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BOUNDS FOR THE MINIMUM EIGENVALUE OF A SYMMETRIC TOEPLITZ
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Abstract. In a recent paper Melman [12] derived upper bounds for the smallest eigenvalue of a real symmetric
Toeplitz matrix in terms of the smallest roots of rational and polynomial approximations of the secular equation
f(λ) = 0, the best of which being constructed by the(1, 2)-Padé approximation off . In this paper we prove that
this bound is the smallest eigenvalue of the projection of the given eigenvalue problem onto a Krylov space ofT−1

n

of dimension 3. This interpretation of the bound suggests enhanced bounds of increasing accuracy. They can be
substantially improved further by exploiting symmetry properties of the principal eigenvector ofTn.
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1. Introduction. The problem of finding the smallest eigenvalue of a real symmetric,
positive definite Toeplitz matrix (RSPDT) is of considerable interest in signal processing.
Given the covariance sequence of the observed data, Pisarenko [14] suggested a method
which determines the sinusoidal frequencies from the eigenvector of the covariance matrix
associated with its minimum eigenvalue.

The computation of the minimum eigenvalueλ1 of an RSPDTTn was considered in,
e.g. [2], [7], [8], [9], [10], [11], [13], [16]. Cybenko and Van Loan [2] presented an algorithm
which is a combination of bisection and Newton’s method for the secular equation. By replac-
ing Newton’s method with a root finding method based on rational Hermitian interpolation of
the secular equation, Mackens and the present author in [10] improved this approach substan-
tially. In [11] it was shown that the algorithm from [10] is equivalent to a projection method
where in every step the eigenvalue problem is projected onto a two-dimensional space. This
interpretation suggested a further enhancement to the method of Cybenko and Van Loan. Fi-
nally, by exploiting symmetry properties of the principal eigenvector, the methods in [10] and
[11] were accelerated in [16].

If the bisection scheme in a method of the last paragraph is started with a poor upper
bound forλ1, a large number of bisection steps may be necessary to get a suitable initial
value for the subsequent root finding method. Usually the bisection phase dominates the
computational cost. The number of bisections can be reduced when a good upper bound
for λ1 is used. Cybenko and Van Loan [2] presented an upper bound forλ1 which can
be obtained from the data determined in Durbin’s algorithm for the Yule-Walker system.
Dembo [3] derived tighter bounds by using (linear and quadratic) Taylor expansions of the
secular equation. In a recent paper Melman [12] improved these bounds in two ways, first
by considering rational approximations of the secular equation and, secondly, by exploiting
symmetry properties of the principal eigenvector in a similar way as in [16]. Apparently,
because of the somewhat complicated nature of their analysis, he restricted his investigations
to rational approximations of at most third order.

In this paper we prove that Melman’s bounds obtained by first and third order rational
approximations can be interpreted as the smallest eigenvalues of projected problems of di-
mension 2 and 3, respectively, where the matrixTn is projected onto a Krylov space ofT−1

n .
This interpretation again proves the fact that the smallest roots of the approximating rational
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functions are upper bounds of the smallest eigenvalue, avoiding the somewhat complicated
analysis of the rational functions. Moreover, it suggests a method to obtain improved bounds
in a systematic way by increasing the dimension of the Krylov space.

The paper is organized as follows. In Section 2 we briefly sketch the approaches of
Dembo and Melman and prove that Melman’s bounds can be obtained from a projected eigen-
problem. In Section 3 we consider secular equations characterizing the smallest odd and even
eigenvalue ofTn and take advantage of symmetry properties of the principal eigenvector to
improve the eigenvalue bounds. Finally, in Section 4 we present numerical results.

2. Rational approximation and projection. Let

Tn = (t|i−j|)i,j=1,...,n ∈ R
(n,n)

be a real and symmetric Toeplitz matrix. We denote byTj ∈ R
(j,j) its j-th principal subma-

trix, and byt the vectort = (t1, . . . , tn−1)T . If λ
(j)
1 ≤ λ

(j)
2 ≤ . . . ≤ λ

(j)
j are the eigenvalues

of Tj then the interlacing propertyλ(k)
j−1 ≤ λ

(k−1)
j−1 ≤ λ

(k)
j , 2 ≤ j ≤ k ≤ n, holds.

We briefly sketch the approaches of Dembo and Melman. To this end we additionally
assume thatTn is positive definite. Ifλ is not in the spectrum ofTn−1 then block Gauss
elimination of the variablesx2, . . . , xn of the system

(
t0 − λ tT

t Tn−1 − λI

)
x = 0

that characterizes the eigenvalues ofTn yields

(t0 − λ − tT (Tn−1 − λI)−1t)x1 = 0.

We assume thatλ(n)
1 < λ

(n−1)
1 . Thenx1 6= 0, andλ

(n)
1 is the smallest positive root of the

secular equation

f(λ) := −t0 + λ + tT (Tn−1 − λI)−1t = 0,(2.1)

which may be rewritten in modal coordinates as

f(λ) = −t0 + λ +
n−1∑
j=1

(tT vj)2

λ
(n−1)
j − λ

= 0,(2.2)

wherevj denotes the eigenvector ofTn−1 corresponding toλ(n−1)
j

From

f(0) = −t0 + tT T−1
n−1t = −(1,−tT T−1

n−1)
(

t0 tT

t Tn−1
)
) (

1
−T−1

n−1t

)
< 0

andf (j)(λ) > 0 for every j ∈ IN and everyλ ∈ [0, λ
(n−1)
1 ), it follows that the Taylor

polynomialpj of degreej such thatf (k)(0) = p
(k)
j (0), k = 0, 1, . . . , j, satisfies

f(λ) ≥ pj(λ) for everyλ < λ
(n−1)
1 and pj(λ) ≤ pj+1(λ) for everyλ ≥ 0.

Hence, the smallest positive rootµj of pj is an upper bound ofλ(n)
1 andµj+1 ≤ µj . For

j = 1 andj = 2 these upper bounds were presented by Dembo [3]. Forj = 3 these results
are discussed by Melman [12].
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Improved bounds were obtained by Melman [12] by approximating the secular equation
by rational functions. The idea of a rational approximation of the secular equation is not new.
Dongarra and Sorensen [4] used it in a parallel divide and conquer method for symmetric
eigenvalue problems, while in [10] it was used in an algorithm for computing the smallest
eigenvalue of a Toeplitz matrix.

Melman considered rational approximations

rj(λ) = −t0 + λ + ρj(λ)

of f where

ρ1(λ) :=
a

b − λ
, ρ2(λ) := a +

b

c − λ
, ρ3(λ) :=

a

b − λ
+

c

d − λ
,

and the parametersa, b, c, d are determined such that

ρ
(k)
j (0) =

dk

dλk
tT (Tn−1 − λI)−1t

∣∣∣
λ=0

= k! tT T
−(k+1)
n−1 t, k = 0, 1, . . . , j.(2.3)

Thusρ1, ρ2 andρ3, respectively, are the(0, 1)-, (1, 1)- and(1, 2)-Padé approximations of
φ(λ) := tT (Tn−1 − λI)−1t (cf. Braess [1])

For the rational approximationsrj it holds that (cf. Melman [12], Theorem 4.1)

r1(λ) ≤ r2(λ) ≤ r3(λ) ≤ f(λ) for λ < λ
(n−1)
1 ,

and with the arguments from Melman one can infer that forj = 2 andj = 3 the inequality
rj−1(λ) ≤ rj(λ) even holds for everyλ less than the smallest pole ofrj . Hence, ifµj denotes
the smallest positive root ofrj(λ) = 0 then

λ
(n)
1 ≤ µ3 ≤ µ2 ≤ µ1.

The rational approximationsr1(λ) andr3(λ) tof(λ) are of the form of a secular equation
of an eigenvalue problem of dimensions2 and3, respectively. Hence, there is some evidence
that the roots ofr1 andr3 are eigenvalues of projected eigenproblems. In the following we
prove that this conjecture actually holds true. Notice that our approach does not presume that
the matrixTn is positive definite.

LEMMA 2.1. Let Tn be a real symmetric Toeplitz matrix such that0 is not in the
spectrum ofTn and Tn−1. Let e1 := (1, 0, . . . , 0)T ∈ R

n , and denote byV` :=
span{e1, T−1

n e1, . . . , T−`
n e1} the Krylov space ofT−1

n corresponding to the initial vector
e1. Then {

e1,

(
0

T−1
n−1t

)
, . . . ,

(
0

T−`
n−1t

)}
(2.4)

is a basis ofV`, and the projected eigenproblem ofTnx = λx ontoV` can be written as

B̃y :=
(

t0 sT

s B

)
y = λ

(
1 0T

0 C

)
y =: C̃y,(2.5)

where

B =




µ1 . . . µ`

... . . .
...

µ` . . . µ2`−1


 , C =




µ2 . . . µ`+1

... . . .
...

µ`+1 . . . µ2`


 , s =




µ1

...
µ`


 ,
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and where

µj = tT T−j
n−1t.(2.6)

Proof. For` = 0 the lemma is trivial. Since

T−1
n e1 =

(
α
v

)
⇐⇒

{
αt0 + tT v = 1

αt + Tn−1v = 0

for ` = 1 a basis ofV1 is given in (2.4).
Assume that (2.4) defines a basis ofV` for somè ∈ IN, thenT−`

n e1 may be represented
as

T−`
n e1 =

(
β

T−1
n−1z

)
, z =

`−1∑
j=0

γjT
−j
n−1t.

Hence

T−`−1
n e1 = T−1

n

(
β

T−1
n−1z

)
= βT−1

n e1 + T−1
n

(
0

T−1
n−1z

)
=: βT−1

n e1 +
(

δ
w

)
,

where (
t0 tT

t Tn−1

) (
δ
w

)
=

(
0

T−1
n−1z

)
⇐⇒

{
δt0 + tT w = 0

δt + Tn−1w = T−1
n−1z

.

The second equation is equivalent to

w = T−2
n−1z − δT−1

n−1t =
`−1∑
j=0

γjT
−j−2
n−1 t − δT−1

n−1t ∈ span{T−1
n−1t, . . . , T

−`−1
n−1 t},

and (2.4) defines a basis ofV`+1 for ` + 1.
Using the basis ofV` in (2.4) it is easily seen that equation (2.5) is the matrix repre-

sentation of the projection of the eigenvalue problemTnx = λx onto the Krylov spaceV`.

LEMMA 2.2. LetB, C, s, B̃ andC̃ be defined as in Lemma 2.1. Then the eigenvalues of
the projected problem̃By = λC̃y which are not in the spectrum of the subpencilBw = λCw
are the roots of the secular equation

g`(λ) := −t0 + λ + sT (B − λC)−1s.(2.7)

For F := (T−1
n−1t, . . . , T

−`
n−1t) the secular equation can be rewritten as

g`(λ) = −t0 + λ + tT F (FT (Tn−1 − λI)F )−1FT t.(2.8)

Proof. The secular equation in (2.7) is obtained in the same way as the secular equation
f(λ) = 0 of Tnx = λx at the beginning of this section by block Gauss elimination. The
representation (2.8) is obtained fromB = FT Tn−1F , C = FT F ands = FT t.

LEMMA 2.3. LetB, C, s be defined in Lemma 2.1, and let

σ`(λ) = sT (B − λC)−1s.
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Then thek-th derivative ofσ` is given by

σ
(k)
` (λ) = k! tT (F (FT (Tn−1 − λI)F )−1FT )k+1t, k ≥ 0.(2.9)

Proof. Let

G(λ) := (FT (Tn−1 − λI)F )−1.

Then

d

dλ
G(λ) = G(λ)FT FG(λ),(2.10)

yields

σ′
`(λ) = tT FG′(λ)FT t

= tT F (FT (Tn−1 − λI)F )−1FT F (FT (Tn−1 − λI)F )−1FT t

= tT (F (FT (Tn−1 − λI)F )−1FT )2t,

i.e., equation (2.9) fork = 1.
Assume that equation (2.9) holds for somek ∈ IN. Then it follows from equation (2.10)

σ
(k+1)
` (λ) = k! tT

d

dλ
{(F (FT (Tn−1 − λI)F )−1FT )k+1}t

= (k + 1)! tT (F (FT (Tn−1 − λI)F )−1FT )k d

dλ
(F (FT (Tn−1 − λI)F )−1FT )t

= (k + 1)! tT (F (FT (Tn−1 − λI)F )−1FT )kF
d

dλ
G(λ)FT t

= (k + 1)! tT (F (FT (Tn−1 − λI)F )−1FT )kFG(λ)FT FG(λ)FT t

= (k + 1)! tT (F (FT (Tn−1 − λI)F )−1FT )k+2t,

which completes the proof.
LEMMA 2.4. LetF := (T−1

n−1t, . . . , T
−`
n−1t). Then it holds that

(F (FT Tn−1F )−1FT )kt = T−k
n−1t for k = 0, 1, . . . , `,(2.11)

and

tT (F (FT Tn−1F )−1FT )kt = tT T−k
n−1t for k = 0, 1, . . . , 2`.(2.12)

Proof. Fork = 0 the statement(2.11) is trivial. Let

H := F (FT Tn−1F )−1FTn−1.

Then for everyx ∈ spanF , x := Fy, y ∈ R
` ,

Hx = F (FT Tn−1F )−1FT Tn−1Fy = Fy = x,

andT−1
n−1t ∈ spanF yields

F (FT Tn−1F )−1FT t = HT−1
n−1t = T−1

n−1t,
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i.e., equation (2.11) fork = 1.
If equation (2.11) holds for somek < ` then it follows fromT

−(k+1)
n−1 t ∈ spanF that

(F (FT Tn−1F )−1FT )k+1t = (F (FT Tn−1F )−1FT )(F (FT Tn−1F )−1FT )kt

= (F (FT Tn−1F )−1FT )T−k
n−1t

= (F (FT Tn−1F )−1FT )Tn−1T
−(k+1)
n−1 t

= HT
−(k+1)
n−1 t = T

−(k+1)
n−1 t,

which proves equation (2.11).
Equation (2.12) follows immediately from equation (2.11) fork = 0, 1, . . . , `. For ` <

k ≤ 2` it is obtained from

tT (F (FT Tn−1F )−1FT )kt = ((F (FT Tn−1F )−1FT )`t)T ((F (FT Tn−1F )−1FT )k−`t)

= (T−`
n−1t)

T (T−(k−`
n−1 t) = tT T−kt.

We are now ready to prove our main result.
THEOREM 2.5. Let Tn be a real symmetric Toeplitz matrix such thatTn andTn−1 are

nonsingular. Let the matricesB andC be defined in Lemma 2.1, and let

g`(λ) = −t0 + λ + sT (B − λC)−1s =: −t0 + λ + σ`(λ)

be the secular equation of the projected eigenproblem (2.5) considered in Lemma 2.1. Then
σ`(λ) is the(` − 1, `)-Pad́e approximation of the rational function

φ(λ) = tT (Tn−1 − λI)−1t.

Conversely, ifτ`(λ) denotes the(`−1, `)-Pad́e approximation ofφ(λ) andµ
(`)
1 ≤ µ

(`)
2 ≤ . . .

are the roots of the rational functionλ 7→ −t0 + λ + τ`(λ) ordered by magnitude, then

λ
(n)
j ≤ µ

(`+1)
j ≤ µ

(`)
j(2.13)

for every` < n andj ∈ {1, . . . , ` + 1}.
Proof. Using modal coordinates of the pencilBw = λCw the rational functionσ`(λ)

may be rewritten as

σ`(λ) =
∑̀
j=1

β2
j

κj − λ
,

whereκj denotes the eigenvalues of this pencil. Henceσ` is a rational function where the
degree of the numerator and denominator is not greater than` − 1 and`, respectively.

From Lemma 2.3 and Lemma 2.4 it follows that

σ
(k)
` (0) = k! tT (F (FT Tn−1F )−1FT )k+1t = k! tT T

−(k+1)
n−1 t = φ(k)(0)

for everyk = 0, 1, . . . , 2` − 1. Henceσ` is the(` − 1, `)-Padé approximation ofφ.

From the uniqueness of the Pad´e approximation it follows thatτ` = σ`. Henceµ(`)
1 ≤

µ
(`)
2 ≤ . . . are the eigenvalues of the projection of problemTnx = λx ontoV`, and (2.13)

follows from the minimax principle.
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Some remarks are in order:

1. The rational functionsρ1 andρ3 constructed by Melman [12] coincide withσ1 and
σ2, respectively. Hence, Theorem 2.5 contains the bounds of Melman. Moreover it provides
a method to compute these bounds which is much more transparent than the approach of
Melman.

2. Obviously the considerations above apply to every shifted problemTn − κI such that
κ is not in the spectra ofTn andTn−1. Notice that the analysis of Melman [12] is only valid
if κ is a lower bound ofλ(n)

1 .
3. In the same way lower bounds of the maximum eigenvalue ofTn can be determined.

These generalize the corresponding results by Melman [12] where we do not need an upper
bound of the largest eigenvalue ofTn.

3. Exploiting symmetry of the principal eigenvector. If Tn ∈ R
(n,n) is a real and

symmetric Toeplitz matrix andEn denotes then-dimensional flipmatrix with ones in its sec-
ondary diagonal and zeros elsewhere, thenE2

n = I andTn = EnTnEn. HenceTnx = λx if
and only if

Tn(Enx) = EnTnE2
nx = λEnx,

andx is an eigenvector ofTn if and only if Enx is. If λ is a simple eigenvalue ofTn then
from ‖x‖2 = ‖Enx‖2 we obtainx = Enx or x = −Enx. We say that an eigenvectorx
is symmetric and the corresponding eigenvalueλ is even ifx = Enx, andx is called skew-
symmetric andλ is odd ifx = −Enx.

One disadvantage of the projection scheme in Section 2 is that it does not reflect the
symmetry properties of the principal eigenvector. In this section we present a variant which
takes advantage of the symmetry of the eigenvector and which essentially is of equal cost to
the method considered in Section 2.

To take into account the symmetry properties of the eigenvector we eliminate the vari-
ablesx2, . . . , xn−1 from the system

 t0 − λ t̃T tn−1

t̃ Tn−2 − λI En−2t̃
tn−1 t̃T En−2 t0 − λ


x = 0,(3.1)

wheret̃ = (t1, . . . , tn−2)T .
Then every eigenvalueλ of Tn which is not in the spectrum ofTn−2 is an eigenvalue of

the two-dimensional nonlinear eigenvalue problem(
t0 − λ − t̃T (Tn−2 − λI)−1 t̃ tn−1 − t̃T (Tn−2 − λI)−1En−2t̃

tn−1 − t̃T En−2(Tn−2 − λI)−1t̃ t0 − λ − t̃T (Tn−2 − λI)−1 t̃

) (
x1

xn

)
= 0.

Moreover, ifλ is an even eigenvalue ofTn, then(1, 1)T is the corresponding eigenvector of
the nonlinear problem, and ifλ is an odd eigenvalue ofTn then(1,−1)T is the corresponding
eigenvector of the nonlinear problem.

Hence, if the smallest eigenvalueλ
(n)
1 is even, then it is the smallest root of the rational

function

f+(λ) := −t0 − tn−1 + λ + t̃T (Tn−2 − λI)−1(t̃ + En−2 t̃),(3.2)

and ifλ(n)
1 is an odd eigenvalue ofTn then it is the smallest root of

f−(λ) := −t0 + tn−1 + λ + t̃T (Tn−2 − λI)−1(t̃ − En−2t̃).(3.3)
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Analogously to the proofs given in Section 2, we obtain the following results for the odd
and even secular equations.

THEOREM 3.1. Let Tn be a real symmetric Toeplitz matrix such that0 is not in the
spectrum ofTn and ofTn−2. Let t± := t̃ ± En−2t̃, and let

V`± := span
{
e±, T−1

n e±, . . . , T−`
n e±

}

be the Krylov space ofT−1
n corresponding to the initial vectore± := (1, . . . ,±1)T . Then


e±,


 0

T−1
n−2t±

0


 , . . . ,


 0

T−`
n−2t±

0







is a basis ofV`±.
The projection of the eigenproblemTnx = λx ontoV`± can be written as

B̃±y :=
(

t0 ± tn−1 sT
±

s± B±

)
y = λ

(
1 0T

0 C±

)
y =: C̃±y,(3.4)

where

B± =




ν±
1 . . . ν±

`
... . . .

...
ν±

` . . . ν±
2`−1


 , C± =




ν±
2 . . . ν±

`+1
... . . .

...
ν±

`+1 . . . ν±
2`


 , s± =




ν±
1
...

ν±
`


 ,(3.5)

and where

ν±
j = 0.5t̃T±T−j

n−2t̃± = (t̃ ± En−2t̃)T T−j
n−2t̃.(3.6)

The eigenvalues of the projected problem (3.4) which are not in the spectrum of the subpencil
B±w = λC±w are the roots of the secular equation

g±(λ) = −t0 ∓ tn−1 + λ + sT
±(B± − λC±)−1s±(3.7)

=: −t0 ± tn−1 + λ + σ`±(λ) = 0.

Here,σ`±(λ) is the(` − 1, `)-Pad́e approximation of the rational function

φ±(λ) := t̃T (Tn−2 − λI)−1(t̃ ± En−2t̃).

Conversely, ifτ`±(λ) denotes the(` − 1, `)-Pad́e approximation ofφ±(λ) and µ
(`)
1± is the

smallest root of the rational function

λ 7→ t0 ± tn−1 − λ + τ`±(λ) = 0,

then

λ
(n)
1 ≤ min(µ(`+1)

1+ , µ
(`+1)
1− ) ≤ min(µ(`)

1+, µ
(`)
1−).

As in the prvious section, for̀ = 1 and` = 2 Theorem 3.1 contains the bounds which
were already presented by Melman [12] using rational approximations of the even and odd
secular equations (3.2) and (3.3).
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4. Numerical results. To establish the projected eigenvalue problem (2.7) one has to
compute expressions of the form

µj = tT T−j
n−1t, j = 1, . . . , 2`.

For ` = 1 the quantitiesµ1 andµ2 are obtained from the solutionz1 of the Yule-Walker
systemTn−1z

1 = −t which can be solved efficiently by Durbin’s algorithm (see [6], p. 195)
requiring2n2 flops. Oncez1 is knownµ1 = tT z1 andµ2 = ‖z1‖2

2.
To increase the dimension of the projected problem by one we have to solve the linear

system

Tn−1z
`+1 = z`,(4.1)

and we have to compute two scalar productsµ2`+1 = (z`+1)T z` andµ2`+2 = ‖z`+1‖2
2.

System (4.1) can be solved efficiently in one of the following two ways. Durbin’s al-
gorithm for the Yule-Walker system supplies a decompositionLTn−1L

T = D whereL is
a lower triangular matrix andD is a diagonal matrix. Hence, for every` the solution of
equation (4.1) requires2n2 flops. This method for (4.1) is called Levinson-Durbin algorithm.

For large dimensionsn equation (4.1) can be solved using the Gohberg-Semencul for-
mula for the inverseT−1

n−1 (cf. [5])

T−1
n−1 =

1
1 − yT t(1 : n − 2)

(GGT − HHT ),(4.2)

where

G :=




1 0 0 . . . 0
y1 1 0 . . . 0
y2 y1 1 . . . 0
...

...
...

.. .
...

yn−2 yn−3 yn−4 . . . 1




andH :=




0 0 0 . . . 0
yn−2 0 0 . . . 0
yn−3 yn−2 0 . . . 0

...
...

...
. . .

...
y1 y2 y3 . . . 0




are Toeplitz matrices andy denotes the solution of the Yule-Walker systemTn−2y = t(1 :
n − 2).

The advantages associated with equation (4.2) are at hand. Firstly, the representation
of the inverse ofTn−1 requires onlyn storage elements. Secondly, the matricesG, GT ,
H andHT are Toeplitz matrices, and hence the solutionTn−1z

` can be calculated in only
O(n log n) flops using fast Fourier transform. Experiments show that whenn ≥ 512 this
approach is actually more efficient than the Levinson-Durbin algorithm.

In the method of Section 3 we also have to solve a Yule-Walker systemTn−2z
1 = t̃ by

Durbin’s algorithm, and increasing the dimension of the projected problem by one we have
to solve one general systemTn−2z

`+1 = z` using the Levinson-Durbin algorithm or the
Gohberg-Semencul formula. Moreover, two vector additionsz`+1 ± En−2z

`+1 and4 scalar
products have to be determined, and 2 eigenvalue problems of very small dimensions have to
be solved. To summarize, again2n2 + O(n) flops are required to increase the dimension of
the projected problem by one.

If the gap between the smallest eigenvalueλ
(n)
1 and the second eigenvalueλ

(n)
2 is large,

the sequence of vectors

(
1
z`

)
converges very fast to the principal eigenvector ofTn, and

the matrixC becomes nearly singular. In three of 600 examples that we considered the matrix
C even became (numerically) indefinite. However, in all of these examples the relative error
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TABLE 1. Average of relative errors; bounds of Section 2

dim ` = 1 ` = 2 ` = 3 ` = 4
32 1.05 E + 0 4.29 E − 2 8.38 E − 3 1.82 E − 3
64 1.64 E + 0 6.41 E − 2 1.38 E − 2 4.20 E − 3

128 2.76 E + 0 7.60 E − 2 1.88 E − 2 5.09 E − 3
256 5.03 E + 0 9.25 E − 2 1.78 E − 2 6.20 E − 3
512 7.51 E + 0 1.10 E − 1 2.47 E − 2 6.80 E − 3

1024 1.65 E + 1 1.05 E − 1 2.43 E − 2 6.60 E − 3

TABLE 2. Average of relative errors; bounds of Section 3

dim ` = 1 ` = 2 ` = 3 ` = 4
32 5.18 E − 1 8.33 E − 3 8.54 E − 4 3.20 E − 5
64 9.39 E − 1 2.30 E − 2 1.25 E − 3 3.65 E − 4

128 1.79 E + 0 2.40 E − 2 1.61 E − 3 6.41 E − 5
256 3.27 E + 0 4.25 E − 2 4.58 E − 3 7.15 E − 4
512 5.11 E + 0 5.43 E − 2 4.19 E − 3 8.77 E − 4

1024 1.11 E + 1 5.45 E − 2 4.81 E − 3 7.42 E − 4

of the eigenvalue approximation of the previous step was already10−8. We postpone the
discussion of a stable version of the projection methods in Sections 2 and 3 to a forthcoming
paper.

ExampleTo test the bounds we considered the following class of Toeplitz matrices

T = m

n∑
k=1

ηkT2πθk
(4.3)

wherem is chosen such that the diagonal ofT is normalized tot0 = 1, Tθ = (Tij) =
(cos(θ(i− j))), andηk andθk are uniformly distributed random numbers in the interval[0, 1]
(cf. Cybenko and Van Loan [2]).

Table 1 contains the average of the relative errors of the bounds of Section 2 in 100 test
problems for each of the dimensionsn = 32, 64, 128, 256, 512 and1024. Table 2 shows
the corresponding results for the bounds of Section 3. In both tables the first two columns
contain the relative errors of the bounds given by Melman. The experiments clearly show
that exploiting symmetry of the principal eigenvector leads to significant improvements of
the bounds.

The mean values of the relative errors do not reflect the quality of the bounds. Large
bounds are taken into account with a much larger weight than small ones. To demonstrate
the average number of correct leading digits of the bounds in Table 3 and Table 4 we present
the mean values of the common logarithms of the relative errors. In parenthesis we added the
standard deviations.
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