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AN ALGEBRA OF INTEGRAL OPERATORS*
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Abstract. We introduce an algebra of integral operators related to a model of the g-harmonic oscillator and
investigate some of its properties.
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1. Introduction. In this report a unification of the basic analog of Fourier transform and
inverses of the Askey—Wilson divided difference operators will be given in a form of certain
algebraic structure related to a model of the g-harmonic oscillator. We present here only the
summary of results; a paper with detailed proofs will appear elsewhere [53].

To be more specific, let us consider a g-quadratic lattice of the form z = (¢® + ¢°) /2
with ¢* = € and let us introduce the symmetric difference operator as

0f (2 (s)) = f(x (s +1/2)) = f(x (s = 1/2)).
The first order Askey—Wilson divided difference operator is given by

(L D,f (z) = LD

_ fa(s+1/2)) - f(z(s = 1/2))
z(s+1/2)—=x(s—1/2)

Several “right” inverses D L of the Askey—Wilson divided difference operator, such that Dq_l
D, = I and I is the identity operator, were constructed in [20, 31, 33],

It was Dick Askey who realized that Wiener’s treatment of the Fourier integrals [59]
contains the key to g-extensions [8, 11, 41]. Generalizing Wiener’s method to the level of
the Askey—Wilson polynomials one can introduce a set of one-parameter integral operators
which resemble raising and lowering operators. These operators obey an interesting algebraic
structure which allows to obtain one-sided inverses of the divided difference operators of the
first order [20, 31, 33], and to find the resolvents of the second order Askey—Wilson operators
in different spaces of functions. The aim of the present note and its extended version [53] is to
consider the simplest case related to the continuous g-Hermite polynomials; a more general
case including the Askey—Wilson polynomials will be discussed later; see also [49] and [50]
for an extension of the Askey—Wilson polynomials orthogonality to a certain class of gy
functions.

The paper is organized as follows. In §1 to §4 we remind the reader basic facts about the
continuous g-Hermite polynomials and consider a model of g-harmonic oscillator in terms
of these polynomials. In §5 to §7 we introduce a family of one parameter integral operators,
which extend rasing and lowering operators, and investigate some properties of these oper-
ators, their adjoints and inverses in a framework of a single algebraic structure. An analog
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of the g-Fourier transform is briefly discussed in §8. An explicit realization of the number
operator in this model of the g-oscillator terms of Hadamard’s principal values integral is
outlined in §9. Inverses of the first order Askey—Wilson operators are constructed in §10. In
conclusion, the resolvent and Green’s function of the corresponding g-Hamiltonian are found
in §11. More details can be found in the forthcoming paper [53].

2. Continuous g-Hermite Polynomials. Although the continuous g-Hermite polyno-
mials were originally introduced by Rogers [42], [43], [44], their orthogonality relation and
asymptotic properties had been established only recently by Allaway [2], Al-Salam and Chi-
hara [4], and Askey and Ismail [9], [10]. These polynomials are given by

- (:9) i(n—2k)0
2.1 H, (z|q) = — 2 Tn_ iln=2k)0 z = cosf
(=) ,; CHAPCE ) -

and the continuous orthogonality relation is [2], [9], [10]

(2.2) / Hp(cosB|q) Hy(cosb]q) (e*,e7%%;q) _ df
0
(4 Dn
=2 5mna
"G D
or
1
23) [ Halla) Hu(sla) plo) do = a2 3,
1

where the weight function is
1/2 Tx
2.4 p@)=4(1-2*)""T[ (1 +2(1-22%) ¢* + &)
k=0

and the £2-norm is given by

(& Dn
(G900

(2.5) 2 =2n

n

The continuous g-Hermite polynomials (2.1) obey a very important property, namely, the
action of the Askey—Wilson divided difference operator (1.1) on H,(z|q) results in the same
polynomial of the lower degree,

) 1—¢"
— Hy(z|g) =244 ™2 —L H,_
57 Anlela) = 2q 4 1(zlg),

which is a g-analog of the familiar formula H, (x) = 2nH,_1 (z). It is worth also noting
that the continuous g-Hermite polynomials are the simplest special case of the fundamental
Askey-Wilson polynomials p,,(x; a, b, ¢, d) [14] corresponding to the zero-valued parameters,
H,(z|q) = pn(z;0,0,0,0). They satisfy a second-order difference equation and have the
Rodrigues-type formula among other properties; see, for example, [5], [14], [16], [18], [30],
[32], [40], and [47] for more details.
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3. Bilinear Generating Functions. There are several important generating functions
for the continuous g-Hermite polynomials; see, for example, [6], [30], [48], and [S51]. The
Poisson kernel of Rogers, or the g-Mehler formula, is one of them

n

3.1) Z n (zlq) Hy (ylq)

B (¢:t%49)
2 (teiﬂ—i-igo’ teio—w’ tei‘P—w, te—w—W; q)oo

with z = cosf, y = cos g, |t| < 1 and d2 defined by (2.5). A related kernel is

n

(3.2) Z n (2]a) Hnt1 (yla)

(y —tr) (¢,qt%q)
T (teia+z’<\o7 tewfw, tew*w’ teﬂ'oﬂxp; q)oo

Both kernels (3.1) and (3.2) are special cases £ = 0 and k = 1, respectively, of a more general
Carlitz’s formula,

o0

(3.3) Z

n=0

n (2]q) Hnyk (y1q)

G,
( ¥q) . (@9 pr (cos p;tet? te=)
(tez9+z<p tetf—ip teup i6 ,te i0—ip. q) )

where

(ab; q),, ( gk, aet®, ae )
pr (cosp;a,b) = —— 3009 )
( )= F @ a), ab, 0

are the Al-Salam and Chihara polynomials; see, for example, [ 14] and [34]. Carlitz [22] de-
rived (3.3) using series manipulations; Al-Salam and Ismail [5] gave another proof using the
fact that the continuous g-Hermite polynomials are the moments of the distribution function
of the Al-Salam and Carlitz polynomials [3].

Let us also consider another related kernel

(3.4) My(z,y) : ZH (2l9) Hmy1(yl0)
m=0 m+1

= q"Lig (z,)
n=0

and introduce the generalizations of the 7', L and M kernels as follows:

oo n

t
(3.5) L (w,y) = 3 5 Hulelg) Hurr(ylg)

n=0 "
(04°d%;9) (G Q)r pr (y; te'? te ™)
27 (teiftie teif—iv teiv—if te—if—iv;q)




ETNA

Kent State University
etna@mcs.kent.edu

AN ALGEBRA OF INTEGRAL OPERATORS 143
and
oo tm
k
(3.6) M (2,9) = 3~ Hn(olg) Hiri (l0) 57—
m=0 m+k
00 k
q;4 k
=>4 (da), : ) Ligh (,y).
=" (GDn

With the help of these kernels (3.1), (3.2), (3.4)—(3.6) we shall introduce in this paper a family
of integral operators related to the so-called g-Heisenberg algebra.

4. The g-Heisenberg Algebra. Recent advances in quantum groups has led to a study
of the so-called g-harmonic oscillators, originally introduced by Arik and Coon [7] and then
rediscovered by Biedenharn [19] and Macfarline [38]; see, for example, [12], [13], [17],
[27], [28], [29], [25], [26], [57], [61], and references therein. The g-oscillator is a simple
quantum mechanical system described by an annihilation operator and a creation operator
parameterized by a parameter ¢. The basic problem is to find realizations of these operators
as differential, difference or integral operators acting on appropriate functional spaces. The
first model of g-oscillator in a Hilbert space of analytic functions was discussed in [7]. Later
introduced models of g-oscillators are closely related to the g-orthogonal polynomials. The
g-analogs of boson operators have been studied by various authors and the corresponding
wave functions were constructed in terms of the continuous g-Hermite polynomials of Rogers
[42]-[44] by Atakishiyev and Suslov [15] and by Floreanini and Vinet [29]; in terms of the
Stieltjes—Wigert polynomials [46], [60] by Atakishiyev and Suslov [17]; and in terms of
g-Charlier polynomials of Al-Salam and Carlitz [3] by Askey and Suslov [12], [13] and by
Zhedanov [61]. The model related to the Rogers—Szeg6 polynomials [54] was investigated by
Macfarline [38] and by Floreanini and Vinet [27]. In this note we shall restrict ourselves only
to the model related to the continuous g-Hermite polynomials where the weight function p ()
given by (2.4) is continuous and positive on (—1,1) and the corresponding wave functions
form a complete system.

Just as the Hermite polynomials H () are associated with the wave functions for the
harmonic oscillator [36], the continuous g-Hermite polynomials H,,(x|q) are associated with
the normalized g-wave function for the g-harmonic oscillator,

(¢"*%5q) 2
U, (zlq) = [Too] vV p(z) Hy(z]q),

so that the orthogonality relation (2.2)—(2.5) now reads

/ U,(2]q) Un(2]q) dz = Smn.

-1

The g-annihilation operator a,(x) and the g-creation operator a;} (z) that satisfy the commu-
tation rule

aq(z)ag (z) — ¢~ af (z)aq(z) =1
were introduced explicitly in [15]. In this paper we shall consider another form of the g-boson

operators which is equivalent to those given in [15], but more convenient for our purposes;
see [28].
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The g-annihilation operator a = a,(«) and the g-creation operator b = a (x) satisfy the
commutation rule

4.1) ab—q tba=1

and act on the corresponding g-wave functions as follows

1 g\ /2
4.2) aln) = (1_’;_1) In—1),
1— —n—1y 1/2

Let S be a space of analytic functions spanned by {H,(z|q)}|,, and let the weighted inner
productin S be

(44) 0.0, = [ 0" @x@) pa)d,

where * denotes the complex conjugate; we need also impose certain analyticity condition on
the functions 1) and x [53]; see also [52], [45] for the maximum domain of analyticity of the
series in the continuous g-Hermite polynomials.

In this paper we consider the following explicit realization of the g-annihilation a and
g-creation b operators. One can easily verify that the divided difference operators

1/2

4.5) a= _u(lﬁ (¢ - qfs)fl (61/2 8 _ g1/2 a) ’
—q
1 _
4.6) b= _W (qs _ q—s) 1 (q_2sel/2 8 _ qzse—1/2 a) 7
—q

acting on analytic functions of the form

where exp (a 0) is the shift operator,

exp (@ 8) ¢(s) = ¢(s + o),

indeed, satisfy the g-commutation rule (4.1). Moreover, it is easy to see that these operators
are adjoint to each other,

(b, x), = (¥, ax),
with respect to the inner product (4.4) in the space of analytic functions under consideration.

5. Introducing Integral Operators. Using the T', L and M kernels given by (3.1)—
(3.2), (3.4) for |t| < 1, let us consider the following integral operators

5.1) T(t) p(z) = /

) Ty(z,y) ¥ (y) p(y) dy,

(5.2) At) (z) = /

) Li(z,y) ¥ (y) p(y) dy,



ETNA

Kent State University
etna@mcs.kent.edu

AN ALGEBRA OF INTEGRAL OPERATORS 145
(5.3) Ct)¢(z) = /11 Mi(y,z) ¥(y) py) dy-
and the corresponding adjoint operators
(5.4) mnwm=/ﬁmwwmwmwm%
(55) wa@=/imwmw@mm@

with respect to the inner product (4.4). Indeed,

(AY,x), = (¥,Bx),, (C¥,x),=(¥,Dx),

by the Fubini theorem when |t| < 1; see, for example, [1], [23], [35], [37], [56] for an
extensive theory of the integral operators.
In a more general setting, let us introduce also

A®) () g(z) = /_1 L) (z,9) ¥ (y) p(y) dy,
mWﬂwmz/;mW%mwwmw@,
COO @) = | M2 () ply) dy,

IO E [ ) M (z,y) ¥ (y) ply) dy

and with the help of (3.6) verify that

00 k.
cht)=3 ¢ (¢"9), B® (tg7),

= (&9
D® (4) = — n (qk§‘1)n A®) (1)
=Y q o AN
n=0 re/n

Once again,

in the space of analytic functions, if [¢| < 1.
It is easy to show that

5.6 A® () H,, (clg) = tm* \LDm_ gy

5:6) (O (al) = 7+ L gy, (ag),
(5.7) B® (1) Hyp (z]q) = t™ Hinpr(2|q),

5.8) CO () H,n(alg) = 7 LD g (alg),

(11; Q)m+k
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(5.9) Dk (t)Hp(z|q) = tm—k Hp_r(z|lg), m>k.

For k = 1 these relations (5.6)—(5.9) define a set of integral operators that correspond to the
so-called raising and lowering operators for the continuous g-Hermite polynomials:

(5.10) A(t)Hp(zlg) =t (1= ¢™) Hm-1(2la),
(5.11) B(t)Hp (2|q) = ™ Hpy1(2q),

tm
(5.12) C(t)Hm(zlq) = 7,”4_1 Hpya(z]g),
(5.13) D(t)Hp(z|q) =t le 1(zlg), m#D0.

The continuous g-Hermite polynomials are eigenfunctions of the T-operator:
(5.14) T(t)Hp(z|q) = t™ Hp(z|q)-
Combining (5.10) and (5.11) we find
(5.15) B (t1) A (t2) Hn(xlg) = (t1t2)" ™" (1= ¢™) Hmn(ag)-

This integral equation with two free parameters ¢; and ¢4 extends the corresponding second
order difference equation for the continuous g-Hermite polynomials; see [14], [18] and [40]
for more details on this equation. Another integral equation follows from (5.12)—(5.13).

6. “Algebra” of Integral Operators. The integral operators T, A, B, C, and D obey
the following multiplication rules:

T(t2) | A(t) B (t2) C(t2) D (t»)
T(4) | Eq.(6.1) | Eq. (63) | Eq.(65) | Eq.(6.7) | Eq. (6.9)
A (t) | BEq.(62) | Eq. (6.16) | Bq. (6.12) | Eq. (6.10) | Eq. (6.18)
B(#) | Eq (64) | Eq. (6.13) | Eq. (6.17) | Eq. (6.20) | Eq. (6.11)
C(4) | Eq.(6.6) | Bq. (6.11) | Eq. (621) | Eq. (6.22) | Eq. (6.14)
D (i) | Eq. (6.8) | Eq. (6.19) | Eq. (6.10) | Eq. (6.15) | Eq. (6.23)

All the products in this table can be evaluated directly from the definitions of the integral
operators and corresponding kernels in the following manner:

(6.1) T (t1) T (t2) = T (t1t2),

(6.2) A (t1) T (t2) = t2 A (tat2),

(6.3) T (t1) A (t2) = A (tit2)

(6.4) B (t1) T (t2) = B (t1t2)

(6.5) T (t1) B (t2) = t1 B (t1t2) ,

(6.6) C (t1) T (t2) = C(t1t2),

(6.7) T (t1) C(t2) = t1 C (tat2) ,

(6.8) D (t1) T (t2) = t2 D (t1t2),

(6.9) T (t1) D (t2) = D (t1t2)

(6.10) A (t1) C(t2) =D (t1) B (t2) = T (tat2) ,

(6.11) C(t1) A (t2) = B (t1) D (2) = (t1t2) " (T (t2t2) — T(0)),
(6.12) A(t1)B(t2) =T (tltz) —qT (gt1t2),

(6.13) B (t1) A (t2) = (t112) " (T (t1t2) — T (gtit2)),
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(614) C (tl) D (t2 t1t2 (Z T t1t2q T(O))

(6.15) D (1) C(t2) = ZT (trt2q") o,
(6.16) A (t1) A (ta) = t2 AD (t1t5)
(6.17) B (1) B (t2) = t1 B (t1t5),
(6.18) A(t)D () =ta Y ¢*AD (t1taq"),
k=0
(6.19) D (t1) A (t2) =t2 »_ ¢"A (titag")
k=0
(6.20) B (t1) C(t2) =t1 »_ ¢"B® (titag"),
k=0
(6.21) C(t1)B(t2) =t 211%13(2) (titag") ,
k=0
(6.22) C(t)C(t) =t qul B<2> (titag")
(623) D (tl tz =1t Z q A(2) (tltzq )

and so on. Here max (|t1], [t2]) < 1, when all integral operators are bounded.

Although this “algebra” of integral operators is not closed, it unifies many important
properties of these operators in a single algebraic structure and deserves detailed study. For
instance, it contains the inverses of the Askey—Wilson divided difference operators [20] and
the g-Fourier transform [8] as special cases after certain analytic continuation with respect to
the free parameter. We shall consider several important examples.

7. Some Degenerate Cases of Integral Operators. So far we have considered the in-
tegral operators (5.1)—(5.5) with |t| < 1, when they are bounded. In this section we shall
consider analytic continuation of these integral operators outside the interval 0 < ¢ < 1. This
leads to several important (unbounded) operators, when ¢t = 1, ¢~1/2, ¢!

,q —,etc.
7.1. Operator T (1). It can be shown that
1

lim 9 Ty (z,9) ¥ (y) p(y) dy = (x),

t—1-
or T (1) is the identity operator
T1)=1I
in the space of analytic functions under consideration; see [53] for more details.
7.2. Operator T (q’l/ 2) . In a similar fashion

7.1 T (q_1/2) -1

5—1/20 _ ;—s5,1/20

— 49
q—q*s
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This can be shows as a result of “collision” of the poles in the complex plane [53].
Now operators T (g¥/2) can be found as products of T (¢~/2) from (7.1):

(z (7)) =2 (7).

For example,

T (q_l) —T (q—1/2) T (q—1/2)

3 q72s71/2 ]
B (¢* —q—) (qs+1/2 _ q—s—1/2)
N q23—1/2 =0

(qs _ q—s) (qs—1/2 _ q—s+1/2)

B q25—1/2 I
(qs—1/2 _ q—s+1/2) (qs+1/2 _ q—s—1/2) ’

where [ is the identity operator.
The operator T (g~ ) is closely related to the Hamiltonian of the model of the g-harmonic
oscillator under consideration, namely,

_1-T (¢71)
1-g¢!
_(0-=T(?) 0 +T ()
(1=q172) (14q7172)

H =ba

Here a and b are the g-annihilation and g-creation operators, given by (4.5) and (4.6), respec-
tively.

7.3. Operators A (g~'/?)and B (g~'/2). “Colliding” the poles in the complex plane
[53], one can show that

A(c'?)=(1-9"q,

which is up to a factor just the first order Askey—Wilson divided difference operator; cf. (1.1)
and (4.5).
In a similar manner,

B(¢'2) =(1-9)"0.

From the multiplication table of the integral operators we obtain the following (g)-
commutators:

A (t1) B (t2) — t1t2B (t2) A (t1) = (1 — ) T (gt1t2),

A (t1) B (t2) — qt1toB (t2) A (t1) = (1 — q) T (t12) .

The special cases t; = t2 = q_l/ 2 are well-known in the theory of g-oscillators [19], [38]:

ab—q tba=1I, ab—ba= T(qil).
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Also, from the multiplication table of the integral operators,

A (t1) T (t2) = t2T (t2) A (t1),

B (t1) T (t2) = t; ' T (t2) B(t1),
and when t; = ¢ 1/2, ty = t one gets

aT (t) =tT (¢) a,

bT (t) =t~ T (t)b.

In the case t = g~ /2 we can use these relations in order to determine the spectrum of the
g-Hamiltonian H in a pure algebraic form.

The normalized g-wave functions in the model of g-oscillator under consideration are

Yn (@) = [(¢"T54) /2x)""* H,, (2]q)

with the orthogonality relation

/_ 0 (@) (2) p () d2 = B

and the explicit action of the g-annihilation and g-creation operators on these wave functions

is
_na 1/2
1—q™™
a¢n = (1—(]1) wn—la

1— qfnfl 1/2
by, = (ﬁ) Ynt1

according to the general rule (4.2)—(4.3).

8. Generalized g-Fourier Transform and its Inverse. The semi-group property from
the multiplication table is

T (t1) T (t2) = T (t1t2),

when max (|t1], [t2]) < 1. “Analytic continuation” of the integral operators T (¢1,2) on the
unit circle [¢1,2| = 1 results in the g-Fourier transform [8], [11], [41], [53] (usually, in the
classical case, 7 = m/2 [55], [59], but we discuss the general case with 0 < 7 < 7). Then,
formally,

T (") T (e ') =1,

where I is the identity operator. The explicit transformation formulas in the spaces of analytic
functions can be given in terms of Cauchy’s principal value integral. The g-Fourier transform
and its inverse are certain singular integral equations, somewhat similar to the case of the
classical Hilbert transform; see [24], [39] for an account of the theory of singular integral
equations.
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9. The “Number” Operator. The concept of number operator is well-known in quan-
tum mechanics [36]. Similar operators were formally introduced in the theory of g-harmonic
operators [19], [38], but explicit realizations of these “number” operators were not con-
structed. In the model of the g-oscillator under consideration it is natural to introduce this
operator as the generator of the semi-group of the integral operators T (¢) [53]. Denote

T, =T (¥)

|t=e°‘ ’

or in the form of a contour integral,

T, (2) = / To (2,y) ¥ () o) dy,

where I is a contour corresponding to analytic continuation of the operator T () to the values
[t| > 1; see [53] for the details. Then the semi-group properties can be written as usual

To=1, ToTs=Tass

and formally

(aZ)"
n!

?

T, =exp (aZ) = Z
n=0

where by the definition the “infinitesimal” operator is

dT,
7=
(=)
Explicit realization of the number operator T can be given in terms of Hadamard’s principal
value integral in the space of analytic functions; see [53] for the details.

10. Inversions of Operators A (t)and B (t). The operators A (t) and B (¢) are bounded
integral operators for |t| < 1; they admit an analytic continuation in the larger domain |¢| > 1
and become unbounded divided difference operators when t = ¢—'/2. The problem of finding
inverses of these operators is similar to the familiar classical results

a=0

2 [1@ =@,
/ %f (z) dx = f (z) + constant.

In the model of the g-harmonic oscillator under consideration we can extend these relations to
g-derivatives, or even to g-“fractional” derivatives, namely, our integral operators A (t) and
B (t), with the help of the integral operators C (¢) and D (t) . Indeed, for |¢t| < 1 one can
write from the table of multiplication of the operators that

(1) =
1)

where I is the identity operator. Thus the bounded integral operator C (t) (D (¢)) with || < 1
gives the right (left) inverse of the unbounded operator A (t_l) B (t‘1 ) ), provided that this

operator is properly analytically continued to the domain |t’1| > 1. When t = ¢~/ one

At)cH=T I,
DHB(t")=T I,
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gets, as a special case, the right inverse of the Askey—Wilson first order divided difference
operator §/dx originally found by Brown and Ismail [20] in this model of g-oscillator.

In a similar manner,

when |t| < 1 and

A (t1) C (t2) — t1t2C (t2) A (t1) = T (0),
D (t2) B (t1) — t1t2B (¢1) D (t2) = T (0),

i.e., these “commutators” act on a vector ¢ as the projection operator to the “vacuum” vector
9. Indeed,

T (0) 4 («) =/1To<x,y)w<y> o (v) dy

= (wﬂa'(p)p ¢0a

where 1y = dy ! Hy (2]q) is the “vacuum” vector.

11. Resolvents and Green’s Functions. The continuous g-Hermite polynomials, or the
wave functions in the model of the g-harmonic oscillator under consideration, satisfy two
difference equations. We derive corresponding resolvents and Green’s function.

11.1. First difference operator. Let us start from the following difference equation for
the continuous g-Hermite polynomials

T (/) Ha (alg) = ¢"/*Hy (ala)
which is the special case t = g~ 1/2 of (5.14) due to (7.1), and consider
(11.1) (T (q*”?) —/\I)¢=x
with the resolvent
R, = (T (q_l/z) - )\I)_l . Y =Ry
Multiplying (11.1) by the corresponding bounded integral operator T (ql/ 2) , one gets

(= (@) v = () x

where I is the identity operator. Thus,
_ 1/2 -1 _ = k 1/2 k
(r=om(a)) =¥ (v ()
— k k/2
kz:%/\ T (q )
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by (6.1), and

= (25 ) ) = S ().
k=0

So, the resolvent is an integral operator

Rxx(m)=[le(w,y)X(y) p () dy

with the kernel

R,\ (:E,y) = Z /\kTq(k_H)/z (m,y)
k=0
_ i Hy (210) Hn W19) />
&1-r?) T

n=0

—n/2

Introducing the eigenvalues \,, = and the orthonormal eigenfunctions ¢, = d,,' H, (zlq) ,

one can finally write

n=0 n

The resolvent identity holds
(112) (u—)\) R)\RN = R)\ _Rl“

see [1], [23], [35], [37] for more properties of the resolvent.

11.2. Second difference operator. Let us factor, first of all, the corresponding Askey—
Wilson difference equation of the second order (or the g-Hamiltonian) in the following man-
ner. At the level of the integral operators in Eq. (5.15) we have

B (t1) A (t2) = (t1t2) " (T (t1ta) — T (qt1t2))

and, hence, for t; = to = g~1/2,

"B () A(¢?) =T (") - I.
Therefore, instead of solving
("B () A () + ) =
one can solve a simpler equation
(11.3) (T(g")—pl)=x, p=1-A

with the help of the resolvent

R,=(T(¢ ) —pul)", ¢=Ryx.



ETNA

Kent State University
etna@mcs.kent.edu

AN ALGEBRA OF INTEGRAL OPERATORS 153
Multiplying (11.3) by T (q) ,

(I-uT(q)y="TI(g)x

where [ is the identity operator, and once again

(I—pT ()~ = uF (T (g))"
k=0
S,
k=0
R, = (T () —u) " = 34T ()
k=0

This consideration gives an explicit representation for the resolvent in terms of the integral
operator

x)zﬁlRN<x,y)x(y) p(v) dy

with the kernel

o0
= Z pET s (2,y)

_ Z d2x|q y)lq) "

The resolvent identity (11.2) holds.

11.3. Green’s function. Let
xX=29 (IIJ - ml) )
where ¢ (y) is the Dirac delta function. Then

Gy (z,2") =Ryé (z — 2') = Ry (z,2") p (2'),

or
(T(¢7") —ul) Gy (2,y) = 6 (x —y)
with
Gy (z,y) Ru(w,y)p()
— H, (z|q) Hn (ylg)
7;) gy T PW-

See [53] for more details.
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