¬�®� H l¯�H �U� �(. de O
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The image of °>��±². de by the Cayley transform will be denoted by ³ and K .
To any measure :L.´VX� de % , we assign the Borel probability measure :¨µ on k withM :Tµ$�=�¤%Z
�� M :N�=�L%�O

This mapping is a bijection between Borel probability measures on de and k .
Let the weights � and � be related by (1.1). The weighted logarithmic potential of :

and :Tµ is defined by pC¶§ �=�L%6
�� ? B¥D¦F HI ±8�U� I ���=±�%����=�L% M :N�=±�%��
p ¶&·< �=��%h
f� ? BEDGF HI K��L� I �2�PK#%��2�P��% M : µ �PK#%}�

respectively ([18]). These are well-defined integrals (even though : may not have compact
support), as well as; §��P:"%6
f�x� ?¸? BEDGF � I �¹��° I ���=�U%#���P°º%#% M :N�P�L% M :N�P°/%}O
From I �z�U° I �¼»»» H l��H �L� �"� H l�³H �L³ ��»»» � � I �X�L³ II H �U� IEI H �U³ I
we have

I ±8�U� I ���=±�%����=�L%½��� I K��U� I �2�=K#%��2�=�¤% . Thus,

(1.2) pC¶§ �=�L%N��p ¶&·< �P��%N� BEDGF �¾O
Integrating this we get

(1.3)
; §��P:"%>� ; < �P: µ %�� B¥D¦F �!O

Since �c��� £¤¿ �À�²�j� £¤Á �
we have the following correspondence between 	 and Â :

(1.4) 	!�P��%>�²ÂLÃ H l¯�H �U� �YÄ/l BEDGF I H �U� I � I � I � H O
For convenience we will agree on the notations	!�=Å¦%h
f��	!�P� ��Æ %��¨�2�PÅ¦%Z
��j���P� �EÆ %��ÀÅº. e O
Also, since I H �U� I � �I �tl¯� I � �Ç H l¯�ÉÈ � I � I � H �c�r.�de �
we have

(1.5) Â��P�L%N�j	 Ã �¹�U��¸l¯� Ä l H� BEDGF � H l�� È %�� B¥D¦F �!�À�¬. de O



ETNA
Kent State University 
etna@mcs.kent.edu

30 D. BENKO, S. B. DAMELIN, AND P. D. DRAGNEV

We find it more convenient to use angles instead of complex numbers on the unit circle.
So let �´�����EÆ , and ³/������Ê for Å��{Ë´. e .

Clearly,

(1.6)
I ���U³ II H �U� IEI H �L³ I � I�Ì R¥S Æ £ ÊÈ I� I#Ì RESZÅ4Í&� I¥I#Ì RES$Ë�Í&� I and

H l��H �L� �½�\�­Î D&Ï Å � O
Therefore, using (1.6), we readily calculate that; § �=:"%N��x� ?t? BEDGF ÃÐ»»» Ì RES Å)��Ë� »»» ������Î

D&Ï Å4ÍG�G%I�Ì REShÅ4Í&� I ���#�­Î D&Ï Ë�ÍG�G%I#Ì RES^Ë�ÍG� I Ä M :ÑjÒ ��Î D&Ï Å�TÓ0M : Ã ��Î DGÏ Ë � Ä�x� ?t? BEDGF ÃÐ»»» Ì RES Å)��Ë� »»» �2�PÅ¦%��2�[Ë¾%�Ä M : Ò �­Î D&Ï Å��Ó M :ÉÃG�­Î D&Ï Ë � ÄX� B¥D¦FNÔ O
Here, we used the fact that �2�PÅ¦%$�\������Î D&Ï ÆÈ %{Í¾�3� I�Ì R¥S ÆÈ I % (see (1.1)). In addition, we note
that from (1.4) we get

(1.7) 	!�PÅ¦%>��Â Ò ��Î DGÏ Å �¤Ó l BEDGF I�Ì R¥S Å � I l BEDGF �!O
The formulae (1.1)–(1.3) allow us to conclude the following::¹.ÕVX� de % minimizes the energy integral

; § �P:"% over all probability measures on de
if and only if its corresponding :¨µ�.ÕVX�3k)% minimizes the energy integral

;]< �=:Tµ>% over
all probability measures on k . Moreover, the support `½§ is going to be an interval or a
complement of an interval in de if and only if the corresponding support ` < is an arc on k .

We close this section by introducing some remaining conventions which we assume
henceforth.

Let Ö; be an arc of k . We shall say that ×�
CÖ; 
 e
is absolutely continuous inside Ö; if

it is absolutely continuous on each compact subarc of Ö; . (As a consequence, ×TØ exists a.e. onÖ; .)
Now let

;
be an interval or a complement of an interval in de . Let the arc Ö; be the image of;

by the Cayley transform ±�
 de 
Ùk . We shall say that ×É
 ; 
 e
is absolutely continuous

inside
;

if ×)Ú�± £T  is absolutely continuous inside Ö; O (If ; is a finite interval, this definition is
equivalent to the usual definition of absolute continuity inside

;
.)

We say that a function × is increasing on an interval
; � e if there exist ÛU� ; such that

the Lebesgue measure of
;~Ü Û is zero and ×½�=�¤%~sÝ×½�=³¾% whenever �¨�#³�.jÛ , ��s\³ . (This

is a useful definition when × is defined only a.e. on
;
.) We define “decreasing” in a similar

manner.
Moreover, we say that × is convex on an interval

;
if × is absolutely continuous inside

;
and ×¤Ø is increasing on

;
.

We finally note that under Cayley transform (or its inverse), sets with positive capacity
are transferred to sets with positive capacity.

The remainder of this paper is structured as follows. In Section 2, we present our main
results and in Section 3 we present our proofs.

2. Main Results: The Circle and the Compactified Real Line. In this section we state
our main results. We begin with our main results for the circle and compactified real line.
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2.1. Circle.

THEOREM 2.1. Let �2�P,A%^�+�Þ�! "���$	!�3,4%�%}� I , I � H be a weight on k and let
; �ßu�à��{á-w

be an interval with 7ºn8á^�LàÉsj�i�1O Assume that 	 is absolutely continuous inside
;

and

(2.1)
B REQ�RES!â�W
¬³��. ; 	!�=��%(��	!�P³!%

whenever ³ is an endpoint of
;

with ³o. ; . Let �i��| be any point which is not an interior point
of �; . Let �y �   �#�   �[�]OÞO]OÞ���y �½ã4�#��ã�� be äWb�7 arcs of k . Here, for all

H s��>s8ä , 7/n�� � �/� � s8�&�
and �3` < g �; %�� �y � � �#� � � . Suppose further that

;
can be written as a disjoint union of å¯b H

intervals
;   �ÞO]OÞOÞ� ;�æ and for any fixed

H s�ç�s�å , either

(2.2) � Á}è Æ{é!ê � Ì RES Ã Å���ë� Ä 	 Ø �=Å¦%N�UÎ D Ì Ã Å)��ë� ÄÐì Ì F S Ã Ì RES Ã Å���ë� Ä�Ä
is increasing on

;�í
, or for some

H s��Ns8ä :

(2.3)
Ì RES Ò Å)��� �� Ó Ì R¥S Ò � � �UÅ� Ó 	 Ø �PÅ¦%"l HÔ Ì R¥S Ò ÅC� � � l¯� �� Ó

is increasing on
;�í

. Finally, we assume thatB REQ Ì#î  Æ�ï~ÆÞðñ 	 Ø �PÅ¦%Zs B REQ�RES!âÆ�ï~Æ�òñ 	 Ø �=Å4%}�
whenever Åi' is an endpoint of

;�í
(
H s�ç�sóå ) but not an endpoint of

;
. Then ` <ºô �; is an arc

of k .
Here sgn denotes the signum function.
REMARK 2. The choice of ë is not important, see Remark 6 and the proof of Lemma

3.3. We also remark that if �; is the full circle, then one should check only condition (2.2) and
ignore (2.3) which is a stronger assumption.

Below we give a condition which guarantees that ` < is the full circle:
COROLLARY 2.2. Let �2�P,A%º�t�Þ�A ¨���$	!�P,A%#%�� I , I � H

be a weight on k and let
;   
����à   �#à   ló�i�"% and

; È 
��\��à È ��à È ló�i�"% where �i��õ]ö2÷������õ�ø . Assume that (2.2) is increasing on;   where ë�
��8à   , and (2.2) is increasing on
; È where ë�
���à È . Then ` < ��k .

Proof. By Theorem 2.1 ` <~ô �;   is an arc of k . Let � ��| be an interior point of this arc, not
identical to ���¥õ ø . Choose ù   ��ù È such that ë)n8ù È njù   një>l��i� and both of the arcs ��3ëi�#ù   %
and ��=ù È �{ë1l��i�"% contain only one of � �¥õ]ö and � ��õ�ø , say, ��Pëi��ù   % contains � �¥õ]ö and ��=ù È ��ë>l��i�"%
contains ���¥õ�ø .

Using the first observation of Remark 2, we see that (2.2) is increasing on �3ëi�#ù   % because
(2.2) is increasing on �3ëi�#ù   % when at (2.2) ë is replaced by à È . Similarly, (2.2) is increasing
on �Pù È ��ë>l��i�"% because (2.2) is increasing on �Pù È ��ëNló�&�"% when at (2.2) ë is replaced by à   .
Thus (2.2) is increasing on �Pëi�{ë>l��&�"% and so ` < ��k by Theorem 2.1 and by the choice ofë .

Example. The following example illustrates the theorem.
Let 	!�PÅ¦%2�¼Î D Ì �[úiÅ¦% Ì RES"�PûGÅ¦% defined on �Ý�«y �!O ü¾�{û¾O H]ý � g y û�O ü4ú!� Ô � . (We may define �

to be zero outside � so that � is defined on k .) We claim that both ` < ô �y �¾O ü���û�O H-ý � and` <Wô �y û¾O ü¦ú¾� Ô � are arcs of k . (One of them may be an empty set.)
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Take �   ���!O ü¾���   � Ô and � È ��û�O ü4ú!��� È ��û�O H-ý ló�&� .
One can verify that (2.2) is satisfied on y �!O ü¾�{û¾O H�þ � but not on the whole y �!O ü¾�{û¾O H]ý � . (At

(2.2) ë can be chosen to be any number such that � �E| is not an interior point of �y �!O ü¾�{û¾O H]ý � . Or,
simply check the �3	&Ø�% È lj	iØ ØÐl H Í Ô bÝ7 condition, see Remark 6.) Also, using �   and �  
we see that (2.3) is not satisfied on the whole y �!O ü¾�{û¾O H]ý � . However, (2.3) is satisfied on the
subinterval y û�O Hiþ ��û�O H-ý � (see FIG. 2.1). So the combination of the (2.2) and (2.3) conditions
implies that ` <´ô �y �!O ü¾�{û¾O H]ý � is an arc.

x

3.15

6

3.1

4

2

3.05
0

-2

32.95

Condition (2.2) on [2.9,3.18]

x

3.153.13.05

0.05

3
0

-0.05

-0.1

2.95

Condition (2.3) on [2.9,3.18]

FIG. 2.1. Conditions (2.2) and (2.3) on the interval ÿ��
Using �   and �   on y û¾O ü¦ú¾� Ô � is not helpful since (2.3) is a decreasing function there.

Also, (2.2) is not satisfied on the whole y û¾O ü¦ú¾� Ô � . However, (2.3) is satisfied using � È and � È
on the whole y û¾O ü¦ú!� Ô � . Theorem 2.1 now implies that ` <´ô �y û¾O ü¦ú¾� Ô � is an arc (see FIG. 2.2).
(We remark that � È and � È are not helpful on y �!O ü¾�{û¾O H]ý � since (2.3) is a decreasing function
on y û�O Hiþ ��û�O H-ý � .)

3.983.973.963.95

5.45

5.4

5.35

5.3

5.25

5.2

5.15

x

3.99

Condition (2.2) on [3.95,4]

-0.075

3.98

-0.08

-0.085

3.97

-0.09

3.963.95

x

3.99

Condition (2.3) on [3.95,4]

FIG. 2.2. Conditions (2.2) and (2.3) on the interval ÿ��
REMARK 3. It is a natural question to ask what � � and � � numbers we should choose in
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order that (2.3) is as weak as possible. In most cases the following statement is true:
Let

�y �>����� and �y � Ø ��� Ø � ( 7/n������ós��i�1�½7/n��¨Ø¾���¨Ø¨s��i� ) be two arcs of k such that` < � �y �(�#���N� �y � Ø ��� Ø � . Let �; be an arc contained in
�y �(�#�T� . If (2.2) or (2.3) is satisfied with�¨Ø[���"Ø then (2.2) or (2.3) is also satisfied with �>��� .

For example, this statement is true if 	GØ ØY�PÅ¦% exists and the sets� 
�� � Å/. ; 
G	 Ø �=Å¦%h5 H� Î D&Ï Ã Å)���¨Ø� Ä�� � � � 
f� � Å�. ; 
G	 Ø �=Å¦%Z5 H� Î DGÏ Ã Å)�L�¨Ø� Ä��
consist of finitely many intervals. (The proof of this is similar to the proof of [3, second
remark].)

Theorem 2.1 can be effectively used when �2�3,4% is identically zero on some arcs (that
is, � is a subset of finitely many arcs). If �2�P,A% is zero on �y 	 � ��
 � � ( 7�n�
 � ��	 � n��i�"% ,�)� H �ÞOÞO]OÞ��ä , then we may choose �y � � �#� � � to be �y 
 � �
	 � � in Theorem 2.1. This is consistent
with the discussion above. For convenience we will state Theorem 2.3 in accordance with this
remark.

2.2. Compactified Real Line.

THEOREM 2.3. For given äo.�� ¡ let��
f� g ã���   y � � �
� � �¨� de �À���Ð���i���� n��   s��   n�� È s�� È n������¾n���ã�s��Cã2njl)��O
Let � �����! T�#�^Â~% be a weight on � ,

; ��� be an interval and assume that Â is absolutely
continuous inside

;
and

(2.4)
B REQ�R¥S!â�®
r°�¬. ; Â��P�L%1��Âo�P°�%��

whenever ° is an endpoint of
;

with °Ý. ; . Assume further that
;

can be written as a disjoint
union of intervals

;   �ÞO]OÞOÞ� ;�æ such that for any fixed
H s�ç�s�å either� ¿1è�� é is convex on

; í �
or for some

H s��>s8ä�� H�=�«��� � %�� � � ¡¨  �U�L%#Â Ø �P�L%Tl�� is decreasing on
;�í �

or

(2.5) �=�z���   %Þ�!� ã �U�L%�Â Ø �P�L%Tl¯� is increasing on
; í O

Finally, we assume that B REQ Ì#î  � ï � ðñ Â Ø �P�L%6s B REQ�RES!â� ï � òñ Â Ø �=�U%}�
whenever � ' is an endpoint of

; í � H sóçWsjå"% but not an endpoint of
;
. Then ` § ô ; is an

interval.
REMARK 4. We remark that Theorem 2.3 is also valid when one interval, say, y �CãA�
�Cã-�

is an infinite interval or a complement of a finite interval. If �)ã�5"�Cã (and, of course,��ã�n��   ), then the conclusion of the theorem holds if (2.5) is replaced by the condition:

(2.6) �=�z�#�CãG%��!�   �U�L%#Â Ø �=�U%Tl�� is decreasing on
;�í O
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If however � ã �²l)� , then (2.5) should be replaced by the condition:�=�z���   %#Â Ø �=�L% is increasing on
;�í O

Finally, if �   �¼��� (and so y �   �
�   � is the infinite interval instead of y �Cã!�
�Cã]� ) then (2.5)
should be replaced by the condition� � ã ���L%�Â Ø �P�L% is increasing on

; í O
At (2.6) and at Theorem 2.4 at (e) one can also consider an

;
which is a complement of

a bounded interval. We leave the details for the reader.
Theorem 2.4 reveals to us the following remarkable connection between previously known

conditions on Â . It also gives us a new condition (which is (e) below). As a consequence of
Theorem 2.1 and 2.3 and Remark 4, we now have the following general result for the case
when � is one real interval. See also [3]. Recall that for �+n�� we define y �o�$�h��
f���!�2�
��%{| .

THEOREM 2.4. Let � be a weight on
e

and let
; � e be an interval. Assume that Â is

absolutely continuous inside
;

and satisfies (2.4). Let �\s%� be finite constants and suppose
that either of the following conditions below hold:

(a) �=�z����%�� �\���L%#Â Ø �P�L%Tl�� is increasing on
; �²y �~�$�)� , ` § �²y �~�$�)� .

(b) �=�z����%#Â~ØY�=�L% is increasing on
; ��y �~�}l)�ó% , `¨§®��y �~�}l)�ó% .

(c) �!�\�U�L%�Â)ØP�P�L% is increasing on
; ���#���j�$�)� , `¨§ß�²�������
�~� .

(d) �=�z����% È Â)Ø[�=�U%��L� is increasing on
; � e�Ü *��)9 ,

(e) �=�z����%�� �\���L%#Â~ØP�P�L%Tl�� is decreasing on
; �+y �o�
�$� , `¨§«�+y �o�
�$� .

(f) Â is convex on
;
.

(g) ���! "�[Â~% is convex on
;
.

Then `¨§ ô ; is an interval.
REMARK 5. Theoretically one should ignore (d) and (f) since (g) is a weaker assumption

than both of these. Nevertheless we included them here, because sometimes they are easier to
check.

Notice that (a) in Theorem 2.4 corresponds to the case of Theorem 2.1 when
�y �(�#�T� is

an arc of k disjoint of the point ��� H
, (b) corresponds to the case when

�y �(�#��� is a proper
subarc of k such that ���! "�P�[��%N� H , (c) corresponds to the case when

�y �>����� is a proper subarc
of k such that ���! "�P����%$� H , (d) corresponds to the case when

�y �(�#��� is the full circle k and
a subcase of this is when �¹�z� (so �+� 7 and ���¹�i� ) which corresponds to (f). The
condition (e) corresponds to the case when

�y �(�#�T� is a proper subarc of k which contains the
point �L� H inside the arc. Finally, (g) is the only condition which corresponds to (2.2) and
not (2.3).

Note also that if we let �Ù�&� then (e) leads to condition (d), since �=���'��%�� ����L%�Â)Ø3�P�L%Tl¯� is decreasing if and only if �P�z�#��% È Â)Ø[�=�L%��U� is increasing.
One may also combine the above conditions to create a weaker condition in the spirit of

Theorem 2.1 and 2.3.

3. Proofs. In this section, we present the proofs of our results. We find it convenient to
break down our proofs into several auxiliary lemmas. Our first lemma is

LEMMA 3.1. Let �2�3,4%h���Þ�A ¨���$	!�P,A%#% , I , I � H be a weight on k and let
; �«u�à��{á-w be

an interval with 7/n�á(�Wà0s8�&� . Let 7/nó���­��s8�&� and assume ` < g �; � �y �(�#�T� . Suppose	!�=Å4%Z
f��	!�P����Æ]% is absolutely continuous inside
;

and satisfies (2.1). Moreover, assume that

(3.1)
Ì R¥S Ò Å)�U�� Ó Ì R¥S Ò ���UÅ� Ó 	 Ø �PÅ¦%¨l HÔ Ì R¥S Ò Å�� �´l¯�� Ó
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is increasing on
;
. Then ` < ô �; is an arc of C.

Proof. Let

�+
��\��Î DGÏ � � �(��
��x�­Î D&Ï � � �À�¬
��\��Î DGÏ Å � O
First, let us assume that �>����.j�P7¾���i�"% . Thus, we may assume that 70n��²s�à�n²Å�ná2s���n8�&� and 7ºn Ì R¥S¨�P�1Í&�G% , 7ºn Ì RES"�=��ÍG�G% . So �+s��rs%� .
From (1.7), we have

(3.2) Â Ø Ò ��Î D&Ï Å �¤Ó �²� Ì RES È Ò Å�TÓ Ò 	 Ø �=Å¦%N� H� Î D&Ï Å ��Ó O
Thus, �=�z����%Þ�!�\�U�L%#Â Ø �P�L%Tl���+� Ò Î D&Ï Å � ��Î DGÏ � �1Ó Ò Î D&Ï Å � �UÎ D&Ï � �½Ó Â Ø Ò ��Î DGÏ Å ��Ó �UÎ D&Ï Å ��+� Ì RES Æ £ �È Ì R¥S Æ £ �ÈÌ RES � È Ì R¥S � È Ò �G	 Ø �PÅ¦%½��Î D&Ï Å �¤Ó �UÎ D&Ï Å � O
Now we use the following identity which holds for any �>���N�#Å :Î DGÏ Ã Å � Ä$Ã Ì RES Æ £ �È Ì RES Æ £ �ÈÌ RES � È Ì RES � È � H Ä � Ì RES"�=Å)� � ¡ �È %� Ì REST� � È % Ì R¥S"� � È % � H� Ò Î DGÏ � � lóÎ DGÏ � �1Ó O
It follows that�P�¹����%Þ�!���L�L%�Â Ø �P�L%Tl¯�(3.3) �x�^� Ì R¥S Æ £ �È Ì RES Æ £ �ÈÌ R¥S � È Ì RES � È 	 Ø �=Å¦%"l Ì R¥S¨�=Å)� � ¡ �È %� Ì R¥ST� � È % Ì RES"� � È % � H� Ò Î DGÏ � � lóÎ D&Ï � �NÓ O
Because 7�n Ì RES"�P�1Í&�¦% , 7�n Ì R¥S¨�=��ÍG�G% , the right hand side of (3.3) is increasing on

;
if

and only if (3.1) holds. Thus, if (3.1) holds then �P���)��%Þ�!���º�L%#Â~Ø[�=�L%&lo� is increasing onu���Î DGÏ õ È �]��Î D&Ï+*È w . Now consider the corresponding equilibrium problem on de , as described
in Section 1 and let ` § denote the corresponding equilibrium measure on de . Using [3,
Theorem 7] we get that ` § ô u��­Î D&Ï õ È �Þ��Î D&Ï+*È w is an interval. It follows that ` < ô �; is an
arc of k . This proves Lemma 3.1 for the case when �(�#��.��P7¾���i�"% .

Now let �8s²�&�ós��N���0�¯�8n²�&� . Note that 7Ws Ì R¥ST�3�½ÍG�G%}�{7´b Ì RES"�P��Í&�¦% . We cannot
apply [3, Theorem 7] because �Ùs,� and � is outside y �o�$�h� . However, we can use the
observation that condition (3.1) is “rotation invariant.”

Let 7/n�- be a number such that7/n��É�#-0��
&� � �À� � 
f������-Énj�i�1�
and define à � 
f�jàX��-¤��á � 
���á���-¤�

	 È �=Å¦%Z
���	!�=Å�l.-T%}O
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For � È �����! T���$	 È % and the parameters � � �#� � �#à � ��á � , we may apply the case we studied
above to get that ` < ø ô �u�à � ��á � w is an arc of C. But this new equilibrium problem is isomorphic
to the original one in the sense that everything (including the support) is rotated by the angle- . It follows that ` < ô �; is an arc of C.

Finally, we need to establish the lemma for the case when �; is the full circle. So let�0�¯�8
��x�&�1O Using the rotation invariance we may assume that ���\7¾�#�¯�\�&� . Condition
(3.1) is now equivalent to Ì RES È Ã Å � Ä 	 Ø �PÅ¦%½� HÔ Ì REShÅ is increasing.

Using (3.2) we get

(3.4) � Ì RES È � Å � %�	 Ø �=Å¦%1� H� Ì R¥ShÅ���Â Ø ����Î DGÏ Å � %}O
Thus, Â)Ø[����Î DGÏ ÆÈ % is increasing ( 7on�Å´n²�&� ), that is, Â~Ø3�P�L% is increasing, and so Âo�=�L% is
convex. It is well known, see [17], that in this case the support ` § is an interval. (The proof
works for our more general weight.) So ` < is again an arc. We have completed the proof
Lemma 3.1.

As a corollary to Lemma 3.1, we have
LEMMA 3.2. Let � be a weight on de , let Û be a finite interval and suppose that Â is

absolutely continuous inside Û and satisfies condition (2.4). Let �¹s/� be finite constants
with ÛU��y �o�$�h� , `¨§«�+y �X�
�$� and assume that �P� �0��%�� �+�0�L%#Â~Ø[�=�U%�l�� is decreasing
on Û . Then `"§ ô Û is an interval.

Proof. Recall that y �o�$�h���x�!�2�
��% | , see Definition 1.1.
We may find �Õn¼� such that �r�®��Î D&Ï �3�½ÍG�G% , �«�ß��Î D&Ï �=��ÍG�G% and �����Ýs¸�i� .

Notice that
Ì R¥S~�3�½ÍG�G% Ì R¥S~�P��Í&�¦%6n�7 necessarily.

Let ÛÉ�¸u���Î D&Ï �=àTÍG�G%}�]��Î D&Ï �3áGÍ&�¦%Yw , where ��s�àÉs�á�s�� and so á��ÉàÉs8�i� .
The left hand side of (3.3) is a decreasing function of � on Û , and so the right hand

side of (3.3) is a decreasing function of Å on
; 
f��y à��{á-� . Multiply that right hand side by

the negative constant
Ì R¥S~�3�½ÍG�G% Ì R¥S)�P��Í&�¦% . In this way we get an increasing function of Å ony à��{á-� . So condition (3.1) is satisfied and from Lemma 3.1, we deduce that ` <�ô � y à½��á-� is an

arc of C. This implies immediately that ` § ô Û is an interval. Lemma 3.2 is proved.
Our final lemma is:
LEMMA 3.3. Let �2�P,A%$���Þ�A ¨���$	!�P,A%#%�� I , I � H be a weight on k and let

; �ßu�à½��á-w be
an interval with 7­n+á)��àós\�i� . Suppose 	 is absolutely continuous inside

;
and satisfies

(2.1). Let ����| be any point which is not an interior point of �; . If

(3.5) � Á}è Æ{é ê � Ì RESXÃ Å)�Uë� Ä�	 Ø �=Å4%1��Î D Ì Ã Å)��ë� Ä�ì Ì F S(Ã Ì RESXÃ Å)�Uë� Ä�Ä
is increasing on

;
, then ` <´ô �; is an arc of k .

REMARK 6. Whether (3.5) is increasing on
;

or not, it does not depend on the choice ofë (as long as � �E| is not an interior point of �; ). The proof of this is given in the proof of Lemma
3.3. We also remark that if 	 is twice differentiable then condition (3.5) is easily seen to be
equivalent to 	 Ø �=Å¦% È ló	 Ø Ø �PÅ¦%¨l HÔ b�7�� Å�.���à½��á&%
(regardless of the value of ë ).
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We give the following example to Lemma 3.3. Let � be one or several closed arcs on the
unit circle but not the full circle. Assume the weight � is zero on the complement of � . Let���21 be a point in the complement of � , and define	!�PÅ¦%Z
���	!�3� �EÆ %6
f� BEDGF I#Ì RES Å)�Lù� I l M �
where M is an arbitrary constant. The value of ë is our choice so let ë­
��¸ù . Then (3.5) is
increasing on the whole of � (in fact it is identically zero) and therefore ` < is a set of arcs.
Moreover, each arc of � contains at most one arc of ` < .

Proof of Lemma 3.3. First we show that whether (3.5) is increasing on
;

or not, it does
not depend on the choice of ë . We do not assume the existence of 	4Ø Ø .

Let 3��=��% and 	��P��% be two real functions on �37¾� H % such that 3 is bounded and increasing,
and 	 is non-negative and Lipschitz continuous. Then there exists 4Ý�+�P7¾� H % of full measure
such that ?%56 Ã 3��=�¤%7	½�=�¤% Ä Ø M �És²�!38	�%��:9�%½�8�!38	�%��3mA% if mÐ��9�.;4��½mos�9�O
This observation easily follows from Fatou’s Lemma applied to the sequence of functionsy¥� 38	¤%Þ�=�ºl.< æ %½�8�!38	�%��=�¤%Y�PÍ=< æ , < æ 
r7 ¡ .

Suppose ����| and ���E| ø are not interior points of �; . Denote now (3.5) by 3 | �=Å¦% . Let ÛU� ;
such that Û has full measure and 3 | �P��%´s>3 | �=³¾% for all �+s¸³ , �"�#³�.xÛ . We define the
domain of 3 | and 	iØ to be Û . We have

(3.6) � Á�è Æ{é 	 Ø �=Å¦%(� 3 | �=Å¦%"ló� Á�è Æ{é Ã Î D Ì Æ £ |È Ä Ì F S Ã Ì RES Æ £ |È Ä� »»» Ì RES Æ £ |È »»» �ÀÅ�.LÛ¾�
which shows that � Á 	iØ is differentiable a.e. on Û . Simple calculation gives

(3.7) 7ºs�3 Ø| �=Å¦%(���T»»» Ì RES Å)�Uë� »»» ê �P� Á}è Æ{é 	 Ø �PÅ¦%#% Ø l HÔ � Á�è Æ{é ì a.e. Å/.LÛ¾O
Replace ë by ë È at the formula (3.5) and denote it by 3 | ø �PÅ¦% . Also, replace in that formula� Á 	iØ by the quotient at (3.6). Thus we see that with some 	½�=Å¦% , 
¤�=Å4% functions 3 |Yø �=Å4%X�3 | �PÅ¦%7	½�=Å¦%6l�
¤�=Å4% holds, where inside ��à½��á&% : the function 	 is non-negative and Lipschitz
continuous, 3 | is increasing and bounded, and 
 is absolutely continuous (since � Á is abso-
lutely continuous inside

;
).

So, by the observation above, we have?%56 � 3 | 	/l?
!% Ø s²�!3 | 	�%�� 9Þ%Tl?
¤� 9�%1��� 3 | 	�%��3mA%��#
¤�Pm!%>��3 |Yø �:9�%½��3 |Yø �Pm!%
for a.e. m��$9X. ; , where m¯s@9 . But this integral is non-negative, since 7Ls,3�Ø| ø a.e. ÅL. ;
follows from (3.7). Hence, 7�s�3 | ø �:9�%½��3 | ø �Pm!% , i.e., 3 | ø is increasing. And this is what we
wanted to show.

We may assume that ë�s�à�n+á­s\ëZlj�i� . Let us rotate now �; to a position such that
the rotation takes �i�E| to the point �ó� H

. Condition (3.5) will change accordingly to a new
condition where now ë��+7 . (We denote the new rotated weight by �x�²���! "�#�$	&% , too.) We
now have to show that ` <´ô �; is an arc of k for the new ` < and new �; . Once we have done
that we simply rotate �; back to the original position and the proof is complete.
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This argument shows that we can assume without loss of generality that ëó� 7 and7/s¯àLn�áºs��&�1O Define

(3.8) � Ã H l¯�H �U� � Ä 
f� I H �U� I �2�P��%}� I � I � H O
Using the arguments in Section 1.1, (3.8) may also be given as

���=�L%(
�� �&� Ã ��£ ��Z¡ � ÄÇ H l¯�ÉÈ �À��. de O
We define Âo�=�L% by ���P�L%N��
G�Þ�! "���^Â��P�L%#% . Since � is a weight on k , we know that � is
a weight on de .

We now show that � ¿1è2� é Â Ø �=�U% is increasing on; ' 
��¸u���Î D&Ï à � �Þ��Î DGÏ á� w¦O
Let �´�����EÆ&O Note that from (1.7) we have� ¿Nè2� é � � Á�è Æ{é� I#Ì RES ÆÈ I O
Using this and (3.2), for Åº.�y 7¾�{�&�¤� we get

(3.9) � ¿1è2� é Â Ø �=�U%N� H� � Á}è Æ{é �3� Ì R¥S Å � 	 Ø �PÅ¦%½��Î D Ì Å � %}O
Note that the right hand side of (3.9) is an increasing function of Å on

;
by assumption. Now

we apply [3, Theorem 5], to conclude that ` § ô ; ' is an interval. (Although this theorem
is formulated for weights with

B R¥Q0A � A ïCB �L���P�L%C�¼7 , the argument in the proof may be
applied word for word for the more general weights considered here. Naturally one should
work with p)¶ED§ �P�L% in the proof.) Since `¨§ ô ; ' is an interval, we conclude that ` <­ô �; is
an arc of k . The proof of Lemma 3.3 is complete.

We are now ready to present the
Proof of Theorem 2.1. If �; is the full circle k , then it follows from the assumption that���E�GFÉ���-���=FÉ�Ù���E|��Ù���¥õ for all K . Now, if (2.3) is increasing on

;�í
, then (2.2) is also

increasing on
;�í

, as one can see. (Choose à to be zero and use (3.4), (3.9) and the fact that
the convexity of Â implies the convexity of �Þ�A ¨�3Â~% .) So we can get the weakest assumption
if we assume that (2.2) is increasing on the whole

;
, and we already know from Lemma 3.3

that Theorem 2.1 holds under such an assumption. Thus, let us assume that �; is not the full
circle.

As in the proof of Lemma 3.1 and 3.3 we observe that the statement of Theorem 2.1
is “rotation invariant.” So, we may assume that

� y à½��á-� does not contain the ��� H
point and���E�GF�÷� H , �����HF�÷� H for any K . We can also assume that ë$��7 .

Let � � ��Î DGÏ �=ÅAÍ&�G% , � � � ��Î D&Ï �3� � Í&�¦%I� � � ��Î DGÏ �=� � ÍG�G% , and Âo�=�L% be defined by
(1.5). Let

;�í
be given by ;{í �¸uKJ í ��L í w4� 7/n.L í �#J í n��&�1�

and define ; 'í 
��¸u��­Î D&Ï J í� �]��Î D&Ï L í� w¦� ; ' 
f� u���Î DGÏ à � �]��Î D&Ï á� w¦O
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Note that
; ' is a finite subinterval of

e
and it is the disjoint union of the intervals

; 'í (ç2�H �]OÞOÞOÞ�#å ). We assume that
; 'í is numerated from left to right. Note also that y � � �$� � �NM ; 'í

(recall Definition 1.1).
By assumption, for any ç/� H sUços�å"% , we can find �N� H s��>s8ä¾%}� such that either

(3.10) � ¿1è2� é is convex on
; 'í � or

(3.11) � � n�� � and �P�¹��� � %Þ�!� � �L�U%#Â Ø �=�L%Tl¯� is increasing on
; 'í or

(3.12) � � b%� � and �=�z�#� � %��!� � �U�L%#Â Ø �P�L%Tl�� is decreasing on
; 'í O

((3.10) is coming from the argument in Lemma 3.3, (3.11) is from Lemma 3.1, and (3.12) is
from Lemma 3.2.)

Let 4   
�� H
. We can find positive constants 4 È �ÞO]OÞOÞ�$4 æ (uniquely) such that the fol-

lowing function × is a positive continuous function inside
; ' . For ��. ; 'í �EçU� H �]OÞO]O��#å"% ,

let

×½�P��%Z
��POQ R 4�ã����! "�3�¦Â��=�U%#% if � 3.10 % is satisfied on
; 'í4 ã �=�z�?� � %��!���L� � % if � 3.11 % is satisfied on
; 'í4�ã!�=�z�?� � %��=�«��� � % if � 3.12 % is satisfied on
; 'í O

Let � 
f���Þ�A ¨���^Â~% . We can use the argument in [3, Theorem 12] to deduce the result.
For this purpose let �²�\�­Î D&Ï �3�½ÍG�G% and ���x�­Î D&Ï �P��Í&�¦% be any two numbers such that �+n� , y �~�$�)�"� ; ' , � �~�
�º% ô `¨§¹��S . Let :   
f�j: < »»» TU è � ¡ �¦é!V È�W è � ¡ �¦é!V È ¡YXHZ , : È 
���:��´:   . Usingp ¶=[< �P��%C�Õp ¶ ö< �=�¤%½ljp ¶ ø< �=�¤% and the monotone convergence theorem it easily follows thatp ¶ [< �P��% is absolutely continuous on

�y �>����� , and so by (1.2) pC¶ED§ �P�L% is absolutely continuous
on y �~�$�)� . Also, as in [3] one can verify that×½�=�L% MM � �YpC¶ED§ �=�L%�%
is strictly increasing on y �~�
�~� . By [3, Lemma 4] we get that ` § ô y �2�
�)� is an interval. It
follows that ` § ô ; ' is also an interval and ` < ô �; is an arc of k .

We conclude this section with
The Proof of Theorem 2.3 and Theorem 2.4. These follow easily using Theorem 2.1,

Lemma 3.2 and the discussion in Section 1.
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