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REMARKS ON RESTRICTION EIGENFUNCTIONS IN
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Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. An elementary inquiry, based on examples and counterexamples, of some qualitative properties of
doubly orthogonal systems of analytic functions on domains in ��� leads to a better understanding of the deviation
from the classical Hardy space of the disk setting. The main results relay on Hilbert space with reproducing kernel
techniques.
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1. Introduction. Let 	 be a bounded domain of
� �

and let 
��
	�� be a Hilbert space of
analytic functions defined on 	 , with reproducing kernel� ������������������� �"!$#%�&���'�)(*	�+
In other terms, the point evaluation at ��(,	 is continuous in the norm of 
-��	�� and:. ���/�0��� . � � ! #%� . (1
-�
	��2+
The norm of 
��
	�� will simply be denoted 3 . 3 or 3 . 354 when necessary.

Let 6 be a positive measure, compactly supported by 	 . The restriction operator798 
-�
	���:�;=<?>"�@6A�%� .*B; .0C D@EGFHFGI �
is then compact by Montel’s Theorem. The modulus square operator7 � 7�8 
-�
	��J:K;L
-�
	��
is positive, self-adjoint and even has a finite trace. Its spectrum is discrete and can be arranged
into decreasing order: MONQPRMKSTPVUHUGUOPWMYX�UGUGU ;=ZO+
The associated eigenfunctions

. X � � P Z , form a doubly orthogonal system of functions, in
the spaces 
-�
	�� and the closed range []\�^ 7 of

7
, endowed with the norm of < > ��6A� . By

convention, _'`OaOaO6 means the closed support of the measure 6 .
The eigenvalues of

7 � 7
can be characterized by the min-max principle:M X � b�cd^egf%hGi j�kml X bn\poqpr kts%u N%v 3 . 3 >I3 . 3 > +

This explains their importance in the best approximation theory (in the < > �@6A� norm with con-
trol on the 
-��	�� norm) and in estimating the w -widths of such spaces of analytic functions.
Most of the references at the end of this note illustrate various works, old and new, related to
these concepts.x
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While the asymptotic estimate of the decay of the eigenvalues
M X

has received consider-
able attention, the qualitative properties of the eigenfunctions

. X
, very similar by their def-

inition to orthogonal polynomials, is much less understood. In this respect, only two cases
stand out: restrictions from the Hardy space, and from the Bergman space, both of a simply
connected planar domain with smooth boundary, see [5] respectively [7]. Based on the anal-
ysis of these two single complex variable situations we raise a few natural questions about
the behavior of the eigenfunctions

. X
in general, and show by simple means (reproducing

kernel identities and some perturbation theory) what it is reasonable not to expect from them
in

�y� ��z�{V| .

2. Preliminaries. We explore below a few examples, in one or several complex vari-
ables. They will provide the basis for our intuition and a starting point for our discussion.
The notation is the same as in the Introduction.

The eigenvalue equation for
. X

can be written as
7 � 7 . X � M X . X

, or better, after evalu-
ating this on a function }*(~
-��	�� :� . X }��"6�� M X � . X � }Y#�4�+

In particular this implies an integral equation for
. X

:. X ���/��� |M X � . X �@��� � �
���'�K����6����K�2�1��(,	�+(2.1)

In most concrete cases the reproducing kernel
� ��������� extends analytically to a neighborhood

of 	 when � runs over a compact subset of 	 and thus each eigenfunction
. X

will share this
property. A second derivation of the eigenfunction identity is obtained by taking }�� . XH�
and then passing to real parts: ��� � C . X C > ��6,� M X � � . X � . X � #�4�+(2.2)

We assume of course that
�

is a bounded multiplier of the space 
��
	�� .
EXAMPLE. Restriction from � > ���*� .
This is the case analyzed by Fisher and Micchelli [5]. The outline of proof below is

reproduced from [7].
Via the proper normalization we can assume� �
���'�T��� ||�:�� � �~�����)(*��+

The eigenfunction equation (2.1) reads then:. X ���/�0� |MYX � . X ���K����6����K�|�:�� � �
and consequently every

. X
is analytically extendable to the same neighborhood of the closed

disk. Equation (2.2) implies� � C . X C >G�"6�� M X ���5� ���
��� C . X �
�"� C > �/��p��� � �
for every function � harmonic in the disk and continuous on the closed disk. The latter
equation can be interpreted as a balayage of the measure

C . X C > �"6 to the boundary of the disk.
Thus, . X �
�"�����ZO� C � C ��|"� � P Z�+
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Consequently the multiplicity of each
M X

is exactly one, otherwise a linear combination
. X?�� .K�X of two distinct eigenfunctions corresponding to

M X
would vanish on the unit circle. By

deforming continuously the measure ��6 to the area measure supported by a concentric disk� � , say along the path ���"6 � ��|�:������¡ 
�
�£¢]¤ ¥H\O���¦(¨§ ZO�H|2© , proves then that each

. X
has

exactly � zeros in the disk.
These observations have far reaching implications. For instance, an optimal subspace in

the min-max computation of the � -th eigenvalue is analytically invariant, generated by
. X

as
an analytic module: ª X � . X � > , codim ª X �V� and

bn\poq�r�«�¬ 3 .�. X 3 >I3 .�. X 3 >> M X +
Thus, the zeros of

. X
give the optimal configuration ­ S �G+H+G+G� ­ X of � points in the disk, such

that there are complex coefficients ® S �G+G+H+G� ® X and the quotient

3 . :°¯ X± l S ® ± . ��­ ± �G3 >I3 . 3 >>
is minimal among all other choices of � points and � weights.

In the above considerations the disk can be replaced by any simply connected bounded
planar domain with a sufficiently regular boundary.

EXAMPLE. Restriction from < > ² �
�~� .
This is the case of the Bergman space of the disk, that is the Hilbert space of analytic

functions in the disk which are square integrable with respect to the area measure (henceforth
denoted �"³ ). The corresponding reproducing kernel is, up to normalizations:

� �������T�n���|�:�� ���µ´ > .
Again 6 is a positive measure supported by a compact subset of the open disk � and7�8 < >² ���*�J:Y;=< > �@6A� is the restriction operator. An eigenfunction

. X
of

7 � 7
satisfies:. X ���/��� |MYX � . ���K����6����K���|�:�� �Y� > �

and, exactly as before, � � C . X C > �"6&� M X � � �¡����� C . X �
��� C > �£³Q�����%�
for every harmonic function � .

This is no longer a classical balayage identity, and it is not true in general that
. X

is free of
zeros on the boundary of the disk, see the example in [7]. However, using the positivity of the
Green function of the bi-Laplacian and some positivity properties of the orthogonal projection
in < > ���-�'�£³T� onto harmonic functions one can prove that

. X �����¶��=ZO� C � C �·|��¸� P Z ,
whenever _'`OaOa�6�¹º�¼» � :�|5��� , see [7]. Then the scenario of the Hardy space framework
holds word by word.

We will see below a simple explanation why
. N

may acquire zeros in the Bergman space
setting.

EXAMPLE. Restriction between two Reinhardt domains.
Let ½]� 	 be a pair of bounded Reinhardt domains in

���
and let us assume that ½ is

relatively compact in 	 . The associated Bergman spaces, with respect to the
� z -dimensional

Lebesgue measure �"¾ give rise to a compact restriction operator:7�8 <?>² �
	��J:K;=<?>² �@½¿�%�
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whose modulus square
7 � 7

produces a discrete spectrum
MKÀ � � ()Á �

, accumulating to
zero. It is more convenient to label the spectrum by multi-indices � (ÂÁ �

because the
eigenfunctions are obviously given by the monomials � À :7 � 7 � À � M À � À � � (*Á � +
A simple explanation being the double orthogonality of � À ’s with respect to the two norms,
see for instance [14].

Two pathologies, seen as deviations from the � > ���*� scenario, can easily be derived
from this example.

Namely, take for instance 	R�ÄÃ to be the unit ball in
���

and ½Å� � Ã a concentric ball
of radius �yÆ | . Then the eigenfunction equation yields:M À �/Ç C � À C >5��¾È� �

 
Ç C � À C >G�"¾Y+

Therefore M À � � > �pÉ >5Ê À Êd� � (&Á � +
Thus the eigenvalues

M À
depend only on

C � C
and have multiplicities. On the other hand, the

eigenfunctions � À � C � C �)� , corresponding to a fixed eigenvalue have finitely many common
zeros, or in other terms Ë

Ê À Ê l X C � À C >¸{RZO�*�~��ÄZ�+
In this case the optimum in the min-max criterion is achieved on an analytically invariant
subspace: M À �Lbn\poq�r"ÌÈÍ 3 . 3 > 

Ç
3 . 3 >Ç � C � C ���K+

Above Î denotes the maximal ideal of functions vanishing at the origin.
Second, let us consider the unit polydisk 	Ï�Ð� �

and ½Ñ�Ò� � S �*�yÓÄ+G+H+0Ó�� � � �~�
with radii � S �G+H+G+2� � � Æ | and such that ÔdÕ�Ö � S �G+H+G+2�'Ô×Õ"Ö � � are linearly independent over the
rationals. The eigenfunction equation implies:M À � �¿Ø C � À C >H��¾ �£Ù C � À C >H�"¾��
whence M À � � > É > À/ÚS UGUHU � > É > À

Ø
� � � (&Á � +

These numbers are all distinct due to the independence assumption. Thus all eigenvalues
are simple and, except for � N �Û| all eigenfunctions � À � C � C {ÄZ , have infinitely many zeros
in the polydisk 	 . Note also that the optimal subspaces in the min-max criterion:ª À �ÄÜ¿Ý$�pÞ�ß M Þ*à M ÀKá � � (~Á � �
are analytically invariant. This is due to the fact that multiplication of an element

. (�ª À
by

any � ± �¿| à°ânà z , is contractive with respect to both norms, in particular:

� 7 � 7 �
� ± . �%�'� ± . #�� ��Ù C � ± � À C >G�"¾ à
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Along the same lines, a simple solution to an inverse problem, which singles out the class

of Reinhardt domains, is available.
THEOREM 2.1. Let ½ be a relatively compact domain in the unit ball ã�¹ ���

. Assume
that ½ is pseudoconvex and has a ä > -smooth boundary.

If the monomials � À � � ()Á �
, are the eigenfunctions of the restriction operator

7å8< >² �
ãÈ��:Y;å< >² �æ½¿� and ç�¥H¤ 7 � �WZ , then ½ is a complete Reinhardt domain.
Proof. The technical assumption ç�¥H¤ 7 � �èZ implies that the monomials are dense in< > ² �@½¿� . Therefore the associated Bergman kernel has the form:� Ù

�������T�?� Ë
À ® À � À � À �

where ® À*P Z�� � (*Á �
.

On the other hand, the Bergman kernel of the unit ball is�êé �������T��� |§×|�:��
���'�T#¼© �pÉ S +
An osculation with inner balls, tangent at boundary points of ½ , and the variational interpre-
tation of

� Ù
�
��� �£� show that � Ù

�����'�/�0ëÄì�cí_�î5�����'ï�½¿� ´ � ´ S �
when � tends to a point of ï�½ . Hence ðY�
�£�/Ôd^ � Ù

�
��� �£� is a plurisubharmonic exhausting
function for ½ . Since ðK��ñ$ò×ó Ú � S �H+G+G+H�'ñ$ò×ó

Ø
� � ��ðY�
�£�2�

whenever �Q�9��� S �G+H+G+H�'� � �J(¦½ and � S �G+H+G+H��� � (*ô , we find that ��(1½ whenever �
ñ òõó Ú � S �G+H+G+2�ñ òõó
Ø
� � ��(~½]�1� S �G+H+G+2�'� � (*ô . That is, ½ is a complete Reinhardt domain.
Due to the regularity of the boundary assumption, condition ç�¥G¤ 7 � �¨Z is fulfilled for

every Runge domain ½ . In the case of a single complex variable, a stronger form of the above
theorem holds, see [7].

3. Reproducing kernel computations. This section contains some simple derivations
of the reproducing kernel formula and the existence of doubly orthogonal systems of analytic
functions.

Let 	 be as before a bounded domain in
���

and let 
-�
	�� be a Hilbert space of analytic
functions on 	 , with reproducing kernel

� ��������� . We consider a positive measure 6 , com-
pactly supported by 	 , and the restriction operator

7Û8 
Ñ:K;å< > ��6A� . The eigenfunctions of7 � 7
will be denoted by

. X �µ� P Z , and will be normalized by the condition 3 . X 3%öÄ��| . The
associated eigenvalues are denoted by

M X
. We do not exclude here the possibility of a finite

atomic measure, in which case
M X �WZ for large � .

Note first a direct application of Mercer’s theorem (see for instance [20]):÷ ¤µ\�øG¥ 7 � 7 �úùËX l N M X � � � �����'�/���"6����/�%+
Since � �����'­��0����� ² � �"!5#?� ùËX l N . X ���/� . X ��­��%�
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we infer

� 7 � 7 � ² �µ� ² #�� Ë
X M�X C . X ��­�� C > �

whence � C � �����'­�� C >� �
­Y�'­�� �"6����/�?� Ë
X MYX C . X ��­�� C >� �
­�� ­�� +(3.1)

We can regard the right hand side of the latter equation as a limit of convex combinations
of the eigenvalues. In general, for a point �û(¨ï�	 , one has Ôdc×b ²2ü�ý � ��­Y� ­/�&�ÿþ , due
to the extremality property of the reproducing kernel. Thus the above identity will imply¯ X��KX�� C . X �
­/� C > {ÛZ for every � N and ­ close to the boundary of 	 . In order to make this
statement more precise, we will consider below the case of the unit ball ã in

�n�
.

Let < > ² �
ãÈ� be the Bergman space of the unit ball in
���

, with the volume measure nor-
malized so that the associated reproducing kernel is� �
���'�T��� |��|�:��
���'�T#�� �pÉ S �
see for instance [14]. Let 6 be a probability measure, with support included in the closed ballð ã , ð Æ | .

Let
MYX { MYX É S

be two distinct and consecutive eigenvalues of the operator
7 � 7

. Then� C � �����'­�� C >� �
­Y�'­�� �"6����/� à ��|]: C ­ C > � �pÉ S
��|�:-ð C ­ C � > �pÉ > �

converges to zero as
C ­ C tends to | . Denote

� ��|�: C ­ C > � �pÉ S
��|]:�ð C ­ C � > �pÉ > �

and assume that � Æ M X
.

Equation (3.1) implies

� PWM�X Ë
±�� X

C . ± ��­�� C >� �
­Y�'­�� MYX ��|�: ùË� l S C . X É � ��­�� C >� ��­Y�'­�� �%+
We obtain the following result.
PROPOSITION 3.1. Let 6 be a positive measure supported by the ball ð/ã , with ð Æ | .

For every �1{�| , let � � � X be the positive solution of the equation:

��|�: � > � �pÉ S
��|�:�ð � � > ��É > � M�X +

Then

��|�: C ­ C > � �pÉ S ùË� l S C . X É � ��­�� C > P |�: ��|�: C ­ C > � �pÉ SMYX ��|�:-ð C ­ C � > �pÉ > �
for every ­ê(*ã satisfying

C ­ C {�bn\poK� � X �'ð/� .
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For the proof we use the above estimates and a simple computation showing that the
function � B; ��|�: � > � �pÉ S

��|�:�ð � � > ��É >
is decreasing for � {�ð .

This shows in particular that, for every � P Z , the eigenfunctions
. X É � , � P | cannot

have common zeros close to the boundary of the ball. Note also that each
.
	

is an analytic
function in the ball ð�´ S ã .

Known boundary estimates of the Bergman kernel (see for instance [8]) allow to extend
the above proposition to any strictly pseudoconvex domain with ä > boundary in

�È�
.

4. Restriction to finite atomic measures. Except for a few situations, it is very hard
to obtain explicit computation of the eigenfunctions of the modulus of restriction operator
considered in this note. One of the fortunate cases is the restriction from a Hilbert space of
analytic functions to the Lebesgue space of a finite, atomic measure. This framework leads
to linear algebra manipulations of finite combinations of the reproducing kernel, see also [6].

To fix ideas, we consider as before a Hilbert space of analytic functions 
-��	�� with
reproducing kernel

� ��������� and a finite atomic measure 6 , supported by the set _�`�aOaA�@6A�]�Ý5­ S � ­ > �G+H+G+2� ­ 	 á 8
6,��� S�
 ² Ú � UGUGU � � 	 
 ²�� �

with � ± {�Z .
According to (2.1) we find:. X ���/���W® S�X � �����'­ S � � UGUHU � ® 	 X � �
��� ­ 	 �%��| à � à � �

for some complex constants ® ± X . The eigenvalue equations are then reduced to a finite linear
system: MYX ® ± X �

	Ë
� l S � ± � �
­ ± � ­ � ��® � X �-| à°â � � à � +

A simple observation derived from this equation is contained in the following.
PROPOSITION 4.1. Assume that the positive measure 6 has finite support Ý$­ S �H+G+G+H�'­ 	 á

and that the operator
7 � 7

has a single non-zero eigenvalue. Then, and only then,� ��­ ò �'­ ± �?�WZ��-| à � Æ ânà � +
Proof. Indeed, if the spectral space corresponding to the unique non-zero eigenvalue

M
of

7 � 7
has maximal dimension, then each

� �����'­ ò � is an eigenfunction. HenceM � �����'­ ò ��� Ë
± � �
��� ­ ± � � ��­ ± � ­ ò ��� ± �

for some constants � ± , and the linear independence of the elements
� �����'­ ò � yieldsM ��� ò � �
­ ò �'­ ò �%�

and � ��­ ± �'­ ò ��� ± ��ZO� � �� â +
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Note that the most common reproducing kernels
�

of standard domains 	 in
�ê�

do not
have zeros, in the sense

� ���������T��ÄZ for all ���'�V(,	 .
Consider next a finite group � of complex bi-holomorphic maps of 	 which leaves in-

variant the inner product of the space 
-��	�� and the measure 6 . Specifically, this means:� � � ��� � ����� � �
���'�T�%� � (����¡�����)(,	��
and

� � 6&�Ä60� � (�� . Then the equationM�X . X � � �/��� � . X �@�T� � � � �����T����6����T�¿�
� . X � � �T� � � � ��� � �T����6����T�?� � . X � � ��� � �
���'�T���"6��@���%�

implies that
. X � � �/� is also an eigenfunction for the eigenvalue

M X
. Thus we have proved

LEMMA 4.2. Assume that a finite group � leaves invariant the reproducing kernel� �
���'�T� and the measure 6 . Then each eigenspace of the operator
7 � 7

is invariant un-
der the action of � .

To give a simple example, consider the unit ball ã in
���

and the Szegö kernel ���
���'�T���§×| :��������T#g©
´ � . This kernel is invariant under all biholomorphic maps of the ball. Let us
consider the simplest situation of a symmetric pair of points Ý5­Y�H:]­ á ¹)ã and the measure6Û� 
 ² � 
 ´ ² . The group �Ð� Ý��y| á leaves invariant both the kernel and the measure,
hence, by the above lemma, it leaves invariant the eigenspaces of

7 � 7
. On the other hand,���
­��H:]­��T��WZ , therefore the operator

7 � 7
has exactly two simple non-zero eigenvalues. Let. ���/�0� � ���
��� ­/� ��� ���
���H:]­���� � �������'­�� ��� ����:]���'­��2�

be one eigenfunction. Then according to the lemma
. ��:]�/� is also an eigenfunction corre-

sponding to the same eigenvalue. Thus, the two eigenfunctions of
7 � 7

are:.�� ���/�����]�����'­������]�����G:]­��%+
A direct computation identifies the two eigenvalues as

����­Y�'­���������­Y�H:]­/�2+
See also the more invariant argument below.

Next we restrict these computations to the case z,� � .
EXAMPLE. Let

7Ñ8 � > �
ãÈ�È:K;"! > �@6A� be the restriction operator between the Hardy
space of the unit ball in

�$#
and the Lebesgue space of the two point mass measure 6Û�
 ² � 
 ´ ² , ­ê(*ã .

Then the eigenfunctions of the rank-two operator
7 � 7

are:. É ���/�0� | � �������'­�# >§×|�:R�����'­�# > © # �
and . ´ ���/��� �
��� ­�#2§ � � �
��� ­/# > ©§×|�:W�����'­�# > © # +

In particular each function
. �

admits infinitely many zeros in the ball.
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Let z now be arbitrary and let
� �
���'�T� be a positive definite kernel in the ball which

remains invariant under all holomorphic automorphisms of the ball and which is the repro-
ducing kernel of a Hilbert space �&% of analytic functions in the ball. Let � be a prime
number, and let ' be a � -root of unity. By taking a point ­Ä()ã ¹ �n�

and the measure6&� ¯ � X l S 
�( Í ² we obtain a restriction operator7�8 �)%9:Y;=<?>"�@6A�
of rank � . According to the above lemma, each eigenspace ª of

7 � 7
is invariant under the

group * � . Hence either each element
.

of ª is left invariant under the action of the group,
that is

. �
�£�~�Lø2Õ�^�_�î . �+'µ�£� , or ª is � dimensional. The latter scenario is excluded by an
adaptation of Proposition (4.1).

Therefore the eigenfunctions
.

of
7 � 7

satisfy the identity:

. �
�£��� �Ë
± l S ® ± � �
���,' ± ­��?�Ää �Ë

± l S ® ± � �+'µ���,' ± ­��%�
where ä is a constant. Whence

ä¸® ± ��® ± ´ S � | à�âêà �t�
with the convention ® N �Ä® � .

From here we deduce:. X ���/� � �
��� ­�� � ' X � �
���,'µ­/� � 'µ> X � �����-'µ>2­�� � UGUGU � '/. � ´ S10�X � �����-' � ´ S ­��2+
The eigenfunction equation reads: M�X . X ���/�� � �����'­�� . X �
­/� � ' X � �����-'µ­��1'/. � ´ S20�X . X �3' ­�� � UGUHU � '4. � ´ S10
X � �����-' � ´ S ­/�2' X . X �+' � ´ S ­��%�

and since . X ��­�����'/. � ´ S20�X . X �3' ­���� UGUHU ' X . X �3' � ´ S ­��%�
we infer M X � . X ��­��2� Z à � à �n:�|�+

With a little more algebra, these values and functions are computable. We give below a
simple example.

EXAMPLE. Let ­ be a point of the unit ball ã in
� > and let ���������T���9§×|�:°�������T#g©�´ > be

the Szegö kernel of the ball. Let ' ��ñ >,5 ò76 # be the root of order � of unity. We consider the
positive measure 6&� 
 ² � 
 ( ² � 
 ( ¬ ² and the restriction operator7�8 �,>��
ãÈ��:Y;=<?>"�@6A�2+
In view of the above computations the non-zero eigenfunctions of the operator

7 � 7
are:. X �
�£��� |��|�:R�����'­�#�� > � ' X |��|�:��
���,'µ­/#'� > � ' > X |��|�:��
���,' > ­�#�� > � �n�ÄZ��G|"� � +
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An elementary computation leads to the following closed forms:

. N �
�£��� � ��8 �����'­�# #��|�:R�����'­�# # � > �
. S ���/��� 8 �
��� ­�# � �������'­�#:9��|�:R�����'­�# # � > �
. > �
�£��� ; �
��� ­�# >��|�:R�����'­�# # � > +

The associated eigenvalues are:

� ��8 32­�34<��|�:W32­�3 < � > { 8 3G­�3 > � �Y32­�3�=��|]:R3G­�3 < � > { ; 3G­�3�9��|�:W32­�3 < � > +
All other eigenvalues are equal to zero.

Again, this shows that
. N

can have zeros in the ball. The kernel in the latter example
can be reduced to one complex variable, in which case it becomes the Bergman kernel of the
unit disk:

� �������T�¿�9§×|�:°� �]©�´ S . Thus, mutas mutandis, the functions
. N � . S � . > are doubly

orthogonal with respect to the Bergman space metric of < >> ���*� and < > � 
 ² � 
 ( ² � 
 ( ¬ ² � . In
particular

. N
can have zeros in the disk as soon as

C ­ C { � ´ S 6 # .
The following proposition is derived from the same context. Henceforth we denote by> S

the unit sphere of a normed space
>

.
PROPOSITION 4.3. Let ­ be a point in the unit ball ã of

���
. Let

7ÿ8 � > ��ã��*:Y;< > � 
 ² � 
 ´ ² � be the restriction operator. For every � P Z there exists an analytically invariant
subspace ª � ¹R� > �
ãÈ� of codimension � , such that

bn\ oq�r . k�? 0
Ú 3 7 . 3 > � M � � 7 � 7 �2+
Proof. Let � � ���/���@���������T�n� §õ|�:���������#¼©�´ � be the Szegö kernel of the ball, with

respect to the normalized area measure (so that the total mass of the sphere is | ). The operator7 � 7
has rank

�
and, by the preceding computations its eigenfunctions and eigenvalues are:7 � 7 �3��� U � ­�������� U �H:]­������9§ ���
­Y�'­��A������­Y�G:]­��g©¼�B��� U �'­�������� U �G:]­����2+

For the largest eigenvalue,
M N �C�]��­Y�'­�� � ����­Y�H:]­/� , the whole space ª N �Ð� > is

obviously analytic and optimal in min-max. Similarly, ª > can be chosen to be the analytically
invariant subspace Î � ² of all functions vanishing at ��­ . And beyond that, since

M � �VZ we
can choose ª � ¹Wª > �D� P �

, to be any analytically invariant subspace of codimension � .
We will prove that ª S can be chosen to be the space Î N

of analytic functions vanishing
at Z . That is, knowing that

� 7 � 7 . � . #�� � C .0C > � 
 ² � 
 ´ ² ��� C . �
­�� C > � C . ��:]­�� C > �
we have to verify the inequality:C . ��­�� C > � C . ��:]­�� C > à § ����­Y� ­/�¡:E���
­��H:]­��¼©�3 . 32>« ¬ � . (*�,>"��ã��%� . ��Z"���ÄZO+(4.1)
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In order to prove this inequality we decompose:

Î N � � �B� ² � � ´ ² : � ��F � �B� ² :G� ´ ² ��FÄ��Î NIH Î � ² �2+
Note that this decomposition is also orthogonal with respect to the metric of the space < > � 
 ² �
 ´ ² � . Thus, it is sufficient to verify the inequality on each summand.

For a function
. (-Î N H Î � ² there is nothing to prove. In the case

. �J� ² :G� ´ ² the
inequality is an equality, due to the eigenfunction equation. Finally, for

. �K� ² � � ´ ² : �
we compute directly:C . �
­�� C > � C . ��:]­�� C > � � �B����­Y�'­�� � ����­Y�H:]­/�¡: � ��>p�
and

3/� ² � � ´ ² : � 3G> � � § ���
­Y�'­�� � �]��­Y�G:]­��¡: � ©¼+
Now the arithmetic/geometric mean inequality yields:

���
­Y�'­�� � �]��­Y�G:]­���� |��|�:R3G­�3 > � � � |��| � 3G­K3 > � � P ���|�:W32­�3 9 � � 6 > { � +
Thus inequality (4.1) is equivalent to:� �B����­Y� ­/� � ���
­��H:]­��¡: � � > à § ���
­Y�'­��¡:G�]��­Y�G:]­��¼© � �B����­Y� ­/� � ���
­��H:]­��¡: � �%�

or, after simplifications:

���
­��H:]­���� |��| � 3G­K3 > � � à |��
which is obviously true.

As a matter of fact the point Z in the above proof can be replaced by any element ®¸(,ã
which is orthogonal to ­ . Indeed, denoting by Î�L the space of functions in � > vanishing
at the point ® , we have the analogous double orthogonal decomposition, with respect to the
metrics of � > and < > � 
 ² � 
 ´ ² � :Î�L?� � �3� ² � � ´ ² : � ��F � �B� ² :G� ´ ² �AF��
Î�L H Î � ² �%�*®NMÄ­Y+
The rest of the proof remains unchanged. Thus a whole variety of analytically invariant
subspaces of codimension | is optimal for the min-max computation of

M S
.

5. Optimal subspaces in min-max. The simple computations of the last section invite
us to a have a closer look at the optimal subspaces in the min-max principle applied to the
modulus of the restriction operator

7 � 7
.

We start by an elementary, and most likely known, remark.
PROPOSITION 5.1. Let ³ be a non-negative compact operator acting on a Hilbert space� , with eigenvalues

M ± �
³T� arranged in decreasing order. Assume that
M � �
³T� Æ M � ´ S �
³T�

for some � P | . Let
. � be a corresponding eigenvector: ³ . � M � ��³�� . � . Let ª be a subspace

of codimension � , optimal in min-max, that is

_�`OaO r . k 0 Ú �
³NPA�-PY# M � �
³T�%+(5.1)

Then
. � (*ª .
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Proof. Assume by contradiction that the eigenvector
. � . � does not belong to the

optimal subspace ª . If
.

is orthogonal to ª , then the subspace Q ��ªRF � .
still satisfies

(5.1) and has codimension �1:W| . But this contradicts, again via the min-max principle, the
assumption

M � �
³T� Æ M � ´ S ��³�� .
Assume that

.
is not orthogonal to ª , and let

�
be the orthogonal projection of

.
ontoª . Then � � � . # ��ÄZ , and there exists a constant � such that � � : . M .

. Consequently

��³Q�S� � : . � . �%��� � : . � . # à M � ��³��2�'3�� � : . 3G> � 3 . 32>2�2+
On the other hand, the orthogonality condition and the eigenvector equation satisfied by

.
imply

��³y�T� � : . � . �%�U� � : . � . #2�
³Q�S� � : . �2��� � : . # � ��³ . � . #2+
Hence

�
³Q�T� � : . � . �2��� � : . � . # à M � �
³T�H3�� � : . 3 > +
By similar computations we infer that the vector �Û�J�0� � : . � �V� � : . � ��|T:E�m� .

satisfies

��³ � ���T# à M � ��³��G3%�È32>"+
And in addition �RM)ª . Thus we can repeat the argument at the beginning of the proof, this
time for the space Q � � ��F¶ª , and obtain a contradiction.

A general result, proved for instance in [12], shows that every analytically invariant sub-
space ª of finite codimension � in the Bergman (or Hardy) space � of the ball, or a domain
with strictly pseudoconvex smooth boundary, consists of all functions vanishing at � points,
taking into account multiplicities. To be more precise about multiplicities, such a space can
always be written as

ª��9�+W S �,W > �G+H+G+2�,W X ���&�
where W S �,W > �G+H+G+2�,W X are polynomials having all zeros in the ball and satisfying the codimen-
sion property

ì�cdb � § �p©+X��3W S �-W > �H+G+G+H�-W X � � § �p©��G�A�
see [12] for details.

By putting together the above two facts we can state the following theorem.
THEOREM 5.2. Let 6 be a positive measure, compactly supported by a domain 	�¹ �n�

with smooth, strictly pseudoconvex boundary. Let
7 8 < > ² �
	��Q:Y; < > ��6A� be the restriction

operator. Assume that
M � � 7 � 7 � Æ M � ´ S � 7 � 7 � and that an analytically invariant subspaceª of codimension � is optimal in the min-max computation of

M � . Then there are polynomialsW S �,W > �G+G+H+G�,W X having � common zeros, all contained in 	 , such that:

ª���W S <¿>² �
	�� � UGUHU � W X <¿>² �
	��2+
Moreover, every

M � � 7 � 7 � -eigenfunction
. (*< >² �
	�� of

7 � 7
can be written as:. � W S �£S � UGUHU � W X$�"X � � ± (*<?>² ��	��%+
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In other terms, the above observation implies that all eigenfunctions corresponding toM � Æ M � ´ S have common zeros in 	 , as soon as there exists an analytically invariant subspace
of codimension � , optimal in the min-max criterion.

It would be interesting to find an example of a positive measure 6 , with the property
that the restriction operator

7 8 < > ² �
	���:Y; < > ��6A� exhibits the following pathology: there
are eigenfunctions of

7 � 7
associated to a single higher eigenvalue

M�X � ��{ Z and without
common zeros in 	 .

6. Perturbation methods. It is legitimate to ask whether the restrictions to finite atomic
measures considered in the previous sections are not too extreme as natural examples. We
show in this section how a rather general perturbation theory argument can replace finitely
many points measures by volume measures supported by open regions, without altering the
qualitative properties of the first eigenfunctions of the modulus of the restriction operator. A
standard reference for the perturbation theory of linear operators we refer to below is Kato’s
book [10].

To fix ideas we will work with the Bergman space < > ² �
ãÈ� of the unit ball ã in
� �

,
but a variety of other Hilbert spaces of analytic functions, with a reproducing kernel, can be
considered. The

� z -dimensional Lebesgue measure in
���

will be denoted by ��¾ ; we denote
by Ã   �
­�� the open ball centered at ­ , of radius � . The

� z -volume of a set ³ is denoted byC ³ C
.

LEMMA 6.1. Let ­ê(&ã be a fixed point, and let �yÆ ìOcd_�î5�
­�� ï�	�� . The function

� B; |C Ã� ��
­/� C � Ç Y . ² 0 C .0C > ��¾Y�
is increasing for every

. (~< >² ��ã�� .
Proof. The proof follows from the orthogonality of the monomials � À with respect to the

volume measure of the unit ball. Specifically, write. ���/�0� Ë
À r[Z Ø ® À �
��:�­�� À �

and remark that |C Ã� ��
­�� C � Ç Y . ² 0 C .0C > �"¾ Ë
À C ® À C > �I\ z \� C � C � zA� \ � >HÊ À Ê +

Moreover, for any
. (*< >² �
ãÈ� we have:

Ô×cdb  ´ ü ù
|C Ã� ���­�� C � Ç Y . ² 0 C .0C > ��¾�� C . ��­�� C > �

and even |C ÃT ���­�� C � Ç Y . ² 0 . ��¾�� . �
­/�2+
We will use these simple facts for comparing the restriction operators associated to the

point mass

 ² and the measure ] ²_^   � SÊ

Ç
Y . ² 0 Ê �

Ç
Y . ² 0 ��¾ . To be more precise, denote by7   8 <¿>² ��ã���:Y;=<¿>��+] ²�^  H�2� � P Z
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the restriction operator, by adopting the convention ] ²�^ N � 
 ² . Then the above lemma implies

� 7 �  7   . � . # P � 7 �` 7 ` . � . #2�
whenever � Pba

and for all
. (R< >² ��ã�� . Thus

7 �  7   ; 7 �N 7 N
when � ;úZ , in the weak

operator topology. As a matter of fact, this convergence is much stronger.
LEMMA 6.2. Under the above notation,

Ôdc×b  ü N î'¤µ\�ø2¥"� 7 �  7   : 7 �N 7TN �?�ÄZO+
Proof. For a fixed � P Z , the operator

7 �  7   has finite trace due to the identity

� 7 �  7   . � . #�� |C Ã� p�
­/� C � Ç Y . ² 0 C .0C >G�"¾��
and the nuclearity of c

Ç
Y . ² 0 C .0C > �"¾ with respect to the Bergman space norm. In addition, the

operator
7 �N 7 N

has rank-one, with the constant function | in its range.
Let ' {�Z be small and choose an orthonormal basis ñ N ��|�� ñ X , � P | , of < > ² ��ã�� . There

is w depending on ' such that Ë
X�dDe � 7 �  7   ñ X �'ñ X # Æ '5+

Then the same inequality holds for every
a à � . On the other hand, for a fixed � ,

Ôdcdb` ü N � 7 �` 7 ` ñ 	 �'ñ 	 #���� 7 �N 7 N ñ 	 � ñ 	 #2+
Therefore there exists � ( {�Z small enough with the property

î ¤ \"ø2¥�� 7 �  7   : 7 �N 7 N � Ë
X � e ��� 7 �  7   : 7 �N 7TN ��ñ X �'ñ X # � Ë

X�dfe � 7 �  7   ñ X � ñ X # Æ � '5�
for all � à � ( .

The same argument applies to any finite atomic measure instead of a point mass. We
state it as a separate proposition.

PROPOSITION 6.3. Let

6 N ��® S�
 ² Ú � UGUHU � ® 	 
 ²��
be a finite atomic positive measure supported by the unit ball of

� �
. For�ÈÆ ì�cí_�î �gÝ$­ S �G+H+G+2� ­ 	 á �'ïKãÈ� one defines the measures:

6m  �Ä® S |C Ã   �
­ S � C �
Ç
Y . ² Ú 0 �"¾ � UGUHU � ® 	 |C Ã   ��­ 	 � C �

Ç
Y . ² � 0 �"¾��

and the associated restriction operators
7   8 < > ² �
ãÈ�]:�; < > ��6m H� . Then

7 �  7   is decreasing
as a function of � and

Ôdc×b  ü N î'¤µ\�ø2¥"� 7 �  7  J: 7 �N 7 N �?�ÄZO+
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From here we can derive the convergence of the spectral decompositions of the opera-
tors

7 �  7   . For instance, assume, under the notation introduced in the proposition, that the
spectrum of the limit operator is:

]0� 7 �N 7 N �¿�ûÝ5Z áhg Ý MON �G+H+G+G� M � á �
with M�N { MKS { UGUGU { M � {RZO+
Since 3p��� : 7 �  7  5��:��
��: 7 �N 7 N �G3];åZ , for every

' Æ |�¸b�cd^�Ý M�N � MYS : M�N �H+G+G+G� M � : M � ´ S á
there exists � ( {�Z with the property that the set

]0� 7 �  7  H� H � MYX :G'H� M�X � '%�%� � à � ( �
has the cardinality equal to the multiplicity of the eigenvalue

M�X
of

7 �N 7 N
. Thus, by Dunford’s

functional calculus, the corresponding spectral projections converge in the operator norm:

� .ji Í ´ ( ^ i Í É ( 0 � 7 �  7  5� � |� ��� �
Ê ! ´ i Í Ê ( ����: 7 �  7  G� ´ S �£�

:Y; |� ��� �
Ê ! ´ i Í Ê ( ����: 7 �N 7TN � ´ S �"�Q�Ä� .ji Í ´ ( ^ i Í É ( 0 � 7 �N 7TN �2+

See for instance [10] for such arguments.
We illustrate by a single application which contrasts to the Hardy space (of the disk)

picture.
PROPOSITION 6.4. There exists a relatively compact, open subset of the unit disk kº¹� , such that the restriction operator between the associated Bergman spaces

7�8 < >² ���*�J:Y;< > ² ��k�� has the following property. The largest eigenvalue of
7 � 7

is simple and the associated
eigenfunction has zeros in the disk.

Proof. We appeal to the comment following Example 4.4, and approximate the three
point measure there as in the above proposition. Namely, fix a point ­ê(&��� C ­ C { � ´ S 6 # and
consider the eigenfunction . N ���/��� � ��8 �����'­�# #��|�:R�����'­�# # � > �
corresponding to the highest eigenvalue

M N
of

7 � 7
, where798 < >² �
�~�J:�;å< > � 
 ² � 
 ( ² � 
 ( ¬ ² �2+

Here we denote by ' the root of order three of unity.
Thus,

M N
is a simple eigenvalue, and

. N
has zeros inside the disk. By enlarging the points

to concentric disks, as in the proposition, we construct a sequence of operators
7 �  7   , �ÈÆ ð ,

with the highest eigenvalue
M�N � 7 �  7  5� being simple and converging to

M�N
. The positive

constant ð is chosen sufficiently small. Then, for a fixed small '�{RZ ,. N � � �?� |�p��� �
Ê ! ´ i � Ê ( �
��: 7 �  7  5� ´ S . N �"�
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is, up to a constant, the only non-trivial
M N � 7 �  7   � -eigenfunction of

7 �  7   and

Ôdc×b  ü N 3 . N � � �0: . N 3 > ^
�

��ZO+
In conclusion the eigenfunctions

. N � � � are all vanishing for � small enough.

REFERENCES

[1] M. E. ANDERSSON, An inverse problem connected to doubly orthogonal sequences in Bergman space, Math.
Proc. Cambridge. Philos. Soc., 128 (2000), pp. 535–538.

[2] A. AYTUNA, A. RASHKOVSKII, AND V. ZAHARIUTA, Width asymptotics for a pair of Reinhardt domains,
Ann. Polon. Math., 78 (2002), pp. 31–38.

[3] S. BERGMAN, The Kernel Function and Conformal Mapping, Amer. Math. Soc., Providence, RI, 1970.
[4] PH. DAVIS, An application of doubly orthogonal functions to a problem of approximation in two regions,

Trans. Amer. Math. Soc.,72 (1952), pp. 104–137.
[5] S. D. FISHER AND C. A. MICCHELLI, The l width of sets of analytic functions, Duke Math. J., 47 (1980),

pp. 789–801.
[6] S. D. FISHER AND M. STESSIN, On n-widths of classes of holomorphic functions with reproducing kernels,

Illinois J. Math., 38 (1994), pp. 589–615.
[7] B. GUSTAFSSON, M. PUTINAR, AND H. S. SHAPIRO, Restriction operators, balayage and doubly orthogo-

nal systems of analytic functions, J. Funct. Anal., 199 (2003), pp. 332–378.
[8] G. M. HENKIN, The method of integral representations in complex analysis, in Several Complex Variables I,

A. G. Vitushkin, ed., Springer, Berlin, 1990, pp. 19–116.
[9] G. M. HENKIN AND B. S. MITJAGIN, Linear problems of complex analysis, (in Russian), Uspekhi. Mat.

Nauk., 26 (1972), pp. 93–152.
[10] T. KATO, Perturbation Theory For Linear Operators, Springer, Berlin, 1966.
[11] O. PARFENOV, Asymptotics of the singular numbers of the embedding operators for certain classes of analytic

functions, (in Russian), Mat. Sb., 4 (1981), pp. 632–641.
[12] M. PUTINAR, Invariant subspaces of several variable Bergman spaces, Pacific J. Math., 147 (1990), pp. 355–

364.
[13] K. SEIP, Reproducing formulas and double orthogonality in Bargmann and Bergman spaces, Preprint 4, vol.

27, Department of Mathematics, University of Trondheim, 1989.
[14] B. SHABAT, Introduction to Complex Analysis, Vol. II, Functions of Several Complex Variables, (in Russian),

Nauka, Moscow, 1985.
[15] H. S. SHAPIRO, Stefan Bergman’s theory of doubly-orthogonal functions. An operator theoretic approach,

Proc. Royal Irish Acad., 79 (1979), pp. 49–58.
[16] H. S. SHAPIRO, Reconstructing a function from its values on a subset of its domain-a Hilbert space approach,

J. Approx. Theory., 46 (1986), pp. 385–402.
[17] A. A. SHLAPUNOV AND N. NTARKHANOV, Bases with double orthogonality in the Cauchy problem for

systems with injective symbols, Proc. London Math. Soc., 71 (1995), pp. 1–52.
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