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ON A POSTERIORI ERROR ESTIMATORS
IN THE FINITE ELEMENT METHOD

ON ANISOTROPIC MESHES�

MANFRED DOBROWOLSKIy, STEFFEN GR̈AF z, AND CHRISTOPH PFLAUMx

Abstract. On anisotropic finite element meshes, the standard residual based error indicator is derived and it
is proved that it is not efficient if the aspect ratio deteriorates. For a nonlocal error indicator it is proved that it is
reliable and efficient independent of the aspect ratio. This is also confirmed by some numerical calculations.
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1. Formulation of the problem. Let 
 � IR2 be a bounded polygonal domain. Con-
sider Poisson’s equation

��u = f in 
; u = 0 on@
:(1.1)

For approximating problem (1.1) we use the standard conforming finite element method on
an anisotropic triangulation� = f�g which is defined by the following conditions:

a) The intersection of two triangles is void or coincides with a common side
or vertex.

b) The interior angles of the triangles are bounded from above by� < �:
c) Let U(�) denote the union of the triangles adjacent to�: It is assumed

that eachU(�) can be rotated such that it can be represented as the im-
age of an isotropic reference configurationÛ(�̂) of size O(1) under the
mappingxi = hix̂i.

(1.2)

The last condition ensures that the direction of the anisotropic mesh does not change too
rapidly. Since condition (1.2b) guarantees that in the anisotropic case two of the sides of� are
long and nearly perpendicular to the small side, there exists a local orthogonal coordinate sys-
tem(e1; e2) = (e1(�); e2(�)) wheree1 can be chosen to be the direction of one of the larger
sides. Similarly, the long and short local step sizes are denoted by(h1; h2) = (h1(�); h2(�)):
The sets of long and small sides are denoted by�l and�s; respectively.

For k = 1; 2 we define the standard finite element spaces consisting of continuous and
piecewise linear or quadratic shape functions,

Sk =
�
v 2 C(
) : vj� 2 IPk for all � 2 � andvj@
 = 0

	
:

Denoting byIk : C0(
) \ H1;2
0 (
) ! Sk the standard interpolation operators we obtain

from Theorem 2 in [1] the estimates

jjD1(u� Iku)jj2;� � ch�11

X
j�j=k+1

h�jjD�ujj2;�;(1.3)
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jjD2(u� Iku)jj2;� � c
X
j�j=k

h�jjD�Dujj2;�;(1.4)

whereDi =
@
@ei

andh� = h�11 h�22 :
The finite element approximationPku 2 Sk is defined by

(DPku;Dv) = (f; v) 8v 2 Sk:(1.5)

We are interested in a posteriori estimates for the errore = u� P1u by local error indicators
�� satisfying

m1jjDejj
2
� T (h; f) �

X
�

�2� � m2jjDejj
2 + T (h; f);(1.6)

whereT (h; f) is usually a small term depending onf and converging to0 for h! 0:
For earlier work on a posteriori error estimators on isotropic meshes we refer to Babu˘ska

and Rheinboldt [2] and to the survey Verf¨urth [10]. Of special interest are the residual based
indicator of Verfürth [9] and the indicators of Bank and Weiser [4]. The crucial point of
anisotropic a posteriori estimating is the fact that all classical estimators deteriorate if the
aspect ratioa(�) = h1(�)=h2(�) tends to infinity. Siebert [8] solves this problem by lo-
cally balancing the directional errors avoiding anisotropic overrefinement. On the other hand,
overrefinement occurs in elliptic systems where one equation is singularly perturbed and the
others are not.

The outline of the paper is as follows. In section 2, we show that the standard error
estimator based on the residual does not satisfy (1.6) with constantsm1;m2 independent of
the aspect ratioa: Section 3 is devoted to the study of a nonlocal error estimator inspired
by the third indicator of Bank and Weiser [4]. Despite the fact that the estimator is nonlo-
cal, it is proved that it can be computed economically on isotropic and anisotropic meshes.
On anisotropic meshes, the estimator shows a significant propagation of local errors along
the small mesh directione2; which clearly indicates that local a posteriori error estimation
is impossible as long as the standard normjjD � jj is used. Some numerical computations
demonstrate that the nonlocal indicator behaves exactly as predicted by the theory.

2. An error estimator based on local residuals.By R1 : H1;2
0 ! S1 we denote

the local approximation operator constructed by Scott and Zhang [7] which satisfies, on an
isotropic mesh with mesh parameterh = 1,

jjv �R1vjj
2

�̂
� cjjDvjj2

U(�̂)
;(2.1)

jjv �R1vjj
2

�̂
� cjjDvjj2

U(�̂)
;(2.2)

whereU(�̂) consists of the union of the triangles adjacent to�̂: In view of condition (1.2) c)
we can transform (2.1) , (2.2) byxi = hix̂i and obtain

jjv �R1vjj
2
� � c

n
h21jjD1vjj

2
U(�) + h22jjD2vjj

2
U(�)

o
;(2.3)

jjv �R1vjj
2
� � ch�12

n
h21jjD1vjj

2
U(�) + h22jjD2vjj

2
U(�)

o
; � 2 �l;(2.4)

jjv �R1vjj
2
� � ch�11

n
h21jjD1vjj

2
U(�) + h22jjD2vjj

2
U(�)

o
; � 2 �s:(2.5)
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Using the orthogonality relation(De;Dv) = 0 for all v 2 S1 and integration by parts, it
follows that

jjDejj2 = (De;D(e�R1e))

=
X
�

�Z
�

(��u)(e�R1e) dx+

Z
@�

Dne(e�R1e) d�

�

=
X
�

Z
�

f(e�R1e) dx+
X
�

Z
�

[DnP1u]J(e�R1e) d�;

where[Dnv]J denotes the ”jump” of the normal derivativeDnv across�: The right hand side
can be bounded by Cauchy’s inequality, and (2.3) - (2.5) which gives

jjDejj2 � c
X
�

jjf jj�

n
h21jjD1ejj

2
U(�) + h22jjD2ejj

2
U(�)

o1=2

+c
X
�l

jj[DnP1u]J jj�

n
h�12 h21jjD1ejj

2
U(�) + h2jjD2ejj

2
U(�)

o1=2

+c
X
�s

jj[DnP1u]J jj�

n
h1jjD1ejj

2
U(�) + h�11 h22jjD2ejj

2
U(�)

o1=2
:

In view of the fact thath1 � h2 we have found the a posteriori bound

jjDejj2 � c
X
�

h21jjf jj
2
� + c

X
�l

h�12 h21jj[DnP1u]J jj
2
� + c

X
�s

h1jj[DnP1u]J jj
2
�(2.6)

with local mesh sizeshi(�): Denoting by�(�) the set of the sides of� we define the local
estimator�� by

�2� =
X

�l\�(�)

h�12 h21jj[DnP1u]J jj
2
� +

X
�s\�(�)

h1jj[DnP1u]J jj
2
�:(2.7)

Though the right hand side definitely deteriorates forh2 << h1, one can argue that the
corresponding jump[DnP1u]J becomes smaller in this case. But in the sequel, we will prove
that

P
� �

2 leads to an arbitrarily large overestimation of the true errorjjDejj2 if the aspect
ratio tends to infinity.

As an example, we consider the orthogonal subdivision of the unit square with mesh
sizesĥ1; ĥ2; ĥ1 = aĥ2; a > 1: In order to transform this mesh to an isotropic mesh we use
x2 = ax̂2; x1 = x̂1 and get the operator

Lu = �D2
11u� a2D2

22u

on the rectangle[0; 1]�(0; a):Denoting bySb
1 the space of continuous and piecewise bilinear

functions satisfying a0–boundary condition the finite element method is defined by

(D1P1u;D1v) + a2(D2P1u;D2v) = (f; v) 8v 2 Sb
1:(2.8)

Let�i be the set of edges with directionei; i = 1; 2: By a similar analysis as before we obtain
for the errore = u� P1u;

jjD1ejj
2 + a2jjD2ejj

2 =
X
�

Z
�

Lu(e�R1e) dx+
X
�2

Z
�

[D1P1u]J(e�R1e) dx2
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+a2
X
�1

Z
�

[D2P1u]J(e�Re) dx1

� ch
X
�

jjf jj�jjDejjU(�) + ch1=2
X
�2

jj[D1P1u]J jj�jjDejjU(�)

+ca2h1=2
X
�1

jj[D2P1u]J jj�jjDejjU(�):

By Young’s inequality it follows that(a � 1)

jjD1ejj
2 + a2jjD2ejj

2
� ch2jjf jj2
 + ch

X
�2

jj[D1P1u]J jj
2
� + ca4h

X
�1

jj[D2P1u]J jj
2
�:

The local error indicator is now defined by

�2� = a4h
X

�1\�(�)

jj[D2P1u]J jj
2
� + h

X
�2\�(�)

jj[D1P1u]J jj
2
�:(2.9)

We remark that we obtain the same error indicator by simply transforming (2.6) usingx1 =
x̂1; x2 = ax̂2; h = ĥ1 = aĥ2;

jjDêjj2 ! a�1
�
jjD1ejj

2 + a2jjD2ejj
2
�
;

ĥ21jjf̂ jj
2
! a�1h2jjf jj2;

X
�l

ĥ�12 ĥ21jj[DnP1û]J jj
2

�̂
!

X
�1

a3hjj[D2P1u]J jj
2
�;

X
�s

ĥ1jj[DnP1û]J jj
2

�̂
!

X
�2

a�1hjj[D1P1u]J jj
2
�:

LEMMA 2.1. For the finite element approximationP1u in (2.8) we have the error esti-
mate

jjD1ejj
2 + a2jjD2ejj

2
� ca2h2jjD2ujj2:

Proof. From the interpolation estimates (1.3), (1.4) it follows that

jjD1ejj
2 + a2jjD2ejj

2 = (D1e;D1(u� I1u)) + a2(D2e;D2(u� I1u))

�
1

2
jjD1ejj

2 +
a2

2
jjD2ejj

2 + ca2h2kD2uk2:

LetD+
2 be the forward finite difference operator approximatingD2; i.e.

D+
2 v(x) =

1

h
(v(x + he2)� v(x)):

LEMMA 2.2. For the finite element approximationP1u in (2.8) we have the estimate

jjD+
2 D1ejj

2

0

+ a2jjD+
2 D2ejj

2

0

� ca2hjjujj23;2
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for every
0 �� 
; � > 0; and0 < h � h0(
0):
Proof. Since the subdivision is uniform we have

(D+
2 D1e;D1v) + a2(D+

2 D2e;D2v) = 0(2.10)

for all v 2 Sb
1 with dist (supp(v); @
) � 2h: Let 
0 �� 
1 �� 
 be domains that

are sufficiently far away from@
; let � be a cut–off function with respect tof
0;
1g; i.e.
� 2 C10 (
1) with � = 1 in 
0: For � we have the estimatesjDk� j � c; k = 1; 2; with a
constant c depending on
0;
1: Using (2.10) we obtain thatZ


0

�
jD+

2 D1ej
2 + a2jD+

2 D2ej
2
	
dx �

Z



�
�
jD+

2 D1ej
2 + a2jD+

2 D2ej
2
	
dx

=
�
D+
2 D1e;D1(D

+
2 e� � v)

�
+a2

�
D+
2 D2e;D2(D

+
2 e� � v)

�
�(D+

2 D1e;D
+
2 eD1�) � a2(D+

2 D2e;D
+
2 eD2�):

We choosev = I1(D
+
2 e�) and obtain from (1.3), (1.4) that

jjD+
2 D1ejj

2

0

+ a2jjD+
2 D2ejj

2

0
� chjjD+

2 D1ejj
1
jjD2(D+

2 e�)jj
1

+ca2hjjD+
2 D2ejj
1

jjD2(D+
2 e�)jj
1

(2.11)

+cjjD+
2 D1ejj
1

jjD+
2 ejj
1

(2.12)

+a2jjD+
2 D2ejj
1

jjD+
2 ejj
1

:

Let
2 be a slightly larger domain than
1; such that

jjD+
2 ejj
1

� jjD2ejj
2

(see [6] p.161). By Lemma 2.1, this term can then be bounded by

jjD+
2 ejj
1

� chjjujj2;2:(2.13)

Moreover, we have the simple inequality

jjD2(D+
2 e�)jj
1

� jjD2D+
2 ujj
1

+ cjjDD+
2 ejj
1

+ cjjD+
2 ejj
1

:

Applying the interpolation estimates (1.3), (1.4) and the usual inverse inequality to the second
term on the right hand side of the last expression, we obtain

jjDD+
2 ejj
1

� jjDD+
2 (u� I1u)jj
1

+ jjDD+
2 (I1u� P1u)jj
1

� chjjujj2;2 + ch�1jjD+
2 (I1u� u)jj
1

+ ch�1jjD+
2 (u� P1u)jj
1

(2.14)

� cjjujj2;2;

from which it follows that

jjD2(D+
2 e�)jj
1

� cjjujj3;2:

Inserting the last inequality and (2.13), (2.14) into (2.11), we obtain

jjD+
2 D1ejj

2

0

+ a2jjD+
2 D2ejj

2

0

� chjjD+
2 D1ejj
1

jjujj3;2(2.15)

+ca2hjjD+
2 D2ejj
1

jjujj3;2:
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In view of the property thatjjDjD
+
2 ejj
1

= jjD+
2 Djejj
1

for j = 1; 2 and (2.14) we have

jjD+
2 Djejj
1

� cjjujj2;2 � cjjujj3;2

which leads to

jjD+
2 D1ejj

2

0

+ a2jjD+
2 D2ejj

2

0

� chjjujj23;2 + ca2hjjujj23;2 � ca2hjjujj23;2:

Remark:Note that one can get a better estimation than stated in the Lemma by iterating
(2.15) for a sequence of domains
0 �� 
1 �� : : :
k �� : : :. Arguing in this way we
would get the inequality

jjD+
2 D1ejj

2

0

+ a2jjD+
2 D2ejj

2

0

� ca2h2��jjujj23;2

for all � > 0.
Now let� be a square with upper neighboring square~� and common side�: Forv 2 Sb

0

we have Z
�

jD+
2 D2vj

2 dx1dx2 =
1

h2

Z
�

jD2v(x + he2)�D2v(x)j
2 dx1dx2:

In view of the fact thatD2v depends only on the variablex1 we get

jjD+
2 D2vjj

2
� =

1

h

Z
�

[D2v]
2
J dx1:

Let 
0 �� 
 be a fixed domain. Denoting the set of sides of
0 in directione1 by �0 we
obtain from Lemma 2.2 that

ha4
X
�0

jj[D2P1u]J jj
2
� � a4h2jjD+

2 D2P1ujj
2

0

(2.16)

�
1

2
a4h2jjD+

2 D2ujj
2

0
� a4h2jjD+

2 D2ejj
2

0

�
1

2
a4h2jjD+

2 D2ujj
2

0
� ca4h3jjujj23;2;
:

Choosing a smooth functionu which behaves likesinx2 in 
0 such that

jjD+
2 D2ujj
0

� c1; jjujj3;2;
 � c2;

with constantsc1; c2 > 0, then (2.16) shows, that forh sufficiently small

ha4
X
�0

jj[D2P1u]J jj
2
� �

1

4
a4h2c21:

From Lemma 2.1 we conclude that the error estimator gives an overestimation with factora2

for functions of this type.

3. A nonlocal error indicator. In this section we return to Poisson’s equation (1.1) and
its finite element approximation (1.5). Recall thatIk; k = 1; 2; are the standard interpolation
operators into the spacesSk, and define the space

S0 = fv 2 S2 : I1v = 0g;
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which means that the elements ofS0 vanish in the nodal points of the triangulation.
The nonlocal version of the third error indicator of Bank–Weiser [4] is given by

o
e2 S0

such that

(D
o
e;Dv) = (De;Dv) 8v 2 S0:(3.1)

In view of

(De;Dv) = (f; v)� (DP1u;Dv)

the right-hand side of (3.1) is known ifP1u is known.
Let us compare

o
e with the original third indicator of [4] which also gives some insight

into error propagation on anisotropic meshes. Let~S be the discontinuous version ofS0; i.e. ~S
consists of all piecewise quadratic functions vanishing in the nodal points of the triangulation.
The indicator~e 2 ~S is then defined by

(D~e;Dv)� = F�(v) 8v 2 ~S;(3.2)

where

F�(v) = (f; v)� +
1

2

X
�2�(�)

Z
�

[DnP1u]J [v]A d�;

and where[v]A is the average ofv on the neighboring triangles of�: Summing (3.2) over�
and using integration by parts yield

X
�

(D~e;Dv)� =
X
�

(De;Dv)� �
X
�

Z
�

[Dne]J [v]A 8v 2 ~S:

Comparing this with (3.1) shows that
o
e is the continuous and nonlocal counterpart of~e: For the

actual computation of~e; a3� 3 linear system has to be solved on each triangle� in contrast
to the large system required for the computation of

o
e : On the other hand, a complicated

computation using the symbolic program ”mathematica” shows that the system corresponding
to (3.1) is strictly diagonally dominant if the largest interior angle is bounded by� < �

2
: Let

0 < � � � < �
2
: Since the triangles with interior angles between� and� are compactly

parametrized we obtain that the system in (3.1) is uniformly strictly diagonally dominant
in this class of triangles and can efficiently be solved by the simple Gauß–Seidel method.
Furthermore, we conclude that local errors decrease exponentially on such meshes. This is
the reason why local error estimation is possible. For isotropic triangles with angles bounded
by � < � the reasoning is similar. Since local error estimation is also possible in this case,
we conclude that the system in (3.1) must be strictly dominant “in the mean” and can again
be solved by the Gauß–Seidel method.

Now we turn to the anisotropic case and consider the orthogonal mesh with parameters
h2 << h1 shown in Fig. 1. The entries of the matrix in (3.1) can be represented by stencils.
For the midpoints of the larger sides we obtain

Sl =

0
@ 0 �1 0

0 2 0
0 �1 0

1
A+O

�
h2

h1

�
;

whereas the entries of the stencil for the shorter sides are of the type

Ss =

0
@ 0 0 0

0 2 0
0 0 0

1
A+O

�
h2

h1

�
:
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h1

h2

FIG. 3.1.An anisotropic mesh.

Thus, local errors propagate in the direction of the small sides with a stencil approximating
�h22D

2
yy: Since the indicator

o
e is reliable and efficient in this case, we believe that local error

estimation is inherently inaccurate on anisotropic meshes.
On the anisotropic mesh shown in Fig. 1, the indicator

o
e can efficiently be determined

with the aid of a Block–Gauß–Seidel method since there is nearly no coupling normal to the
smaller sides. On general anisotropic meshes, we use a mesh–dependent Block–Gauß–Seidel
method where points coupled by smaller sides are updated simultaneously.

Since the local error indicator is equivalent to the residual based indicator on anisotropic
meshes, the counterexample given in section 2 can also be applied. It remains to prove that
the nonlocal indicator is reliable and efficient. We start with a preparatory result.

LEMMA 3.1. There is a constantc0 depending only on the angle� in condition (1.2) b),
but not on the shape of the triangle� such that

jjDI1vjj� � c0jjDvjj� 8v 2 S2:

Proof. On isotropic triangles, this estimate can simply be proved by using a reference
element and transforming the corresponding estimate to�: In the anisotropic case, our proof
requires some notations, but is simpler and shows thatc0 � 1 for moderate�: LetP1; P2; P3
be the nodes of� numbered counterclockwise. The edge opposite toPi is denoted byei with
midpointai: The derivative in directionei is denoted byDi: Forw 2 IP2(�) we have

Diw(ai) =
1

jeij
(w(Pi+1)� w(Pi�1)) ;(3.3)

Z
�

w(x) dx =
�(�)

3

3X
i=1

w(ai):(3.4)

Assuming that(e1; e2) is a pair of a larger and a smaller side we obtain

jjDI1vjj
2
� � c

�
jjD1I1vjj

2
� + jjD2I1vjj

2
�

	
;

wherec depends on the angle� in condition (1.2) b) . Using (3.3), (3.4) and the fact that
DiI1v is constant in�; we obtain

jjDI1vjj
2
� � c�(�)

�
jD1I1v(a1)j

2 + jD2I1v(a2)j
2
	
� cjjDvjj2�:
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Since the spacesS0; S1 are locally three dimensional, the strengthened Cauchy–
inequality

(Dv;Dw) � 
jjDvjj jjDwjj 8v 2 S1; 8w 2 S0(3.5)

holds.
Furthermore, a well-known saturation assumption is required, namely

jjD(u� P2u)jj � �(h)jjDejj(3.6)

with �(h) ! 0 for h ! 0: This condition is satisfied on arbitrary anisotropic meshes inde-
pendent of the aspect ratio if the solutionu is sufficiently regular or the mesh is appropriately
refined (see (1.3), (1.4)).

THEOREM 3.2. With� in (3.6),
 in (3.5) andc0 in Lemma 3.1 we have

1� �

1 + 
c0
jjDejj � jjD

o
e jj � jjDejj:

Proof. We insertv =
o
e in (3.1) and we obtain

jjD
o
e jj2 = (De;D

o
e) � jjDejj jjD

o
e jj;

which proves the bound from above. From the definition ofPiu it follows that

(D(P2u� P1u); Dv) = 0 8v 2 S1;

and hence

jjD(P2u� P1u)jj
2 = (D(P2u� P1u); D(P2u� P1u� I1(P2u� P1u))

= (D
o
e;D(P2u� P1u))� (D

o
e;DI1(P2u� P1u))

� jjD
o
e jj jjD(P2u� P1u)jj+ 
jjD

o
e jj jjDI1(P2u� P1u)jj

� (1 + 
c0)jjD
o
e jj jjD(P2u� P1u)jj:

From the resulting estimate

jjD(P2u� P1u)jj � (1 + 
c0)jjD
o
e jj

it follows that

jjDejj � jjD(u� P2u)jj+ jjD(P2u� P1u)jj

� �(h)jjDejj+ (1 + 
c0)jjD
o
e jj:

We conclude this section by presenting some numerical results for the anisotropic mesh
in Fig. 1. We use a slight modification of

o
e which is well suited for use with multilevel

methods. Instead ofS2 the space of continuous, piecewise linear functions on the refined
mesh is used. The spaceS0 then consists of all piecewise linear functions on the refined mesh
vanishing on the nodal points of the actual mesh. Now

o
e is the first iterate of a hierarchical

multilevel method. If the mesh is globally refined in the next step no computing time is
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wasted. The disadvantage of this method is that we can only expect� � 1
2

in condition (3.6)
in contrast to�(h) � h when using the spaceS2: On the other hand, the proof of Theorem
3.2 remains valid in this new setting.

Consider��u = 10 in 
 = (0; 1)2: Denoting byh the length of the larger sides and
denoting bya the aspect ratio of the triangles we obtain the following results:

h�1 = 8 h�1 = 16

a = 1 4 8 a = 1 4 8

jjD
o
e jj 0:2072 0:1769 0:1758 0:1234 0:0883 0:0877

jjDejj 0:4122 0:2876 0:2337 0:2072 0:1384 0:1144

From Theorem 3.2 we expect that

1� �

1 + 
c0
�

1

2
:

Hence, the theory is exactly confirmed by the numerical results stated above. Furthermore,
there is no dependence of the error indicator on the aspect ratioa:
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