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ON A POSTERIORI ERROR ESTIMATORS
IN THE FINITE ELEMENT METHOD
ON ANISOTROPIC MESHES *

MANFRED DOBROWOLSKI, STEFFEN GRF f, AND CHRISTOPH PFLAUM

Abstract. On anisotropic finite element meshes, the standard residual based error indicator is derived and it
is proved that it is not efficient if the aspect ratio deteriorates. For a nonlocal error indicator it is proved that it is
reliable and efficient independent of the aspect ratio. This is also confirmed by some numerical calculations.
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1. Formulation of the problem. LetQ C IR? be a bounded polygonal domain. Con-
sider Poisson’s equation

(1.1) —Au=f inQ, uw=0 onoM.

For approximating problem (1.1) we use the standard conforming finite element method on
an anisotropic triangulatioll = {A} which is defined by the following conditions:

a) The intersection of two triangles is void or coincides with a common side
or vertex.
b) The interior angles of the triangles are bounded from above ky.

(1.2) c¢) LetU(A) denote the union of the triangles adjacenitdt is assumed
that eacH/(A) can be rotated such that it can be represented as the im-
age of an isotropic reference configuratﬁ(l[\) of size O(1) under the
mappingz; = h;;.

The last condition ensures that the direction of the anisotropic mesh does not change too
rapidly. Since condition (1.2b) guarantees that in the anisotropic case two of the sidaseof
long and nearly perpendicular to the small side, there exists a local orthogonal coordinate sys-
tem(er, ea) = (e1(A),e2(A)) wheree; can be chosen to be the direction of one of the larger
sides. Similarly, the long and short local step sizes are denot@d biz) = (h1(A), ha(A)).
The sets of long and small sides are denoteflogndI’,, respectively.

For k = 1,2 we define the standard finite element spaces consisting of continuous and
piecewise linear or quadratic shape functions,

Sy ={veC(Q):v|xy € P,forall A € Mandv|sg =0} .

Denoting by}, : C°(Q) N Hy?(Q) — S the standard interpolation operators we obtain
from Theorem 2 in [1] the estimates

(1.3) ||Dy (u — Ipu)||a.a < chyt Z h||D%ul|2;a,
|a|=k+1
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1.4 1D (w = Txw)lfan < ¢ Y h*([D* Dul|aa,
la|=k

whereD; = ;2 andh® = h{h3>.

The finite element approximatid,u € Sy, is defined by
(1.5) (DPyu, Dv) = (f,v) Vv € Sk.

We are interested in a posteriori estimates for the ereoru — P u by local error indicators
na satisfying

(1.6) my||Del|* = T(h, f) <> ni < ma||Del|* + T(h, f),
A

whereT'(h, f) is usually a small term depending grand converging t@ for h — 0.

For earlier work on a posteriori error estimators on isotropic meshes we refer tel@abu”
and Rheinboldt [2] and to the survey Verfti [10]. Of special interest are the residual based
indicator of Verfirth [9] and the indicators of Bank and Weiser [4]. The crucial point of
anisotropic a posteriori estimating is the fact that all classical estimators deteriorate if the
aspect ratioce(A) = hy(A)/h2(A) tends to infinity. Siebert [8] solves this problem by lo-
cally balancing the directional errors avoiding anisotropic overrefinement. On the other hand,
overrefinement occurs in elliptic systems where one equation is singularly perturbed and the
others are not.

The outline of the paper is as follows. In section 2, we show that the standard error
estimator based on the residual does not satisfy (1.6) with constanta, independent of
the aspect ratia. Section 3 is devoted to the study of a nonlocal error estimator inspired
by the third indicator of Bank and Weiser [4]. Despite the fact that the estimator is nonlo-
cal, it is proved that it can be computed economically on isotropic and anisotropic meshes.
On anisotropic meshes, the estimator shows a significant propagation of local errors along
the small mesh direction,, which clearly indicates that local a posteriori error estimation
is impossible as long as the standard ngf - || is used. Some numerical computations
demonstrate that the nonlocal indicator behaves exactly as predicted by the theory.

2. An error estimator based on local residuals.By R; : H&’z — S; we denote
the local approximation operator constructed by Scott and Zhang [7] which satisfies, on an
isotropic mesh with mesh parametet 1,

2.1) llo = Ruol[§ < ellDollf, 4,5

(2.2) [l = Ryol[2 < cll Doll2

WhereU(f) consists of the union of the triangles adjacenttén view of condition (1.2) c)
we can transform (2.1) , (2.2) by = h;Z; and obtain

(2.3) [lo = Riol} < e {B Dol a) + B3lIDsvl ) }

@4 o= Rt < chy* {RIDwI ) + BID0l o ), TeT,

25) v Ruolfk <chi {R2IDwlif ) + B3lIDa0ly |, T €T,
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Using the orthogonality relatiofDe, Dv) = 0 for all v € S; and integration by parts, it
follows that

||De||> = (De, D(e — Rye))

—Z{/ u)(e — Rye) dz + Dne(e—Rle)da}

oA

= zA:/Af(e—Rle) dm+2F:/F[DnP1U]J(€—R1€) do

where[D,,v]; denotes the "jump” of the normal derivatiy®,v acrosd". The right hand side
can be bounded by Cauchy’s inequality, and (2.3) - (2.5) which gives

1/2
1Dell? < ¢S 1111a { B2 lIDrelln) + B3l Daelifin }
A

B 1/2
e S NDa Pl {hs B2 Diel B, + bl Daclr
r

_ 1/2
+e 3 IDuPrallle {mllDrel ) + b7 B3l Dellfry b

rs

In view of the fact that; > h, we have found the a posteriori bound

(2.6) ||De|l? <02h2||f||A+CZh EN|[DnPralslf + ¢y b |l[DnPrulsl

I s

with local mesh sizes;(A). Denoting byI'(A) the set of the sides of we define the local
estimatom, by

(2.7) = Y h'BDuPulslf+ Y ll[DePrulsl
rNT(A) T',NT(A)

Though the right hand side definitely deterioratesfigr<< h;, one can argue that the
corresponding jumpD,, P, u] ; becomes smaller in this case. But in the sequel, we will prove
that) ", n* leads to an arbitrarily large overestimation of the true ejfbe||? if the aspect
ratio tends to infinity.

As an example, we consider the orthogonal subdivision of the unit square with mesh
sizeshi, ho, hi = ahs,a > 1. In order to transform this mesh to an isotropic mesh we use
T2 = ais, 1 = 1 and get the operator

— 2 22
Lu = —Diu —a“D3su

on the rectanglf, 1] x (0, a). Denoting byS? the space of continuous and piecewise bilinear
functions satisfying &—boundary condition the finite element method is defined by

(2.8) (D1 Pyu, Dyv) + a*(D2Piu, Dyv) = (f,v) VYo € S{’.

LetI'; be the set of edges with directiep i = 1, 2. By a similar analysis as before we obtain
for the errore = u — Py u,

||D1€||2 + (l2||D2€||2 = Z/ Lu(e - Rle) dx + Z/[DlPlu]J(e - Rle) d.’L’Q
A JA r
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+a? Z / [D2Piu]s(e — Re) dxy
r
I'y

< ch Y || fllallDellra) + b [[[D1Prulyl || Dellur
A s

+ca’h'/? " [|[DyPyuls|Ir ]| Delly(r-
Iy

By Young's inequality it follows thata > 1)

[Drel? + a®[|Dael|” < h|| £I[§ +ch Y NIDvPralglp + ca'h )y I[D2Prulg|ff.
Fz F1

The local error indicator is now defined by

(2.9) i =a'h Y ||[D:Pulsllf +h Y |I[DiPrulglf?.
T NT(A) T2NT(A)

We remark that we obtain the same error indicator by simply transforming (2.6) uising
i’1,1'2 = G/i’z,h = hl = ahZ;

1Del[? = a=" (|| Drel” + a®[| Dael[?) ,
e [y [

Y byt WD Pl = Y a*hl|[DaPrulylff,
Fl 1—‘1

> ml[[DnPrilsllf = > a ' B||[Dy Pruly [}
s s

LEmMA 2.1. For the finite element approximatidd u in (2.8) we have the error esti-
mate

ID1el? + a||Dael” < ca®h?|[Du] 2.

Proof. From the interpolation estimates (1.3), (1.4) it follows that

||D16||2 + a2||D26||2 = (Die,Dy(u — Liu)) + a2(D26,D2(u — Lu))

IN

1 a?
L IDsel2 + S IDel + cah D2ul

Let D3 be the forward finite difference operator approximating i.e.
N 1
Dv(z) = E(v(m + hes) — v(x)).

LEmMMA 2.2. For the finite element approximatidd » in (2.8) we have the estimate

|1D3 Diel[g, + a*||Dy Daelll, < ca®hllull3
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for everyQy CC Q, e > 0,and0 < h < ho(Qo).
Proof. Since the subdivision is uniform we have

(2.10) (Di Die, D1v) + a* (D3 Dse, Dov) =0

for all v € S? with dist (supp (v),d) > 2h. LetQy CC Q; CC Q be domains that
are sufficiently far away fromd2, let 7 be a cut—off function with respect 82,4 }, i.e.
7 € C5°() with 7 = 1in Q. For 7 we have the estimaté®*r| < ¢, k = 1,2, with a
constant ¢ depending diy, 2. Using (2.10) we obtain that

/ {|DS Die|?® + a®|DF Dae|’} dx < / 7{|D3 D1e|® + a®|DF Dae|*} dx
Qo Q

= (D3 Dye, Dy (DS er —v))
+a® (D3 Dye, Dy(Dy et — v))
—(Df Die, Df eD11) — a*>(D3 Dse, Df eD>1).
We choose = I, (D5 er) and obtain from (1.3), (1.4) that
103 Diellg, + a’||D3 Dael[g, < chl|Dy Diellg, [[D*(D3 er)|la,
(2.11) +ca’h||DF Dael|o, ||D* (D3 eT)||a,
(2.12) +c||Dy Diella, ||Dy elle,
+a?||Dy Dael|o, || D3 ella, -
Let ), be a slightly larger domain thdm, , such that
ID3 elle, < |Dzellg,
(see [6] p.161). By Lemma 2.1, this term can then be bounded by
(2.13) ID3 elle, < chllullz,z.
Moreover, we have the simple inequality
1D*(D3 er)lle, < |ID*Dy ulla, + ¢l[DDFello, + c||Dy ello, -

Applying the interpolation estimates (1.3), (1.4) and the usual inverse inequality to the second
term on the right hand side of the last expression, we obtain

IDD5 elle, < 1I1DD3 (u — Liu)lle, + [|DDy (Liu — Pyu)|le,
(2.14) < chl|ulla,2 + ch™H|DF (hiu — w)||o, + ch | DS (u — Piu)||o,
< cllullz,2,
from which it follows that
1D?(D3 er)lly < cllulls2.
Inserting the last inequality and (2.13), (2.14) into (2.11), we obtain

(2.15) 1D Drel[y, + a®||D3 Daellgy, < ch||D3 Diella, |[ulls 2

+ca”h||Dy Daellg, [ulls.2-
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In view of the property thall D; D e||o, = ||D3 Djel|a, for j = 1,2 and (2.14) we have
103 Djello, < cllull22 < cllulls2
which leads to
1D3 Dielly, + a®||D3 Daelld, < chllullf , + ca®hllull3 5 < ca®hl[ul[3 ,.

O

Remark:Note that one can get a better estimation than stated in the Lemma by iterating
(2.15) for a sequence of domaifis CC @y CC ...Q; CC .... Arguing in this way we
would get the inequality

|1D3 Drell, + a®[| D3 Daell, < ca®h®“[lull; -

forall e > 0.
Now let A be a square with upper neighboring squar@nd common sid€. Forv € Sh
we have

1
/ |DF Dov|? daydas = ﬁ/ |Dav(z + hes) — Dov(x)|? doydxs.
A A
In view of the fact thatD,v depends only on the variahie we get
1
1DF Davllg = [ (Doof d.
r

Let 2y CC Q be a fixed domain. Denoting the set of sideg)}gfin directione; by I'y we
obtain from Lemma 2.2 that

(2.16)  ha'y_[I[D:Pruly|lf > a*h?||DF DaPrulff,
I'o

Y%

1
5@ W [|D3 Doull, — a*h*|| D3 Daellf,,

v

1
5@ W (1D3 Doullg, — ca’h¥|[ulf3 si0-
Choosing a smooth functianwhich behaves likein z, in g such that

|D5 Daulla, > c1,  ||ullzzi0 < e,
with constantg;, co > 0, then (2.16) shows, that férsufficiently small
1
ha' Z |[[D2Pru) 5|3 > Za‘lhzc%.
T'o

From Lemma 2.1 we conclude that the error estimator gives an overestimation withafactor
for functions of this type.

3. Anonlocal error indicator. In this section we return to Poisson’s equation (1.1) and
its finite element approximation (1.5). Recall thatk = 1, 2, are the standard interpolation
operators into the spacés, and define the space

SOZ{UESQC I1U:0},
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which means that the elements$ff vanish in the nodal points of the triangulation.

The nonlocal version of the third error indicator of Bank—Weiser [4] is giveﬁebygo
such that

(3.1) (D é,Dv) = (De, Dv) Vv e S°.
In view of
(De, Dv) = (f,v) — (DPyu, Dv)

the right-hand side of (3.1) is known#; u is known.

Let us compare with the original third indicator of [4] which also gives some insight
into error propagation on anisotropic meshes. 4 be the discontinuous version §f, i.e. S
consists of all piecewise quadratic functions vanishing in the nodal points of the triangulation.
The indicatoi € S is then defined by

(3.2) (Dé, Dv)y = Fa(v) Yv € S,

where

Fy(v) = (f,v)a + % Z F[Dn-PlU]J[U]A do,
Ier(A)

and whergu] 4 is the average of on the neighboring triangles @f. Summing (3.2) oveA
and using integration by parts yield

> (Dé,Dv)y = > (De,Dv)y — Y /F [Dne]slv]a Yo e S.
r

A A

Comparing this with (3.1) shows thats the continuous and nonlocal counterpag.dfor the
actual computation of, a3 x 3 linear system has to be solved on each triargie contrast

to the large system required for the computatiornoa af On the other hand, a complicated
computation using the symbolic program "mathematica” shows that the system corresponding
to (3.1) is strictly diagonally dominant if the largest interior angle is bounded ky7 . Let
0 < 8 < a < 7. Since the triangles with interior angles betwe®anda are compactly
parametrized we obtain that the system in (3.1) is uniformly strictly diagonally dominant
in this class of triangles and can efficiently be solved by the simple Gau3—Seidel method.
Furthermore, we conclude that local errors decrease exponentially on such meshes. This is
the reason why local error estimation is possible. For isotropic triangles with angles bounded
by a < 7 the reasoning is similar. Since local error estimation is also possible in this case,
we conclude that the system in (3.1) must be strictly dominant “in the mean” and can again
be solved by the Gaul3—Seidel method.

Now we turn to the anisotropic case and consider the orthogonal mesh with parameters
hs << hy shown in Fig. 1. The entries of the matrix in (3.1) can be represented by stencils.
For the midpoints of the larger sides we obtain

0 -1 0 L
S=10 20 +0<h—2>,
0 -1 0 L

whereas the entries of the stencil for the shorter sides are of the type
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FIG. 3.1.An anisotropic mesh.

Thus, local errors propagate in the direction of the small sides with a stencil approximating
—h3D? . Since the indicatot is reliable and efficient in this case, we believe that local error
estimation is inherently inaccurate on anisotropic meshes.

On the anisotropic mesh shown in Fig. 1, the indicatoan efficiently be determined
with the aid of a Block—Gaul—Seidel method since there is nearly no coupling normal to the
smaller sides. On general anisotropic meshes, we use a mesh—dependent Block—Gaul3—Seidel
method where points coupled by smaller sides are updated simultaneously.

Since the local error indicator is equivalent to the residual based indicator on anisotropic
meshes, the counterexample given in section 2 can also be applied. It remains to prove that
the nonlocal indicator is reliable and efficient. We start with a preparatory result.

LEMMA 3.1.There is a constanf, depending only on the angdein condition (1.2) b),
but not on the shape of the trianglesuch that

IDIw||s < col|Dv|ls Vv € So.

Proof. On isotropic triangles, this estimate can simply be proved by using a reference
element and transforming the corresponding estimate ta the anisotropic case, our proof
requires some notations, but is simpler and showsdhat 1 for moderatex. Let Py, P», P;
be the nodes af numbered counterclockwise. The edge opposite tis denoted by; with
midpointa;. The derivative in directiom; is denoted byD;. Forw € IP,(A) we have

(33) Diw(as) = |—1| (W(Pi1) — w(Pi 1)),
)
(3.4) /Aw(x) dx = —5 ;w(az)

Assuming thafey, e5) is a pair of a larger and a smaller side we obtain
IDLw|[} < e{lID10v][} + [I1D2Livl[R },

wherec depends on the angte in condition (1.2) b) . Using (3.3), (3.4) and the fact that
D;I v is constant il\, we obtain

IDL][R < en(A) {[D1iv(an)]? + [D2liv(az)]*} < cf|[Dol[3-
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Since the spaces®,S; are locally three dimensional, the strengthened Cauchy-
inequality

(3.5) (Dv, Dw) < 4||Dvl| [|Dw|| Vv € Sy, Yw € S°

holds.
Furthermore, a well-known saturation assumption is required, namely

(3.6) |D(u = Pou)|| < B(h)||De]|

with 3(h) — 0 for h — 0. This condition is satisfied on arbitrary anisotropic meshes inde-
pendent of the aspect ratio if the solutiors sufficiently regular or the mesh is appropriately
refined (see (1.3), (1.4)).

THEOREM 3.2. With 3 in (3.6),v in (3.5) andcy in Lemma 3.1 we have

1-p

Del|| < ||D e || < ||Del].
1+’Y¢0|| | <D e || < ||Del|

Proof. We inserty =¢ in (3.1) and we obtain
ID € |]* = (De,D ¢) < ||Del| ||D €],
which proves the bound from above. From the definitio®of it follows that
(D(Pyu — Piu),Dv) =0 Vv € Sy,
and hence
[|D(Pyu — P1u)||2 = (D(Pyu — Piu), D(Pou — Piu — I (Pou — Pyu))
= (D é,D(Pyu — Piu)) — (D ¢, DI, (Pyu — Piu))
<|[ID € || |ID(Pyu — Pru)|| +4||D € || || DIy (Pyu — Pyu)|
< (1+7¢)[ID & || ID(Pou — Pru))|.
From the resulting estimate
ID(Pau = Pru)|| < (1 +7¢o)||D €]

it follows that

|| De|| < [|D(u = Pow)|| +|[D(Pyu — Pru)

|
< B()||Dell + (1 + yeo)||D €.

O

We conclude this section by presenting some numerical results for the anisotropic mesh
in Fig. 1. We use a slight modification @f which is well suited for use with multilevel
methods. Instead o, the space of continuous, piecewise linear functions on the refined
mesh is used. The spa6& then consists of all piecewise linear functions on the refined mesh
vanishing on the nodal points of the actual mesh. Naw the first iterate of a hierarchical
multilevel method. If the mesh is globally refined in the next step no computing time is
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wasted. The disadvantage of this method is that we can only efipec} in condition (3.6)
in contrast to3(h) ~ h when using the spacg,. On the other hand, the proof of Theorem
3.2 remains valid in this new setting.

Consider—Au = 10 in Q = (0,1)2. Denoting byh the length of the larger sides and
denoting bya the aspect ratio of the triangles we obtain the following results:

h=1=18 h=1 =16

a=1 4 8 a=1 4 8

IID €| | 0.2072 | 0.1769 | 0.1758 | 0.1234 | 0.0883 | 0.0877

||De|| | 0.4122 | 0.2876 | 0.2337 | 0.2072 | 0.1384 | 0.1144

From Theorem 3.2 we expect that

1-8 1
1+vc 2

Hence, the theory is exactly confirmed by the numerical results stated above. Furthermore,
there is no dependence of the error indicator on the aspectratio
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