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BOUNDS FOR THE MINIMUM EIGENVALUE OF A SYMMETRIC TOEPLITZ
MATRIX *

HEINRICH VOSS

Abstract. In a recent paper Melman [12] derived upper bounds for the smallest eigenvalue of a real symmetric
Toeplitz matrix in terms of the smallest roots of rational and polynomial approximations of the secular equation
f(X\) = 0, the best of which being constructed by {He 2)-Pad approximation off. In this paper we prove that
this bound is the smallest eigenvalue of the projection of the given eigenvalue problem onto a Krylov éﬁaée of
of dimension 3. This interpretation of the bound suggests enhanced bounds of increasing accuracy. They can be
substantially improved further by exploiting symmetry properties of the principal eigenvectoy. of
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1. Introduction. The problem of finding the smallest eigenvalue of a real symmetric,
positive definite Toeplitz matrix (RSPDT) is of considerable interest in signal processing.
Given the covariance sequence of the observed data, Pisarenko [14] suggested a method
which determines the sinusoidal frequencies from the eigenvector of the covariance matrix
associated with its minimum eigenvalue.

The computation of the minimum eigenvalde of an RSPDTT,, was considered in,

e.g. [2], [7], [8], [9], [10], [11], [13], [16]. Cybenko and Van Loan [2] presented an algorithm
which is a combination of bisection and Newton’s method for the secular equation. By replac-
ing Newton’s method with a root finding method based on rational Hermitian interpolation of
the secular equation, Mackens and the present author in [10] improved this approach substan-
tially. In [11] it was shown that the algorithm from [10] is equivalent to a projection method
where in every step the eigenvalue problem is projected onto a two-dimensional space. This
interpretation suggested a further enhancement to the method of Cybenko and Van Loan. Fi-
nally, by exploiting symmetry properties of the principal eigenvector, the methods in [10] and
[11] were accelerated in [16].

If the bisection scheme in a method of the last paragraph is started with a poor upper
bound for)\;, a large number of bisection steps may be necessary to get a suitable initial
value for the subsequent root finding method. Usually the bisection phase dominates the
computational cost. The number of bisections can be reduced when a good upper bound
for A\ is used. Cybenko and Van Loan [2] presented an upper bound;fevhich can
be obtained from the data determined in Durbin’s algorithm for the Yule-Walker system.
Dembo [3] derived tighter bounds by using (linear and quadratic) Taylor expansions of the
secular equation. In a recent paper Melman [12] improved these bounds in two ways, first
by considering rational approximations of the secular equation and, secondly, by exploiting
symmetry properties of the principal eigenvector in a similar way as in [16]. Apparently,
because of the somewhat complicated nature of their analysis, he restricted his investigations
to rational approximations of at most third order.

In this paper we prove that Melman’s bounds obtained by first and third order rational
approximations can be interpreted as the smallest eigenvalues of projected problems of di-
mension 2 and 3, respectively, where the mdfiixs projected onto a Krylov space of, !

This interpretation again proves the fact that the smallest roots of the approximating rational
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functions are upper bounds of the smallest eigenvalue, avoiding the somewhat complicated
analysis of the rational functions. Moreover, it suggests a method to obtain improved bounds
in a systematic way by increasing the dimension of the Krylov space.

The paper is organized as follows. In Section 2 we briefly sketch the approaches of
Dembo and Melman and prove that Melman’s bounds can be obtained from a projected eigen-
problem. In Section 3 we consider secular equations characterizing the smallest odd and even
eigenvalue off;,, and take advantage of symmetry properties of the principal eigenvector to
improve the eigenvalue bounds. Finally, in Section 4 we present numerical results.

2. Rational approximation and projection. Let
Tn = (t‘i—ﬂ)ldil,,n (= R(nvn)

be a real and symmetric Toeplitz matrix. We denotd by RG9) its j-th principal subma-
trix, and byt the vectort = (¢, ..., t,_1)T. IF A < AP <. < /\g.j) are the eigenvalues

of T; then the interlacing propertgfjli)1 < )\;’:1) < )\gk’), 2 < j <k <n,holds.

We briefly sketch the approaches of Dembo and Melman. To this end we additionally
assume thaf;, is positive definite. IfA is not in the spectrum df’,_; then block Gauss
elimination of the variables,, . .., x,, of the system

to — A tT B
( t Ty - A >‘”0

that characterizes the eigenvalue§dpfyields
(to — A= tT(Tn_l — /\I)_llf).lﬁl =0.

We assume that!™ < A"V Thenz; # 0, andA\™ is the smallest positive root of the
secular equation

(2.1) fON) == —to + AN+ t5 (T = AXI) "' =0,

which may be rewritten in modal coordinates as
(2.2) fA) =—=to+ A+ Z )\("717)_ =

wherev’ denotes the eigenvector 6f,_, corresponding tag.”’l)
From

- _ T—1 4 _ (1 _4Tp—1 to 1" !
f0)=—~to+tTT it = —(1,—t Tn1)< t Ty )) ( —T 't <0

and f0)(\) > 0 for everyj € N and everyx € [0,A{"""), it follows that the Taylor
polynomialp; of degreej such thatf *)(0) = py“) (0),k =0,1,..., , satisfies

F(A) > p;(A) foreveryl < /\5”’1) and p;(A) < pj;y1(A) foreveryl > 0.
Hence, the smallest positive rop} of p; is an upper bound oﬁ") andpj1 < pjy. For

j = 1andj = 2 these upper bounds were presented by Dembo [3].j For3 these results
are discussed by Melman [12].
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Improved bounds were obtained by Melman [12] by approximating the secular equation
by rational functions. The idea of a rational approximation of the secular equation is not new.
Dongarra and Sorensen [4] used it in a parallel divide and conquer method for symmetric
eigenvalue problems, while in [10] it was used in an algorithm for computing the smallest
eigenvalue of a Toeplitz matrix.

Melman considered rational approximations

ri(A) = —to + A+ p;(N)
of f where

a b a c

A) = —— A) = e A) =
pl() h_\ pQ() a—’_C—)\’ PB() bh— 2\ d—\

and the parameters b, ¢, d are determined such that

k
® gy - 4T 1 T e :
(23) pj (0) = Wt (Tn—l — )\I) t \—0 =kt Tn—l t, k= O7 1, ey ]
Thusp1, p2 and ps, respectively, are thé, 1)-, (1,1)- and (1, 2)-Pad approximations of
¢(N) :=tT(T,,_1 — AI)~ 't (cf. Braess [1])
For the rational approximations it holds that (cf. Melman [12], Theorem 4.1)

r(V) <ra(\) <rs(V) < F(A) for A < AT,

and with the arguments from Melman one can infer thatjfer 2 and;j = 3 the inequality
ri—1(A) < r;(X) even holds for every less than the smallest polexgf Hence, ifi; denotes
the smallest positive root of;(\) = 0 then

Aﬁ”) <z < pe < p.

The rational approximations (\) andrs(A) to f () are of the form of a secular equation
of an eigenvalue problem of dimensiahand3, respectively. Hence, there is some evidence
that the roots of, andrs are eigenvalues of projected eigenproblems. In the following we
prove that this conjecture actually holds true. Notice that our approach does not presume that
the matrixT;, is positive definite.

LEMMA 2.1. LetT;, be a real symmetric Toeplitz matrix such thais not in the

spectrum of7;, and T}, ;. Lete! := (1,0,...,0)T € R", and denote by, :=
span{e!, T, tel, ..., T;-%e'} the Krylov space of ;! corresponding to the initial vector
el. Then

0 0
@ (e ) (ot )y

is a basis ofl;, and the projected eigenproblemBfx = Az ontoV, can be written as

S t() ST - 1 OT A
(2.5) By.<8 B>y)\<0 C>y.Cy,
where
25 R 2% B2 e Mot 21
B — . . , C — . . , S — . ,

He oo H2e-1 He+1 -0 H2¢ e
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and where
(2.6) pj =117t

Proof. For¢ = 0 the lemma is trivial. Since
11 [« atg +tTv =1
T, e = ( v ) = { ot+T,_1v=0
for £ = 1 a basis ofi; is givenin (2.4).

Assume that (2.4) defines a basisigffor somel € IN, thenT; “e! may be represented
as

—0 1 __
Tne(T ) z%

n—

Hence

—Ell —1 6 —1 0 . —-1.1 d
o (2, ) e (4, )<t (£)

n—

to  tT 5\ 0 — Sto+tTw =0
t Tn_1 w ) Tn__llz ot+T,_qw = Tn__llz

The second equation is equivalent to

where

—£—1
w:Tn 1% — 1 1t_Z'YJ 1 t_ 1f’E Spar{ n— 1t "’Tn 1 t}’

and (2.4) defines a basis Bf; for ¢ + 1.

Using the basis o/, in (2.4) it is easily seen that equation (2.5) is the matrix repre-
sentation of the projection of the eigenvalue problBm: = A\x onto the Krylov spacé’;.
d

LEMMA 2.2.LetB, C, s, B andC be defined as in Lemma 2.1. Then the eigenvalues of
the projected problem®y = AC'y which are not in the spectrum of the subperfib = A\C'w
are the roots of the secular equation

(2.7) ge(\) == —to + A+ sT(B—-XC)!

For F := (T, }1t,..., T t) the secular equation can be rewritten as

7

(2.8) ge(\) = —to + A+t F(FT(T,,—y — X[)F) "' FTt.

Proof. The secular equation in (2.7) is obtained in the same way as the secular equation
f(A) = 0 of T,,x = Az at the beginning of this section by block Gauss elimination. The
representation (2.8) is obtained frah= F'T,, _F,C = FTFands = F1t.O

LEMMA 2.3.Let B, C, s be defined in Lemma 2.1, and let

o\ =sT(B-)C)!
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Then thek-th derivative of, is given by

(2.9) oM () = kT (F(FT (T, — A)F) "' FT)F 1t | > 0.

Proof. Let

Then
(2.10) %G()\) =G\ FTFG(N),
yields

o,(\) =t'FG' (N FTt
=t"F(FT (Tyo1 — MO)F) ' FTF(FT (T -y — M) F) " FTt
=tT(F(FT(T,,_1 — MXI)F)'FT)?t,

i.e., equation (2.9) fok = 1.
Assume that equation (2.9) holds for sole IN. Then it follows from equation (2.10)

otV = k!tT%{(F(FT(Tn,l — ADF) T FT)

K d
)

=k+D)1(F(FN (T, — AI)F)‘lFT)kF%G(A)FTt

= k+DI"(F(FT(T,_1 - X)F)'FOY*FGNFTFG(\)FT't
= (k+ )T (F(FT(Ty—1 — XI)F) " FT)F2¢

=k+ DI (F(FN(T,y = X)F) ' FOY —(F(FT (T, 1 — N F) ' FT)t

which completes the proadil
LEMMA 2.4.LetF := (T, 't,..., T *t). Then it holds that

»Tn—1
(2.12) (F(FTT, F) 'FTYst =T %t fork=0,1,...,¢,
and
(2.12) tH(F(FTT,  F)'FTY*e =+TT Mt fork=0,1,...,20

Proof. Fork = 0 the statemen(2.11) is trivial. Let
H:=F(F'T, \F)"'FT,_,.
Then for everyr € spanF, z := Fy,y € R,
Hx=F(F'T, \F)"'F'T, \Fy=Fy=u,
andT,, ;¢ € spanF yields

F(F'T, \F) 'FTt = HT Yt = T 't

n—
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i.e., equation (2.11) fok = 1.
If equation (2.11) holds for some < ¢ then it follows froan_f'f“)t € sparf’ that

(F(FTT, F) " FT) 4 = (F(FTT, F) " FT)(F(FTT, . F) "' FT)*
= (F(FTT, 1 F)'F)T,
= (F(

F(FTT, F)"'F")T, T, %"Vt
_ gDy Tni(lfﬂ)t,

n—1

which proves equation (2.11).
Equation (2.12) follows immediately from equation (2.11) ko= 0,1,...,¢. For{ <
k < 2(itis obtained from

tT(F(FTT, \F) 'FTYrt = (F(FTT,_F) ' FO)Y )T (F(FTT,_ F) ' FT)*=tt)
= (T 50T, ) = (T

n— n—1

We are now ready to prove our main result.
THEOREM 2.5. LetT,, be a real symmetric Toeplitz matrix such tHatandT,,_, are
nonsingular. Let the matrice8 andC' be defined in Lemma 2.1, and let

ge(\) = —to + A+ 5T (B = XC)"ts = —tg + A+ oe(N)

be the secular equation of the projected eigenproblem (2.5) considered in Lemma 2.1. Then
oe(N) is the(¢ — 1, ¢)-Pace approximation of the rational function

d(\) = tT (T, — NI) 7't

Conversely, ify(\) denotes thé/ — 1, ¢)-Pace approximation of(\) and/ige) < ug) <...
are the roots of the rational functioh — —ty + A + 7,(\) ordered by magnitude, then
(213) )\gn) S M§€+1) S #;f)
foreveryl <nandj € {1,...,0+1}.

Proof. Using modal coordinates of the penéllv = AC'w the rational functioro,(\)
may be rewritten as

[ )

4 ﬁ
¢(A) :Z o — \
j=1"

<

wherex; denotes the eigenvalues of this pencil. Heaigés a rational function where the
degree of the numerator and denominator is not greaterthahand/, respectively.
From Lemma 2.3 and Lemma 2.4 it follows that

o8?(0) = kT (F(FT T, F) 7 FT )R = g1, e = 60 (0)

foreveryk =0,1,...,2¢ — 1. Henceoy is the(¢ — 1, ¢)-Pads approximation of.
From the uniqueness of the Radpproximation it follows that, = oy. Henceugé) <

u;“ < ... are the eigenvalues of the projection of probl&yx = Ax ontoV,, and (2.13)
follows from the minimax principlell
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Some remarks are in order:

1. The rational functiong; andps constructed by Melman [12] coincide withh and
o9, respectively. Hence, Theorem 2.5 contains the bounds of Melman. Moreover it provides
a method to compute these bounds which is much more transparent than the approach of
Melman.

2. Obviously the considerations above apply to every shifted problem <1 such that
k is not in the spectra df,, andT;,_,. Notice that the analysis of Melman [12] is only valid
if  is a lower bound of\{"”.

3. In the same way lower bounds of the maximum eigenvalug,afan be determined.
These generalize the corresponding results by Melman [12] where we do not need an upper
bound of the largest eigenvaluedf.

3. Exploiting symmetry of the principal eigenvector. If 7,, € R(™ is a real and
symmetric Toeplitz matrix and’,, denotes the:--dimensional flipmatrix with ones in its sec-
ondary diagonal and zeros elsewhere, thén= I andT,, = E, T, E,. HenceT,,x = Az if
and only if

Tn(Enx) = EnTnEim = A\E,z,

andzx is an eigenvector df, if and only if £,z is. If \ is a simple eigenvalue df,, then
from ||z||2 = ||E,z||2 we obtainz = E,z orz = —FE,z. We say that an eigenvector
is symmetric and the corresponding eigenvalue even ifx = E,x, andx is called skew-
symmetric and\ is odd ifx = — F,, .

One disadvantage of the projection scheme in Section 2 is that it does not reflect the
symmetry properties of the principal eigenvector. In this section we present a variant which
takes advantage of the symmetry of the eigenvector and which essentially is of equal cost to
the method considered in Section 2.

To take into account the symmetry properties of the eigenvector we eliminate the vari-
ableszs, . .., x,_1 from the system

to - A tNT tnfl
(31) f Tn,Q — A Ejnfgi~ xr = 0,
tn—l ETEn—Q tO - A

wheret = (t1,...,t, o).
Then every eigenvalug of T, which is not in the spectrum df,_- is an eigenvalue of
the two-dimensional nonlinear eigenvalue problem

to— A\ — {T(Tn,Q — )\I)*li~ tho1 — fT(Tn,Q — )\I)ilEn,Q{ X1 —0
tn_1— fTE7,_2(T7L_2 — /\I)_lt~ to — A — fT(Tn_g — /\I)_lf Tn -

Moreover, if \ is an even eigenvalue @f,, then(1, 1)7 is the corresponding eigenvector of
the nonlinear problem, and ¥fis an odd eigenvalue @, then(1, —1)7 is the corresponding
eigenvector of the nonlinear problem.

Hence, if the smallest eigenvalk\é") is even, then it is the smallest root of the rational
function

(3.2) frQA) = —to—th 1 + X+ (Ty_p — NX) "t + B, _ot),
and ing”) is an odd eigenvalue &, then it is the smallest root of

(3.3) F-ON) = —to+tn g + AN+ (Too — XI)"HE — B, _of).
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Analogously to the proofs given in Section 2, we obtain the following results for the odd
and even secular equations.

THEOREM 3.1. LetT,, be a real symmetric Toeplitz matrix such tiais not in the
spectrum off},, and ofT},_». Letty :={ £+ F,,_»t, and let

Vit = span{ei,Tn‘lei, e ,Tn_eei}
be the Krylov space df, ! corresponding to the initial vectary := (1,...,+1)T. Then
0 0
1 —L
€+, Tn72ti e T"_Qti
0 0

is a basis of/,..
The projection of the eigenprobleéfxz = Az ontoV,. can be written as

(3.4) Biy:= ( fo isinfl ;%; ) y=2A ( é gi ) y =: Cy,
where
l/it e llei l/g: Vil 141
(3.5)By = : : ,Op = : : , 54 = : )
vE L v vEL . vE v
and where
(3.6) vE = 05041, )t = (f+ E,of) T, 7ot.

The eigenvalues of the projected problem (3.4) which are not in the spectrum of the subpencil
Biw = AC1w are the roots of the secular equation

(3.7) g+(\) = —to Ftoo1 + A+ sL(Bx — ACy) sy
= —tgEtth_ 1+ A+ O’g:t()\) =0.

Here,op1 (A) is the(¢ — 1, ¢)-Pade approximation of the rational function
p+(N) ==t (T — M) "1t £ B, _ot).

Conversely, ifro1 (A) denotes thé? — 1, ¢)-Pacé approximation ofp4 (A) and ug‘l is the
smallest root of the rational function

A= tg 1 — A+ 7+(A\) =0,

then

n . ¢ 041 . ¢ l
)\g ) < mm(ugfl),ugj )) < Inln(ﬂ%jaﬂgf))

As in the prvious section, faf = 1 and? = 2 Theorem 3.1 contains the bounds which
were already presented by Melman [12] using rational approximations of the even and odd
secular equations (3.2) and (3.3).
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4. Numerical results. To establish the projected eigenvalue problem (2.7) one has to

compute expressions of the form
i =tTT 0t j=1,...,2L

For ¢ = 1 the quantities:; and ., are obtained from the solution' of the Yule-Walker
systemT,,_,z' = —t which can be solved efficiently by Durbin’s algorithm (see [6], p. 195)
requiring2n? flops. Once:! is knownp; = 2t anduy = ||2Y|3.

To increase the dimension of the projected problem by one we have to solve the linear
system
(4.2) Tp_12 = 2,
and we have to compute two scalar produgts,; = (z1)T 2 andpge2 = || 21112

System (4.1) can be solved efficiently in one of the following two ways. Durbin’s al-
gorithm for the Yule-Walker system supplies a decomposifidhy_; L7 = D whereL is
a lower triangular matrix and is a diagonal matrix. Hence, for evefythe solution of
equation (4.1) requirez? flops. This method for (4.1) is called Levinson-Durbin algorithm.

For large dimensiona equation (4.1) can be solved using the Gohberg-Semencul for-
mula for the inversd), !, (cf. [5])

. 1

4.2 T ' = GGT —HHT
(4.2) nl 1—yTt(1:n—2)( )
where
1 0 0 0 0 0 0 0
Y1 1 0 0 Yn—2 0 0 0
G = Y2 hn 1 0 andH = Yn—3 Yn—2 O 0
Yn—2 Yn—3 Yn—4 o 1 Y1 Y2 Y3 0

are Toeplitz matrices angldenotes the solution of the Yule-Walker syst&imn oy = ¢(1 :
n—2).

The advantages associated with equation (4.2) are at hand. Firstly, the representation
of the inverse ofl, _; requires onlyn storage elements. Secondly, the matricgsG”,
H andHT are Toeplitz matrices, and hence the solufion ; z¢ can be calculated in only
O(n logn) flops using fast Fourier transform. Experiments show that when 512 this
approach is actually more efficient than the Levinson-Durbin algorithm.

In the method of Section 3 we also have to solve a Yule-Walker sy$temz! = ¢ by
Durbin’s algorithm, and increasing the dimension of the projected problem by one we have
to solve one general systef), ,z‘*! = 2 using the Levinson-Durbin algorithm or the
Gohberg-Semencul formula. Moreover, two vector additiohs + £, _,z‘*! and4 scalar
products have to be determined, and 2 eigenvalue problems of very small dimensions have to
be solved. To summarize, again? + O(n) flops are required to increase the dimension of
the projected problem by one.

If the gap between the smallest eigenval@@ and the second eigenvallzlén) is large,
the sequence of vectols Zle converges very fast to the principal eigenvectofipf and

the matrixC' becomes nearly singular. In three of 600 examples that we considered the matrix
C even became (numerically) indefinite. However, in all of these examples the relative error
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dim

(=1

=2

(=3

{=4

32
64
128
256
512
1024

1.0 E+0
1.64 E4+0
2.76 E+0
5.03E 40
751 E+0
166 FE+1

429E -2
641 E —2
7.60 E —2
925 E -2
1.I0E -1
1.05FE -1

8.38 E —3
1.38E -2
1.88 E —2
1.78 E -2
247TE —2
243 E -2

1.82FE -3
420FE -3
509F -3
6.20E -3
6.80E —3
6.60 E — 3

TABLE 2. Average of relative errors; bounds

of Section 3

dim

(=1

=2

(=3

{=4

32
64
128
256
512
1024

518 E —1
939FE -1
1L.79E+0
32TE40
511 E+40
1.11E+1

833 E -3
230E -2
240 E -2
425 FE —2
543 E —2
545 E — 2

854 FE —4
1.25 F -3
1.61E -3
4.58 E —3
419E -3
481 E—3

320E -5
3.65 FE —4
641 E -5
715 E—4
8.7TE —4
7T42FE —4

of the eigenvalue approximation of the previous step was alréady. We postpone the
discussion of a stable version of the projection methods in Sections 2 and 3 to a forthcoming
paper.

Example To test the bounds we considered the following class of Toeplitz matrices

T'=m Z Mk 2ro,
k=1

(4.3)

wherem is chosen such that the diagonal Bfis normalized toty = 1, Tp = (T3;)
(cos(8(i—7))), andn, anddy, are uniformly distributed random numbers in the intefoal ]
(cf. Cybenko and Van Loan [2]).

Table 1 contains the average of the relative errors of the bounds of Section 2 in 100 test
problems for each of the dimensions= 32, 64, 128, 256, 512 and1024. Table 2 shows
the corresponding results for the bounds of Section 3. In both tables the first two columns
contain the relative errors of the bounds given by Melman. The experiments clearly show
that exploiting symmetry of the principal eigenvector leads to significant improvements of
the bounds.

The mean values of the relative errors do not reflect the quality of the bounds. Large
bounds are taken into account with a much larger weight than small ones. To demonstrate
the average number of correct leading digits of the bounds in Table 3 and Table 4 we present
the mean values of the common logarithms of the relative errors. In parenthesis we added the
standard deviations.

AcknowledgementThanks are due to Wolfgang Mackens for stimulating discussions.
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